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Abstract

Light field (LF) imaging, which captures both spatial and angular information of a scene, is undoubtedly
beneficial to numerous applications. Although various techniques have been proposed for LF acquisition,
achieving both angularly and spatially high-resolution LF remains a technology challenge. In this paper,
a learning-based approach applied to 3D epipolar image (EPI) is proposed to reconstruct high-resolution
LF. Through a 2-stage super-resolution framework, the proposed approach effectively addresses various
LF super-resolution (SR) problems, i.e., spatial SR, angular SR, and angular-spatial SR. While the first
stage provides flexible options to up-sample EPI volume to the desired resolution, the second stage, which
consists of a novel EPI volume-based refinement network (EVRN), substantially enhances the quality of the
high-resolution EPI volume. An extensive evaluation on 90 challenging synthetic and real-world light field
scenes from 7 published datasets shows that the proposed approach outperforms state-of-the-art methods
to a large extend for both spatial and angular super-resolution problem, i.e., an average peak signal to noise
ratio improvement of more than 2.0 dB, 1.4 dB, and 3.14 dB in spatial SR ×2, spatial SR ×4, and angular
SR respectively. The reconstructed 4D light field demonstrates a balanced performance distribution across
all perspective images and presents superior visual quality compared to the previous works.
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1. Introduction

The main advantage of a light field (LF) im-
age over the conventional image is its high di-
mensional data. A LF image contains both direc-
tional information and spatial information instead
of only spatial information as in conventional im-
age. This rich-content property of light field brings
a great benefit to numerous applications [1]. In
general, light field acquisitions can be categorized
into three main classes: multi-sensor capturing [2],
time-sequential capturing [3] and multiplexed imag-
ing [4, 5, 6]. The multi-sensor capturing approach
requires an array of image sensors distributed on a
planar or spherical surface to simultaneously cap-
ture light field samples from different viewpoints.
The time-sequential capturing approach, on the
other side, uses a single image sensor to capture
multiple samples of the light field through multi-
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ple exposures. The typical approach uses a sen-
sor mounted on a mechanical gantry to measure
the light field at different positions [3]. The multi-
plexed imaging encodes the high dimensional light
field into a 2D sensor plane, by multiplexing the
angular domain into the spatial domain. One pop-
ular example of this acquisition approach is plenop-
tic camera [4, 5, 6], in which a microlens array is
placed in between a main lens and an image sensor.

Each acquisition method has its own advantages
and disadvantages. The multi-sensor capturing ap-
proach is generally more expensive but allows cap-
turing very high spatial resolution of a dynamic
screen. The time-sequential capturing approach is
inexpensive and can capture very high spatial res-
olution but suffers from very long capturing time
which makes it less preferable for capturing a dy-
namic scene. Multiplexed imaging approach is in-
expensive and can handle dynamic scenes but pro-
duces low spatial resolution images. Besides, all
acquisition approaches impose a trade-off between
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Figure 1: Spatial super-resolution results achieved by the
proposed approach (3DVSR) and state-of-the-art SSR meth-
ods. The data points are averages of the performance metrics
from 90 test scenes of 7 public datasets. ([8, 9, 10, 11, 12, 13,
14]). The proposed approach outperforms single image SR
methods (EDSR [15], RCAN [16], DBPN [17]) and LF SSR
methods (pcabm [18], LFCNN [19], LFnet [20], EPI2D [21],
SR4D [22], resLF [23]).

angular resolution and either spatial resolution or
temporal resolution, i.e., reducing the cost of the
sensor by using low-resolution sensors in exchange
to increasing number of sensors for higher angu-
lar resolution; increasing capturing time to capture
dense angular samples of the scene; increasing the
number of micro-lenses to increase the spatial res-
olution but at the same time reducing the num-
ber of angular samples. The existing challenges in
capturing high-resolution light field images limit its
promotion to practical applications and motivates
research in light field super-resolution (SR) [7].

An LF image can be characterized by a 4D
array structure comprised of two spatial dimen-
sions and two angular dimensions. In practice,
it is considered as a 2D array of sub-aperture
images (SAIs) that captures a scene from differ-
ent perspectives. LF super-resolution distinguishes
between spatial super-resolution (SSR), angular
super-resolution (ASR), and angular-spatial super-
resolution (ASSR). SSR aims for increasing the res-
olution of each SAI while ASR aims for generating
new perspective images. ASSR, as its name indi-
cates, involves both SSR and ASR and results in
higher resolutions in all dimensions of an LF image.
A straightforward approach for SSR is applying
a single image super-resolution (SISR) technique
in which each SAI is up-sampled independently.
Thanks to comprehensive training dataset and ma-
ture development in the field of SISR, state-of-
the-art approaches such as VDSR [24], EDSR [15],
RCAN [16], RDN [25] can already reconstruct rel-
atively good quality SAIs [7]. However, failing
to incorporate angular information, this type of

approach is easily surpassed by recent LF SSR
methods (EPI2D [21], ResLF [23], SR4D [22]).
Compared to SSR, there is less research atten-
tion to ASR and ASSR. Existing approaches such
as VSYN [26], LFCNN [19], LFSR [27], Wang et
al. [28], and Wu et al. [29, 30] employ convolu-
tional neural network (CNN) for predicting novel
SAI. However, their performances are still limited.

In this paper, a 3D EPI volume-based super-
resolution approach (3DVSR) is proposed for deal-
ing with LF super-resolution problems, i.e., ASR,
SSR, and ASSR. As opposed to existing methods
that rely on 2D slices of LF, i.e., epipolar images
(EPIs) [21] or SAIs [23, 20], our approach makes
use of a 3D projected version of LF, also known as
3D EPI volume [31]. The advantage of this volume
structure is incorporating both spatial information
in SAI and angular information in EPI. In addi-
tion, to fully exploit this 3D structure, we proposed
a novel EPI volume refinement network (EVRN)
built on 3D convolution operations and efficient
deep learning techniques, i.e., global/local resid-
ual learning, dense connection, multi-path learning,
and attention-based scaling. Experimental results
show that EVRN substantially improves the recon-
struction quality in all LF super-resolution prob-
lems. Fig. 1 presents the performance of the pro-
posed approach compared to state-of-the-art meth-
ods for SSR. Peak signal to noise ratio (PSNR)
and structural similarity index measure (SSIM) are
employed as performance metrics. The proposed
approach outperforms the existing approaches to a
large extent in both SSR ×2 and ×4. Detail com-
parisons and evaluations are further discussed in
Section 5.

The main contributions of this work are as fol-
lows. First, we proposed a novel 3D EPI volume-
based framework for addressing various LF SR
problems, i.e., ASR, SSR, and ASSR. Specifically,
the framework comprises two consecutive stages,
i.e., preliminary up-sampling stage and volume-
based enhancement stage. The first stage allows
different options to be used for up-sampling the in-
put volume to the desired resolution. Then, in the
second stage, the novel EVRN corrects the high-
frequency information by incorporating both spa-
tial information in SAI and angular information
in 2D EPI to reconstruct a high-quality LF im-
age. Such a two-stage model was first introduced by
Fan et al. [32] for reconstructing a high-resolution
SAI, but our approach is fundamentally different.
In [32], outputs of the first stage are subjected to a
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view registration before feeding to a CNN to im-
prove the quality of a targeted view. Although
this method generates more references to support
the enhancement of the targeted view, it destroys
the EPI structure. Our approach, in contrast, pre-
serves this structure in an EPI volume and intro-
duces a novel EVRN to exploit this information
for enhancing multiple views simultaneously. Com-
pared to previous works which employed residual,
dense, and attention techniques to reconstruct a
high-resolution 2D image (RDN [25], RCAN [16]),
the novelty of our EVRN lies in the introduction of
attention-based multi-path learning, which targets
spatial and angular aspects of the feature maps.
As discussed in Section 5, this technique allows us
to improve the performance of EVRN and, there-
fore, leads to a substantial enhancement of EPI
volume output from the preliminary up-sampling
stage. Secondly, a simple but effective Deep CNN
model is proposed for preliminary up-sampling an-
gular dimensions. Although its output quality is
later greatly improved by EVRN, this model it-
self already surpasses existing approaches in ASR.
Thirdly, an extensive evaluation is conducted on
90 challenging synthetic and real-world LF scenes
from 7 public LF datasets. In this evaluation, we
analyzed the performance of the proposed approach
and compared it to state-of-the-art approaches.

The remainder of the paper is organized as fol-
lows. Section 2 briefly discusses related works cat-
egorized into optimization-based approaches and
learning-based approaches. An overview of LF rep-
resentation along with important notations is pre-
sented in Section 3. Section 4 and Section 5 re-
spectively discuss the proposed approach and ex-
perimental results. Finally, we draw a conclusion
in Section 6.

2. Related Work

In general, previous works can be categorized
into two groups: optimization-based approaches
and learning-based approaches.

2.1. Optimization-based approaches

In this type of approach, LF super-resolution
is formulated as an optimization problem which
typically consists of a data fidelity term directly
composed from input LF image and a regular-
ization term based on known priors. There are
two main types of data terms that are used in

the literature. One of them penalizes the coher-
ence between low and high-resolution LF image
pairs [33, 34, 35, 36]. The other enforces the Lam-
bertian consistency across the directional dimen-
sion by warping SAIs from different view angles
using pre-computed disparity maps [37, 38, 36].
Compared to the data fidelity term, the choices of
regularization terms are more diverse. Each work
proposed to use a different prior in order to achieve
a better output quality and with a feasible compu-
tation effort, i.e., total variation (TV) [37], bilateral
TV[38], Markov Random Field (MRF) [34], Gaus-
sian [33], Graph-based [39], sparsity [35].

In [34], Bishop et al. studied an explicit image
formation model that characterizes the light field
imaging process by spatially-variant point spread
functions (PSFs). The PSFs were derived under
Gaussian optics assumptions and employed in a
Bayesian framework for super-resolution. In [33],
Mitra et al. showed that 4-D patches of different
disparities have different intrinsic dimensions and
proposed to learn a Gaussian prior for each quan-
tized disparity value. These priors were then em-
ployed to inference high-resolution 4-D patches un-
der the Maximum a posterior (MAP) criterion. LF
super-resolution was modeled as a continuous opti-
mization problem using a variational framework in
[37]. Disparity maps were extracted by local esti-
mation of pixel-wise slope in EPI. The data fidelity
term was constructed by warping surrounding views
with the estimated disparity maps and masking
with occlusion maps, while total variation was used
for regularization. In [38], Tran et al. treated LF
super-resolution as a multi-frame super-resolution
problem in which degradation process is modeled
by three operators: down-sampling, blurring, and
warping. A variational optimization approach was
employed to estimate disparity maps used by the
warping operator and bilateral TV was employed
as an image prior. In [35], Alain et al. proposed a
patch-based super-resolution approach making use
of a 5D transform filter that consists of 2D DCT
transform, 2D shape-adaptive DCT and 1D haar
wavelet. By a proper selection of 5D patches, a
transformed signal exposes a high degree of spar-
sity which can be employed as a prior to regularise
a L2 data term. In [39], Rossi et al. proposed
an approach which couples two data-terms with a
graph-based regularizer. A graph-based prior reg-
ularizes high-resolution SAIs by enforcing the ge-
ometric light field structure. Block matching was
employed in their work for the estimation of dispar-
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(a) (b) (c)

Figure 2: 4D Light field representation. (a) Two-plane pa-
rameterisation. (b) A sub-aperture image of scene dino [9]
at angular location θi = (6, 3)T . (c) An angular patch image
at spatial location xi = (78, 170)T .

ity values and the construction of the graph map.

2.2. Learning-based approaches

The earliest work which applies deep learning for
reconstructing high-resolution LF is [40]. The au-
thors employed the SISR approach from [41] for
SSR and proposed a CNN-based solution for ASR in
which novel views depending on its position will be
synthesized from a vertical pair, a horizontal pair,
or four neighbors. An improved version was de-
scribed in [19] where SISR was applied to each SAI
separately, and learning variables were shared in
the ASR network. In [26], Kalantari et al. pro-
posed to generate novel SAIs by exploiting dis-
parity information in a two-stage CNN. The first
stage predicts disparity maps from a pre-computed
cost-volume, and the second stage synthesizes novel
views from input images that are warped using pre-
dicted disparity maps. In [18], a patch-based ap-
proach that employs linear subspace projection was
presented. A linear mapping function between low
and high subspaces of low and high LF patch vol-
ume was learned from a training dataset and ap-
plied to new LF images. The authors used block
matching to find matched 2D patches and extract
aligned patch volumes. Principal component anal-
ysis (PCA) was then employed to reduce patch vol-
umes’ dimensions and project them into subspaces.
The mapping function was computed in the form
of a l2-norm regularized least square problem. Fan
et al. [32] proposed a two-stage approach for SSR.
In the first stage, each SAI was upscaled using the
SISR method from VDSR [24]. The output was
then registered to a reference SAI by locally search-
ing similar patches. Both reference image and reg-
istered images were fed into a CNN network in the
second stage to reconstruct high-resolution SAI at
the reference position. Similarly, Yuan et al. [21]
proposed another two-stage approach. In the first

stage, EDSR [15] was employed to super-resolute
SAIs. In the second stage, the output of SISR was
then enhanced by a refinement CNN which relies
on 2D EPI. In [27], Gul et al. proposed an ap-
proach targeting lenslet images captured by plenop-
tic cameras [4, 5]. Microlens image patches were
used as input to two separate networks, i.e., one
for ASR and the other for SSR. However, the fully
connected layers employed in these networks lim-
ited its application to a certain angular resolution.
Wang et al. [20] developed a bidirectional recur-
rent CNN approach for spatially up-sampling 4D
LF images. They employed multi-scale fusion lay-
ers for future extraction to accumulate contextual
information. Two networks for vertical and hor-
izontal image stacks were learned separately, and
a stack generalization technique was employed to
obtain a complete set of images. In [28], the au-
thors proposed a two-step approach to synthesize
novel views. In the first step, a learnable interpola-
tion approach is employed to generate intermediate
volumes, which are then refined in the second step
through a 3D CNN. However, since the architec-
ture of the 3D CNN is simple, the performance of
this refinement step is limited. In [29] and [30]
Wu et al. proposed two novel approaches for LF
view synthesis based on EPI structure. In [29], a
set of shared EPIs is created for a discrete set of
shear values which is then up-sampled and scored
by an evaluation CNN to create a cost volume. The
2D slices output from fusing the cost volume are
then subjected for a high-resolution EPI calculation
based on a pyramid decomposition-reconstruction
technique. In [30], the authors model the view
synthesis as a learning-based detail restoration on
2D EPIs. They proposed a three-step framework,
namely “blur-restoration-deblur” that employs the
blurring operator for blur step, a CNN for restora-
tion step, and a non-bind deblur operation for the
last step. To fully exploit the 4D structure of LF
images, Yeung et al. [22] proposed to apply 4D con-
volution for SSR. The 4D convolution function was
implemented as spatial-angular separable convolu-
tion, which allows extracting feature maps from
both spatial and angular domains. In [23], Zhang
et al. proposed a residual CNN-based approach for
reconstructing LF images with higher spatial res-
olution. The network takes in image stacks from
four different angles and predicts a high-resolution
image at the center position. According to the dif-
ference in angular position, it requires six different
networks for a complete reconstruction of the 4D
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LF image.

3. Light field Notation

Light field refers to the concept of acquir-
ing a complete description of light rays emitted
from a scene and traverse in space. It can be
well parameterized by the 7D plenoptic function
LLL
(
px, py, pz, θ, φ, λ, t

)
[4] which returns the radi-

ance (intensity) of a line beam observed at a
point

(
px, py, pz

)
in space, along a grazing direc-

tion
(
θ, φ

)
, at a time t and wavelength λ. In prac-

tice, it is of interest to capture only a snapshot
of the function (at a fixed time) and simplify the
spectral information by using only 3 color compo-
nents (i.e. red, green, blue). By removing the time
and wavelength parameters, we are left with a 5-
parameters function, also known as 5D plenoptic
function [42], which allows us to describe the in-
tensity of any light ray in 3D space regardless the
viewpoint position and the change of light direc-
tion. One more parameter can be omitted from the
function, if one assumes that the direction of a light
ray is unchanged and considers only the light inten-
sity being visible at a specific position, i.e. placing
of cameras. This is also the common setup of light
field imaging which results in a 4D light field [42] or
Lumigraph [43]. Under the two plane parameteri-
zation, each ray is indexed with a 4D coordinate by
its intersection with two parallel planes, as depicted
in Figure 2a.

LLL : Ω×Π→ R, (x,θ)→ LLL(x,θ) (1)

where x = [x, y]T and θ = [ρ, τ ]T denote coordi-
nate pairs in the spatial plane Ω ⊂ R2 and in the
directional plane Π ⊂ R2 respectively. In prac-
tice, the value of this function can be a vector of
3 color components (i.e., RGB color light field) and
the two planes are discretized by the sampling rate
of capturing devices (e.g., sensor size, number of
cameras,...).

For a better observation and analysis, various
ways to visualize 4D LF are introduced in the liter-
ature. Common visualizations are using 2D slices,
i.e., sub-aperture image (SAI), angular patch image
(API), or epipolar image (EPI). By fixing the di-
rectional index θ = θi or the spatial index x = xi,
one can respectively obtain a SAI LLL(x,θi) or an
API LLL(xi,θ). Fig. 2 (b),(c) are examples of a
sub-aperture image and an angular patch extracted
from a 4D synthetic light field image, dino [9].
The resolution of this light field is 512×512×9×9,
where 512×512 is the spatial resolution and 9×9 is
the angular resolution. The angular patch con-
sists of pixels, each at the same spatial location
xi = (78, 170)T on a sub-aperture. An EPI can
be acquired by fixing one index in the spatial plane
and one index in the angular plane while varying
the remaining two indices. By fixing vertical in-
dices, i.e., y=yi, τ=τi, we have the horizontal EPI
Σyi,τi(x, ρ) = LLL

(
[x, yi]

T , [ρ, τi)]
T
)
. A similar pro-

cedure applies to vertical EPI Σxi,ρi(y, τ). Fig. 3
illustrates the two types of EPIs.

As pointed out in [37], a point in 3D space is pro-
jected onto a line in EPI whose slope is decided by
the depth of this point. For example, in Figure 3
the point located at (xi, yi) projected onto two lines
in horizontal EPI (Σyi,τi) and vertical EPI (Σxi,ρi).
Notice that all letters crossed by the line y = yi (i.e.,
dotted green line) reside on the same depth and re-
sult in identical slope in horizontal EPI Σyi,τi . This
property of EPI represents the geometric informa-
tion of the scene and was exploited in many LF
image processing applications (i.e. disparity esti-
mation [31, 37], super-resolution [37, 21]). In this
work, we consider a 3D version of EPI, namely EPI
volume [31], in which the second spatial dimension
is added. The intuition behind this volume data is
the combination of both spatial coherence (i.e. x
vs. y) and EPI coherence (i.e. x vs. ρ) that can be
employed for reconstructing high-quality LF image.
Horizontal EPI volume VVV τi and vertical EPI volume
VVV ρi are defined in Equation 2. An EPI volume is
an orthogonal 3D slide through 4D LF and can be
considered as a stack of 2D EPI along a spatial axis,
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Figure 4: Overview of 3D EPI volume SR framework. The
framework consists of a preliminary up-sampling stage and
an enhancement stage. The earlier stage includes a prelim-
inary spatial SR block (PSSR) and a preliminary angular
SR block (PASR). The later stage includes an EPI volume
refinement network (EVRN).

e.g., VVV τi is constructed by stacking horizontal EPI
Σyi,τi along spatially vertical axis y.

VVV τi : R3 → R, (x, ρ, y)→ LLL

([
x
y

]
,

[
ρ
τi

])
VVV ρi : R3 → R, (y, τ, x)→ LLL

([
x
y

]
,

[
ρi
τ

]) (2)

This work assumes that 4D LF image has the
resolution of W×H×A×A, where H,W ∈ N+ re-
spectively represent the height and width of each
SAI and A= 2K + 1,K ∈N+ denotes the angular
resolution. The resolutions of ρ-axis and τ -axis are
set equally, since this square array of views is com-
monly used in literature [18, 19, 20, 21, 22, 23] and
available in public dataset [8, 9, 10, 11, 12, 13, 14].
The resolution of horizontal EPI volume VVV τi and
vertical EPI volume VVV ρi are then W×A×H and
H×A×W respectively.

4. Methodology

4.1. Overview of the Proposed Approach

The proposed approach targets the super-
resolution of 3D projected versions of a 4D LF im-
age. Instead of directly up-sampling a 4D LF im-
age (e.g, SR4D [22]), we first decompose it into a
complete set of 3D EPI volumes. Each EPI vol-
ume is then super-resolved to its desired resolution.
The high-resolution sets of EPI volumes are finally
merged to form the final high-resolution 4D out-
put. Fig. 4 illustrates the overall process of the
proposed EPI volume SR framework. The frame-
work is comprised of two main processing stages:
a preliminary up-sampling stage and a volume en-
hancement stage. The first stage involves two tasks:
preliminary spatial super-resolution (PSSR) and

preliminary angular super-resolution (PASR). The
second stage includes an EPI volume-based refine-
ment network (EVRN). Given a 3D EPI volume
(VVV l) with the resolution of W×A×H, PSSR and
PASR sequentially up-sample the spatial resolution
to ζζxW×ζζxH and the angular resolution to ζζθA,
where ζζx and ζζθ are spatial and angular scaling
factor respectively. This preliminarily up-sampling
volume is provided as an input to EVRN which will,
in turn, refine the 3D EPI structure and return an
enhanced high-resolution volume. PSSR and PASR
can be applied separately or jointly depending on
SR applications (i.e., SSR, ASR, and ASSR).

Algorithm 1: Volume-based super-
resolution (VSR) function

1 Function VSR(LLLl, ε, F):
2 {VVV }ε := Slice(LLLl, ε) . Extract ε-axis

volumes

3 {VVV }∗ := {} . Initialize empty volume

set

4 for VVV in {VVV }ε do
5 {VVV }∗ := {VVV }∗ + F(VVV )
6 end
7 LLLh := Merge({VVV }∗, ε) . Reconstruct 4D

LF

8 return LLLh
9 end

Algorithm 2: Spatial-angular super-
resolution of 4D LF
Input: LLLl
Output: LLLh

1 LLL := LLLl
2 if spatial super-resolution then
3 F := R

(
S(·)

)
. Apply PSSR and EVRN

4 LLL := 0.5
(
VSR(LLL, τ,F) + VSR(LLL, ρ,F)

)
5 else if angular super-resolution then
6 if spatial super-resolution then
7 F := S(·) . Apply only PSSR

8 LLL := VSR(LLL, τ,F)

9 end

10 F := R
(
A(·)

)
. Apply PASR and EVRN

11 LLL := VSR(LLL, τ,F) . Upscale ρ-axis

12 LLL := VSR(LLL, ρ,F) . Upscale τ-axis

13 end
14 LLLh := LLL

6
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Figure 5: The network architecture of the proposed EPI volume refinement network (EVRN)

The function VSR in Algorithm 1 describes the
application of the proposed framework for the re-
construction of high resolution LF image. VSR takes
in three paramters: a low-resolution LF (LLLl), a di-
rectional axis (ε∈ {ρ, τ}), and a volume-based SR
function (F). The directional axis is needed to de-
termine the direction of 3D projection which will
results in either vertical volume (ε=ρ) or horizonal
volume (ε = τ). The volume-based SR function
encodes the configuration of PSSR and PASR as
in Fig. 4, i.e., only PSSR, only PASR, and both.
The procedure of VSR is as follow. First, a set
of EPI volumes are extracted from the input LLLl
(line 2). Depending on ε, function Slice(·) will
return either horizontal volume or vertical volume
set

(
{VVV }ε = {VVV εi , i = 1, .., A}

)
. Next, a high res-

olution volume set {VVV }∗ is acquired by applying
volume SR function (F) to each volume in {V ol}ε
(line 3 − 6). Finally, we combine 3D volumes in
{V ol}∗ to form a high-resolution 4D output (line
7).

The applications of VSR function in SSR, ASR,
and ASSR are described in Algorithm 2. In the
case of SSR, F is comprised of PSSR, denoted as S,
and EVRN denoted as R, (line 3). VSR is applied to
horizontal and vertical volumes separately and then
the output LFs are averaged (line 4). In the case
of ASR, F is set as PASR, denoted as A, followed
by EVRN (line 10). The super-resolution of hori-
zontal volumes (line 11) and vertical volumes (line
12) will increase the angular resolution to ζζθA×A
and ζζθA × ζζθA respectively. As for ASSR, a simi-
lar procedure to ASR is applied, except that PSSR
is previously employed to spatially up-sample the

input light field (line 7,8).

4.2. EPI Volume Refinement Network

The proposed network bases on global residual
learning architecture that is implemented with a
long skip connection and an element-wise addition
as illustrated in Fig. 5. Global residual learning
allows EVRN to avoid learning complicated trans-
formation and focus on the reconstruction of high-
frequency information differing between low and
high-resolution EPI volume. 3D convolutional ker-
nels are utilized in our network instead of 2D con-
volutions since this type of kernel was shown to be
effective with 3D EPI volume data [31]. EVRN
is comprised of two parts: attention-based resid-
ual learning extracts densely residual-based fea-
tures and attention-based multi-path learning re-
constructs high-frequency information.

4.2.1. Attention-based Residual Learning

This part consists of a shallow feature extraction
layer (SFE) followed by R local residual learning
blocks. Dense connection [44] is employed to alle-
viate gradient vanishing and improve signal prop-
agation. With this setup, the feature maps of all
preceding layers are combined and used as an input
to the current layer. Since the accumulated fea-
ture size gets bigger after each layer and demands
a high computational effort, we decide to compress
the concatenated features by a feature bottle-neck
layer (FBN). FBN consisting of a 1×1×1×C convo-
lutional layer followed by a PReLU activation layer
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will reduce the dense-feature size to C channels be-
fore inputting to a channel attention-based residual
layer (CAR) as in Fig. 5.

For the local residual learning block, we follow
RCAN [16] to integrate channel attention [45] for
adaptively scaling residual features. As shown in
[16], this technique improves the reconstruction
quality of high-resolution images. The architecture
of CAR is comprised of a well-known feature ex-
traction combination conv-prelu-conv followed by
a channel attention weighting block (CAW). CAW
starts with a global average pooling layer which
collapses an input feature from W×A×H×C to
1×1×1×C. It is then reshaped to 1×C and is followed
by a 1D down-sampling convolution (1×Cr) and
1D up-sampling convolution (1×C). Here Cr = C

r
with r is a predefined reduction ratio. After going
through a sigmoid activation layer, the 1×C scal-
ing weight is reshaped and broadcasted to the form
W×A×H×C being ready for an element-wise multi-
plication with the input feature.

4.2.2. Attention-based Multi-Path Learning

This part is comprised of two separate learning
paths targeting spatial and angular aspects of the
feature maps. Each path includes an FBN, two
SFEs, and an attention-based weighting block as
in Fig. 5. There are two types of attention-based
weighting, one is for spatial feature dimensions de-
noted as SAW and the other is for angular feature
dimension denoted as AAW. FBN is employed to
reduce the size of densely connected feature-maps
generated by the residual learning part. After this
block, the feature size is reduced from (R + 1)C
channels to C channels. The reduced feature map
is fed to an SFE whose output is refined by an
element-wise multiplication with attention weights
computed by AAW or SAW. After the second SFE,
the feature maps from the two paths are concate-
nated and squeezed to form the final residual fea-
ture map. The high-resolution EPI volume is ac-
quired by adding up the residual information to the
preliminarily up-sampled volume.

SAW consists of a global pooling, a 2D convolu-
tion, and a sigmoid activation layer. In global pool-
ing layer, Average Pooling (Pavg) and Max Pool-
ing (Pmax) are applied to the input feature F ∈
RW×A×H×C and results in Favg, Fmax ∈ RW×1×H×1.
These feature maps are then concatenated and re-
shaped to form the global pooling feature Fpool ∈
RW×H×2. We then applied a 2D convolution with
kernel size 5×5×1 followed by a sigmoid activation

function. These weighting values are then reshaped
and broadcasted to the form W×A×H×C for an
element-wise multiplication. The following equa-
tion summarizes the computation of spatial atten-
tion weights.

Ws(F ) = σ

(
f5×5×1

([
Pavg(F );Pmax(F )

]))
(3)

AAW consists of a global pooling, a fully-
connected, and a sigmoid activation layer. Given an
input feature F ∈ RW×H×A×C , we follow a similar
procedure as of SAW to compute global pooling fea-
tures Fpool ∈ R2A. Here, Pavg and Pmax are applied
to spatial and channel dimensions of the input fea-
ture map and the output features are concatenated
along the angular dimension. We then compute A
weighting values by applying a fully connected layer
followed by a sigmoid activation function. Equa-
tion 4 outlines this computation.

Wa(F ) = σ

(
D2A:A

([
Pavg(F );Pmax(F )

]))
(4)

4.3. Preliminary spatial super-resolution

Given an EPI volume VVV l with a resolution of
W×A×H as an input, the output of PSSR is an
EPI volume VVV h with a resolution of ζζxW×A×ζζxH,
where ζζx is a spatial scaling factor (i.e., 2, 4). The
procedure of PSSR is as follows. First, 2D im-
ages (SAIs) along angular dimension (VVV l(x, i, y), i=
1, 2, .., A) are extracted from the input volume. Sec-
ondly, each image is separately super-resolved to
the desired resolution by a SISR method. Finally,
we combine these up-sampled images to form the
output volume VVV h, see Fig. 4.

In this work, deep learning-based methods (i.e.,
EDSR [15], RCAN [16]) are employed to up-sample
SAIs. With many advanced learning architec-
tures introduced lately and sufficient training data,
deep learning-based approaches easily outperform
optimization-based approaches and provide state-
of-the-art performance in the SISR task. However,
as pointed out in the literature [21, 20, 22, 23] that
SISR alone did not perform well on light field im-
ages due to missing the contribution of external in-
formation shared across multiple SAIs. This such
information is well contained in an EPI volume and
is exploited in the proposed EVRN to enhance the
output of SISR. As will be shown later in the exper-
imental result, the proposed approach substantially
improves the reconstruction quality of SISR on both
challenging synthetic and real-world LF data.
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Figure 6: The network architecture of the proposed CNN-
based method for PASR

4.4. Preliminary angular super-resolution

In this stage, a novel perspective image is gener-
ated for each consecutive pair of SAIs in the input
volume. This task is done by a novel view synthesis
module (NVS) as depicted in Figure 4. Given an
EPI volume VVV l with a resolution of W×A×H as an
input, the output of PASR is an EPI volume VVV h
with a resolution of W×(2A−1)×H. The angular
resolution of the volume is up-sampled by a scaling
factor of ζζθ = 2A−1

A .
The synthesis of a novel view can be seen as the

interpolation of a novel pixel along a line on an
EPI image, see Fig. 3. This task is indeed trivial if
the slope of this line, also referred to as disparity
value [37], is known in advance. Therefore, many
previous approaches [37, 26, 38] proposed to firstly
estimate disparity maps and then exploit them for
synthesizing novel views. However, as shown in
[19, 27], this explicit estimation of a disparity map
is not necessary since a learning-based approach
which directly inferences novel views can already
provide better performance. In this work, two dif-
ferent approaches of NVS are evaluated, i.e., nvs-
cnn and nvs-mean. nvs-cnn is the proposed end-
to-end CNN learning to synthesize a novel view
from an input image pair. In nvs-mean, the new
view is computed by simply averaging the two in-
put images. As will be shown in Section 5.4, this
straightforward approach can provide good results
in the case of narrow baseline LF images captured
by plenoptic cameras [4, 5].

The network architecture of nvs-cnn is presented
in Fig. 6. Similar to EVRN, global/local residual
learning and dense connection are employed in the
proposed network. We stack two input images to
form an input feature X ∈ RW×H×2. A shallow
feature extraction layer consisting of a 2D convo-
lutional kernel 3×3×C ′ followed by a PReLU acti-
vation is applied to X. This results in a feature
map F0 ∈ RW×H×C′ . After going through R′ layers

Table 1: Summary of training and test dataset

Datasets Type Angular Training Test

HCI13[8] synthetic 9×9 5 2
HCI17[9] synthetic 9×9 20 4
InSyn[10] synthetic 9×9 31 8
StGantry[11] real-world 17×17 9 3
StLytro[12] real-world 14×14 250 53
InLytro[13] real-world 15×15 28 8
EPFL[14] real-world 15×15 81 12

Sum - - 424 90

of residual blocks, we get a residual feature map
FR′ ∈ RW×H×C′ which is added to F0 and then
squeezed by a 2D convolution kernel 3×3×1 to ac-
quire a novel perspective image (I ∈ RW×H). For
residual block, we use a simple design that con-
sists of a bottleneck layer, i.e., 2D convolution ker-
nel (1×1×C ′) followed by a PReLU, and a common
combination conv-prelu-conv as in Fig. 6.

5. Experimental Results

5.1. Dataset and training

Seven published light field datasets, listed in Ta-
ble 1, are employed for training and testing the pro-
posed approach. There are three synthetic datasets
generated by 3D object models and blender soft-
ware [8, 9, 10]. The other four datasets are real-
world data captured by Illum cameras [12, 13, 14]
and a gantry setup [11]. While the synthetic scenes
have the same angular resolution of 9×9, the an-
gular resolution of real-world scenes varies from
14×14 to 17×17. To have an uniform light field
data for training and testing, we follow the previous
work [20, 21, 22, 23] to remove the border views and
keep only 9×9 sub-aperture images in the middle.

5.1.1. Training EVRN

The LF images in the training set are trans-
formed into YCbCr color space and only Y channel
data is used for training. In inference phase, we
apply the trained network to each color space sep-
arately and then convert them back to RGB color
image. Each LF image is spatially cropped into 4D
patch (PH ∈ R48×48×9×9) with a stride of 16 pixels.
Plain patches which do not include texture informa-
tion are ignored. For each 2D patch with the size
of 48×48 from PH , we apply bicubic down-sampling
with a scaling factor ζζx (ζζx = 2, 4) to acquire a low
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Table 2: Performance analysis of various model configura-
tions.

Models
Synthetic Real-world

PSNR SSIM PSNR SSIM

model 1 38.61 0.9613 38.09 0.9581
model 2 38.63 0.9613 38.13 0.9588
model 3 38.77 0.9627 38.21 0.9592

Table 3: Ablation investiation of attention modules (CAS,
AAS, SAW). The average PSNRs are computed for dataset
EPFL with scaling factor ×2 after 200 epochs.

Modules Combination of attention modules

CAW 7 3 7 3 7 3 7 3

SAW 7 7 3 3 7 7 3 3

AAW 7 7 7 7 3 3 3 3

PSNR 36.92 36.95 36.93 36.95 36.94 36.97 36.94 36.98

spatial resolution patch PLS ∈ Rζζ
−1

x 48×ζζ−1

x 48×9×9.
Each 2D patch in PLS is then up-sampled using
SISR method to generate a spatial pre-scaling 4D
patch PS . A low angular resolution 4D patch
(PLA ∈ R48×48×5×5) is extracted from PH by remov-
ing 2D patches at angular position (ρi, τi), where
(ρi mod 2) ∨ (τi mod 2) = 1. We then up-sampled
PLA using the technique discussed in Section 4.4
to acquire angular pre-scaling 4D patch PA. An
angular-spatial pre-scaling 4D patch PSA is gener-
ated by applying the same procedure to PS . At this
point, we have three 4D patch pairs

(
{PS}, {PH}

)
,(

{PA}, {PH}
)
, and

(
{PSA}, {PH}

)
to train EVRN

for SSR, ASR, and ASSR respectively. For each
4D patch pair, e.g.,

(
{PS}, {PH}

)
, a 3D EPI vol-

ume pair
(
{VL}, {VH}

)
is formed by extracting and

combining the horizontal and vertical EPI volumes
from each 4D patch set.

Padding is enabled in all 3D convolution layers
to reserve the resolution. The number of resid-
ual blocks R and channel size C were set to 7 and
64 respectively. `1 loss function was used since it
provides better results for SR in the proposed ap-
proach. The proposed network was implemented in
TensorFlow running on a PC with an Nvidia 1080Ti
GPU. As an optimizer, a variation of the Adam op-
timizer, AdamW [46], was used. AdamW adds a
weight decay as regularization to the Adam opti-
mizer. The learning rate was initialized to 2×10−4

and decrease by a factor of 2 after 10 epochs. The
weight decay was set to 10−4. For the initialization
of convolution parameters, Glorot uniform initial-
izer was used. The bias of the CNN layers and the
PReLU parameters were initialized to zero.

5.1.2. Training NVS-CNN

To prepare the training data for NVS-CNN, we
first extracted EPI volumes from 4D patches PH .
For each EPI volume, we use even-index views as
ground-truths and the two neighbor views as in-
puts. This gives us 4 training pairs for each EPI
volume. We empirically set the number of resid-
ual blocks R′ and the number of feature channels
C ′ to 7 and 64 respectively. Padding is enabled in
all convolution layers to preserve the spatial dimen-
sion. For this training, we employ Adam optimizer
(β1 = 0.9, β2 = 0.999). The learning rate is set to
2×10−4 which is halved after every 10 epochs.

5.2. Model Analysis

To analyze the contribution of attention mod-
ules to the performance of the proposed approach,
we conducted an experiment in which three models
were tested. In the first model, all attention mod-
ules were removed from the network. The second
model includes only the channel attention module
(CAW), and the third model includes all attention
modules. These models were trained for SSR tasks
(ζζ = 2) and their results are listed in Table 2. It
can be seen from the table that attention modules
help to improve the reconstruction quality. With-
out attention modules, model 1 scores 38.61 dB
and 38.09 dB on average for synthetic and real-
world light field data respectively. These figures
slightly increase in model 2 where the CAW mod-
ule is included. Employing attention modules in
both multi-path learning (AAW, SAW) and resid-
ual learning (CAW) provides the highest quality in
terms of PSNR and SSIM.

A more comprehensive ablation study of atten-
tion modules can be found in Table 3. In this
experiment, we investigated the effects of various
combinations of attention modules. The eight net-
works were trained for spatial super-resolution ap-
plication with scaling factor ×2 and have the same
configuration of residual blocks (R=4) and channel
size (C=16). RCAN was employed for the PSSR
stage, and the angular size of EPI volume was set
to 3. After 200 epochs, we evaluate the perfor-
mance of trained networks on the EPFL dataset
and report the average PSNR values. From Ta-
ble 3, it can be seen that the baseline network
(without any attention modules) gives the lowest
PSNR value (36.92dB). Furthermore, we observed
that channel attention (CAW) and angular atten-
tion (AAW) demonstrate a clear contribution to the
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Table 4: Quantitative comparison of SSR approaches in terms of reconstruction quality measured by PSNR/SSIM. The results
of two up-scaling factor (×2, ×4) on seven public datasets are reported.

Approach Scale HCI17[9] HCI13[8] InLytro[13] InSyn[10] EPFL[14] StGantry[11] StLytro[12] avg

Bicubic ×2 28.33/0.876 35.02/0.951 30.64/0.900 29.18/0.892 28.30/0.850 33.52/0.965 31.83/0.924 30.97/0.908

pcabm[18] ×2 28.94/0.886 35.56/0.949 31.10/0.901 29.69/0.894 28.80/0.853 30.10/0.885 32.05/0.920 30.89/0.898

EDSR[15] ×2 31.51/0.926 39.57/0.973 33.27/0.932 33.70/0.932 30.50/0.890 39.06/0.985 35.62/0.957 34.75/0.942

DBPN[17] ×2 31.93/0.930 39.90/0.974 33.50/0.934 34.27/0.935 30.80/0.893 39.30/0.985 36.00/0.959 35.10/0.944

RCAN[16] ×2 32.25/0.932 39.91/0.975 33.57/0.934 34.39/0.936 30.90/0.894 39.82/0.986 36.21/0.960 35.29/0.945

LFCNN[19] ×2 31.67/0.904 38.03/0.963 33.48/0.928 32.12/0.906 32.22/0.926 37.30/0.974 34.91/0.941 34.25/0.935

LFnet[20] ×2 32.31/0.913 39.04/0.968 34.06/0.931 33.13/0.916 32.95/0.931 38.27/0.976 35.53/0.943 35.04/0.940

EPI2D[21] ×2 33.63/0.929 41.18/0.976 35.15/0.943 35.11/0.930 34.14/0.943 40.36/0.986 37.04/0.956 36.66/0.952

SR4D[22] ×2 32.49/0.943 39.99/0.977 33.96/0.944 32.29/0.929 30.21/0.889 35.36/0.965 37.53/0.972 34.55/0.946

resLF[23] ×2 35.14/0.956 39.84/0.974 35.43/0.956 35.27/0.948 34.36/0.954 37.04/0.975 37.67/0.966 36.39/0.961

3DVSR-EDSR ×2 35.91/0.954 43.26/0.984 37.38/0.955 37.01/0.948 36.53/0.955 41.53/0.988 38.74/0.965 38.62/0.964

3DVSR-RCAN ×2 36.08/0.955 43.20/0.984 37.46/0.955 37.02/0.949 36.77/0.956 41.76/0.988 38.83/0.966 38.73/0.965

Bicubic ×4 24.06/0.694 30.15/0.857 26.66/0.775 24.77/0.765 24.88/0.706 27.37/0.860 26.84/0.790 26.39/0.778

pcabm[18] ×4 24.65/0.726 30.77/0.865 27.14/0.792 25.37/0.780 25.37/0.725 26.51/0.790 27.32/0.804 26.73/0.783

EDSR[15] ×4 26.17/0.784 33.83/0.905 28.78/0.830 28.05/0.842 26.67/0.766 30.97/0.932 29.30/0.857 29.11/0.845

DBPN[17] ×4 26.58/0.797 34.19/0.912 29.05/0.835 28.83/0.854 27.01/0.776 31.34/0.936 29.68/0.864 29.52/0.853

RCAN[16] ×4 26.70/0.801 34.46/0.913 29.07/0.837 28.88/0.856 27.15/0.777 31.66/0.940 29.81/0.867 29.68/0.856

LFCNN[19] ×4 26.07/0.700 31.47/0.859 28.35/0.796 26.51/0.756 27.22/0.783 28.61/0.861 28.17/0.789 28.06/0.792

LFnet[20] ×4 27.16/0.745 33.33/0.890 29.41/0.829 28.02/0.799 28.43/0.818 30.52/0.900 29.56/0.829 29.49/0.830

EPI2D[21] ×4 28.15/0.786 35.60/0.914 30.56/0.851 29.66/0.838 29.64/0.847 32.30/0.935 30.70/0.856 30.94/0.861

SR4D[22] ×4 27.15/0.830 34.08/0.921 29.61/0.864 27.47/0.839 26.84/0.786 28.26/0.854 30.75/0.896 29.17/0.856

resLF[23] ×4 28.83/0.844 34.30/0.917 30.63/0.881 29.79/0.875 29.53/0.869 30.63/0.903 30.80/0.882 30.64/0.882

3DVSR-EDSR ×4 29.59/0.833 37.07/0.938 31.63/0.875 31.13/0.870 30.85/0.872 33.36/0.946 32.07/0.883 32.24/0.888

3DVSR-RCAN ×4 29.70/0.836 37.17/0.939 31.69/0.876 31.23/0.872 31.09/0.872 33.53/0.948 32.15/0.885 32.37/0.890

(red: best, blue: second best)

performance of EVRN. While SAW itself provides
not much improvement, its combination with AAW
and CAW delivers the best performance (36.98dB).

5.3. Spatial Super-Resolution

In this section, the evaluation results of 3DVSR
applied for SSR problem are discussed. We em-
ployed EDSR [15] and RCAN [16] for preliminary
spatial super-resolution and tested against two scal-
ing factors ζζx = 2 and ζζx = 4. Nine state-of-the-
art approaches are selected for quantitative and
qualitative comparisons. Among them, there are
three SISR approaches (EDSR [15], DBPN [17],
RCAN [16]) and six approaches provided for 4D LF
(pcabm [18], LFnet [20], LFCNN [19], EPI2D [21],
SR4D [22], resLF [23]). The result of bicubic in-
terpolation is presented as a baseline result. All
methods, except LFCNN, EPI2D, and LFnet, were
tested using their released codes and pre-trained
models. For EPI2D and LFnet, since the authors
did not publish their source codes, we followed their
papers to implement the models. Although the
source code of LFCNN is available, its pre-trained

model is not provided. Therefore, we retrained
LFCNN, as well as EPI2D and LFnet, using our
training dataset.

Table 4 lists quantitative results for×2 and×4 in
terms of PSNR and SSIM metrics. For each scene,
the quality metrics are calculated as an average of
7×7 SAIs in the middle. These values are then aver-
aged over the test dataset. The two configurations
of PSSR using EDSR and RCAN are denoted as
3DVSR-EDSR and 3DVSR-RCAN respectively. It
can be seen from the table that the proposed ap-
proach scores the best PSNR and SSIM value for
both ×2 and ×4 problems on average. Compared
to SISR approaches EDSR and RCAN, 3DVSR re-
spectively improves the reconstruction quality by
3.87dB and 3.63dB for ×2 and 3.13dB and 2.67dB
for ×4. This improvement pays a tribute to the
proposed enhancement network (EVRN) which ex-
ploits EPI volume structure to correct the high-
frequency information from the output of SISR.
The advantage of using EPI volume is also evident
when compared to the 2D EPI-based approach [21].
Using a similar SISR technique (i.e. EDSR), the
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Figure 7: Qualitative comparison of SSR approaches on two scaling factors (×2,×4). The SAI at θ=(4, 4) is visualized together
with its zoom-in region marked by a red rectangle. The first two rows: ×2 results of synthetic scene coffee_beans_vases [10]
and real-world scene general_55 [12]. The last two rows: ×4 results of synthetic scene smiling_crowd [10] and real-world scene
ISO_Chart [14].
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Figure 8: Visualization of PSNR and SSIM values on
each SAI of light field scene two_vases [10]. Compared to
ResLF [23], the proposed approach achieve a better recon-
struction quality while maintaining a consistent performance
on all perspective images.

proposed approach scores 1.96 dB and 1.4dB bet-
ter on average for×2 and×4 respectively.

Qualitative comparisons of six light field SSR ap-
proaches are shown in Fig. 7. It can be observed
from the figures that the proposed approach shows
superior performance in visual effects for both syn-
thetic and real-world scenes. For example, only

3DVSR can reconstruct a correct pattern of wooden
sticks in general_55 and clear detail of two faces in
Smilling_crowd. In pcabm [18], the low-resolution
light field image is divided into sets of patches that
are then super-resolved separately. Although the
overlapping of patches helps to smooth the output
images, the inconsistencies in reconstruction qual-
ity between patches are unavoidable and lead to
blocky artifacts (i.e. ISO_Chart, Smilling_crowd).
In LFCNN [19], each SAI is super-resoluted in-
dependently using a SISR approach [41] whose
CNN is quite trivial and shallow. LFCNN’s re-
sults are, therefore, over-smoothed in all the test
scenes. SR4D [22] and resLF [23] include multi-
ple SAIs in their super-resolution process. This al-
lows them to exploit external information to recon-
struct high-resolution images. However, these ap-
proaches still fail to reconstruct high quality images
in challenging light field scenes with noisy and high-
frequency pattern (i.e. general_55 ) or highly de-
graded content (i.e.,×4 down-sampled: ISO_Chart
and Smilling_crowd). From the figure, their results
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Figure 9: Comparison of two stages in reconstruction of spatially high resolution LF. The SAI at θ=(4, 4) is visualized together
with its zoom-in region marked by a red rectangle. For each approach, an EPI at horizontal line marked in green is extracted
and compared to the EPI of Groundtruth. The first row, from left to right: ×2 results of synthetic scene mona [8] and real-world
scenes Ankylosaurus_&_Diplodocus_1, Framed [14]. The second row, from left to right: ×4 results of synthetic scene boxes [9]
and real-world scenes Flowers, Sign [14].

are ambiguous and with obvious artifacts. Com-
pared to EPI2D, we follow a similar approach in
which the output of SISR is enhanced by reinforc-
ing EPI structures of light field images. However,
instead of relying on a narrow and feature-limited
EPI as in EPI2D, we proposed to refine an EPI
volume that allows us to exploit global informa-
tion across multiple EPIs. Our results, therefore,
show significantly better image qualities where the
texture is recovered correctly and with more high-
frequency details.

To investigate the reconstruction quality con-
cerning different perspectives, we conducted an ex-
periment in which the scene two_vases is used as
input to perform both ×2 and ×4 SSR. For each
view, the PSNR and SSIM values are computed,
and the results are visualized in Fig. 8. Here, we
compared our results with the results of state-of-
the-art approach ResLF [23]. resLF employs a star-
like structure of SAIs as input to super-resolute a
single SAI lying in the center. This strategy is in-
deed beneficial to reconstruct high-resolution im-
ages. As in Table 4, resLF surpasses EPI2D and
SR4D for most of the test dataset. However, the

disadvantage of resLF’s approach is unequal treat-
ment of SAI from different perspectives. For exam-
ple, the SAI closed to the border has fewer input
images than the SAI closed to the center. There-
fore, reconstruction qualities of non-central views
are relatively lower. In contrast, the proposed ap-
proach jointly uses EPI information and spatial in-
formation to reconstruct an EPI volume and thus
achieves much higher output qualities with more
stable distribution across all perspectives.

Fig. 9 presents a quantitative and qualitative
comparison of EPI volumes reconstructed after the
first stage (PSSR) and the second stage (EVRN).
To better justify the improvement in angular di-
mension, we extract EPI images for each output
and compare them to the EPI of the ground truth.
From the figure, it is evident that the EVRN sub-
stantially improves the quality of reconstructed vol-
ume in both spatial and angular dimensions.

5.4. Angular Super-Resolution

This section discusses the evaluation of the pro-
posed approach for the angular super-resolution of
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Table 5: Quantitative comparison of ASR approaches on 7 light field datasets

Approach HCI17[9] HCI13[8] InLytro[13] InSyn[10] EPFL[14] StGantry[11] StLytro[12] avg

nvs-mean 29.23/0.878 42.25/0.987 40.35/0.979 27.73/0.828 37.81/0.975 25.53/0.728 40.35/0.981 34.75/0.908

nvs-cnn 37.02/0.971 44.15/0.992 40.49/0.975 38.76/0.979 37.89/0.974 30.02/0.847 40.75/0.980 38.44/0.960

vsyn[26] 23.34/0.665 29.41/0.764 32.03/0.899 21.40/0.613 27.76/0.794 19.35/0.542 30.34/0.887 26.23/0.738

LFSR[27] -/- -/- 39.91/0.980 -/- 37.63/0.979 22.24/0.688 39.57/0.977 34.84/0.906

LFCNN[19] 30.97/0.883 38.78/0.967 35.36/0.948 29.09/0.834 34.43/0.949 26.01/0.739 36.41/0.957 33.01/0.897

Wang18[28] 31.66/0.893 41.74/0.984 37.31/0.967 29.36/0.831 36.18/0.969 27.04/0.741 38.86/0.971 34.59/0.908

Wu19[29] 29.93/0.917 30.76/0.832 33.73/0.922 28.67/0.871 29.48/0.843 20.80/0.631 32.45/0.937 29.40/0.850

Wu19a[30] 33.19/0.936 43.28/0.985 39.90/0.969 32.12/0.899 37.68/0.966 27.51/0.746 40.03/0.973 36.24/0.925

3DVSR-mean 40.12/0.979 47.07/0.994 44.22/0.985 40.32/0.979 43.64/0.987 32.30/0.854 43.41/0.985 41.58/0.966

3DVSR-cnn 40.00/0.981 45.15/0.994 43.04/0.982 40.90/0.982 42.30/0.986 32.11/0.861 42.20/0.980 40.81/0.967

(red: best, blue: second best)

light field images. The seven datasets listed in Ta-
ble 1, are employed in this evaluation. For each
scene in the test set, the angular resolution is down-
sampled from 9×9 to 5×5 while the spatial reso-
lution remains intact. With these low-resolution
LFs as inputs, we then reconstruct the original
size LFs follow the procedures discussed in Sec-
tion 4. This means that 56 missed perspective im-
ages are reconstructed from 25 input images. In the
PASR stage, we tested two approaches; one gener-
ates novel views by averaging, and the other using
an end-to-end CNN. The results of these two PASR
approaches and the final results after applying the
refinement network are reported. We compare our
approach with six previous approaches (vsyn [26],
LFCNN [19], LFSR [27], Wang18 [28], Wu19 [29],
and Wu19a [30]).

Table 5 lists quantitative results of ASR ap-
proaches running on the seven public datasets. We
employed PSNR and SSIM as quality metrics that
are computed for newly generated SAIs and are av-
eraged over all scenes in each dataset. nvs-mean
and nvs-cnn denotes the two PASR approaches.
nvs-mean computes a novel perspective image by
averaging two neighboring images, while nvs-cnn
inferences a novel image using a residual CNN as de-
picted in Fig. 6. The outputs of nvs-mean and nvs-
cnn enhanced by EVRN are denoted as 3DVSR-
mean and 3DVSR-cnn respectively. LFSR [27] has
a strict requirement of supported angular resolu-
tion. This approach employs a fully connected
network in its output layer that always produces
an angular-resolution of 14×14. For this reason,
only real-world datasets [12, 13, 14, 11] are tested
with this approach. From Table 5, it can be seen
that the proposed approach provides the highest re-

construction quality. 3DVSR improves PSNR and
SSIM values by a large margin as compared to the
previous approaches (i.e., a minimum of 3dB im-
provement in all test datasets). In narrow-baseline
light field images captured by a plenoptic cam-
era [13, 14, 12], the difference between two neigh-
boring views is almost invisible due to their sub-
pixel displacement values (e.g., less than 0.5 pixel).
In this case, a straightforward approach such as nvs-
mean can score very well, and the benefit of em-
ploying CNN in the PASR stage is limited, i.e., the
improvement of nvs-cnn over nvs-mean is smaller
than 0.4dB. However, for the other test datasets,
nvs-cnn presents a clear improvement compared to
nvs-mean (i.e., 1.9dB to 7.8dB). By exploiting the
EPI volume structure to refine the results of the
PASR stage, 3DVSR achieves significant improve-
ments over nvs-mean and nvs-cnn by an average of
6.8 dB and 2.4 dB, respectively. It is interesting to
see that the performance of 3DVSR-mean is com-
parable to 3DVSR-cnn with a slightly better PSNR
value (i.e., 0.7 dB). This demonstrates the superior
performance of EVRN in reconstructing novel per-
spective images.

Fig. 10 shows the visual comparisons of evalu-
ated ASR approaches on synthetic and real-world
light field scenes. vsyn [26] consists of two CNNs;
one predicts auxiliary disparity maps, and the other
synthesizes novel views. It assumes that the dis-
parity values of input light fields fall within a range
that is quantized by a fixed step size. Based on the
quantized disparity values, a cost volume is com-
puted and is used as an input to the first CNN. The
output disparity maps from the first CNN are used
to pre-compute novel views that are then refined
by the second CNN. The quality of the novel views
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Figure 10: Qualitative comparison of ASR approaches on real-world and synthetic light field scenes. The SAI at θ = (3, 3)
is visualized together with its zoom-in region marked by a red rectangle. The first two rows: real-world scenes lego [11] and
flowers_plants_36 [12]. The last two rows: synthetic scenes big_clock [10] and sideboard [9].

highly depends on the accuracy of estimated dis-
parity maps which are in turn depends on the cost
volume and assumed disparity range. From the fig-
ure, it can be seen that vsync does not generalize
well and performs poorly on light field scenes with
a large disparity range (i.e., lego, big_clock, side-
board). Although the visual quality of the plenop-
tic scene (i.e., flowers_plants_36), for which vsyn
was trained, is much better, it still suffers from
the over-smoothed effect. Wang18 [28] employ a
3D CNN to recover the high-frequency detail of a
stack of SAIs. Since their network architecture is
relatively shallow and straightforward, it performs
not so well and leaves a visible blurry effect on the
synthesized images. Taking advantage of EPI struc-
ture, Wu19 [29] and Wu19a [30] can reconstruct im-
ages with more detail than Wang18. Both LFCNN
and our cnn-based PASR approach (nvs-cnn) follow
a similar strategy in which novel perspective images
are synthesized by using their surrounding neigh-
bor images. However, as opposed to the simple ar-
chitecture of LFCNN, which only consists of con-
volution layers and activation layers, nvs-cnn em-
ployed many effective deep learning structures (i.e.,
global/local residual learning, dense connection).
nvs-cnn, therefore, outperforms LFCNN with much
better visual quality. Compared to nvs-cnn, the

novel perspective images generated by nvs-mean
are more ambiguous with over-smoothed regions
and artifacts as the result of the averaging method.
However, after being refined by EVRN the visual
qualities of these images are significantly enhanced
(i.e., 3DVSR-mean) and are comparable to the en-
hanced version of nvs-cnn (i.e., 3DVSR-cnn).

Fig. 11 compares the angular super-resolution re-
sults of Wu19a [30] and the proposed approaches
after the first stage (PASR) and after the second
stage (EVRN). In this experiment, nvs-mean is em-
ployed as a preliminary angular super-resolution
approach, and the output volume of PASR is fed
to EVRN for the final enhancement. Compared to
our PASR, Wu19a provides a better reconstruction
quality with sharper content and less angular er-
ror. However, the refined volume of EVRN is by
far better than the output of Wu19a. As a result,
we achieve a minimum of 3.3dB improvement in
PSNR and less error in EPIs.

5.5. Angular-Spatial Super-resolution

In the ASSR problem, the resolution of 4D light
field images is super-resoluted angularly and spa-
tially. In other words, it consists of a super-
resolution of each given SAI and a synthesis of novel
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Figure 11: Comparison of two stages in reconstruction of angularly high resolution LF. The SAI at θ = (3, 3) is visualized
together with its zoom-in region marked by a red rectangle. For each approach, an EPI at horizontal line marked in green is
extracted and compared to the EPI of Groundtruth. From left to right: synthetic scene Flying_dice_dense [10], real-word scene
general_29 [12], and synthetic scene bedroom [9].
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Figure 12: Angular-spatial super-resolution results of different approaches. The SAI at θ=(3, 3) is visualized together with its
zoom-in region marked by a red rectangle. top row: real-world scene Rose [13]; bottom row: synthetic scene boxes [8];

perspective images which have the same higher res-
olution. As discussed in Section 4, the proposed
approach handle ASSR in two stages. The first
stage consists of PSSR followed by PASR to gen-
erate a 4D light field with the desired resolution.
EVRN then enhances this preliminary up-sampled
light field in the second stage to acquire the final
output. To evaluate the proposed approach, we
conducted an experiment in which the spatial scal-
ing factor was set to ζζx = 2 and a similar ASR
configuration as in Section 5.5 was applied.

The spatial-angular super-resolution results are
shown in Fig. 12. bicubic+mean denotes a base-
line approach that employs bicubic interpolation for
SSR and averages neighbor views to generate novel
perspective images. 4Dcubic denotes an approach
in which cubic interpolation is applied on two spa-

tial and two angular dimensions. RCAN+mean de-
notes the result of our preliminary stage which uses
RCAN [16] for PSSR and nvs-mean for PASR. The
result after an enhancement using EVRN is denoted
as 3DVSR. Compared to the baseline approach and
4Dcubic, LFCNN provides a small improvement in
reconstruction quality. Although LFCNN achieves
an increase of about 1dB, its improvement in visual
quality is negligible. The results of LFCNN are still
ambiguous and lack high-frequency information. A
similar performance can be seen in the results of
RCAN+mean which are mostly over-smoothed due
to the effect of averaging views. Compared to these
approaches, 3DVSR produces a significant improve-
ment in PSNR value (i.e., a minimum of 2.4 dB and
3.9 dB in scenes Rose and boxes respectively) and
an obvious enhancement in visual quality.
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6. Conclusion

This paper presents an angular-spatial light field
super-resolution approach being able to reconstruct
high-quality 4D light fields. Based on EPI vol-
ume structure, a 3D projected version of a 4D light
field, we proposed a 2-stage framework that ef-
fectively addresses various problems in light field
super-resolution, i.e., ASR, SSR, and ASSR. While
the earlier stage provides flexible options to up-
sample the input volume to the desired resolution,
the later stage, which consists of an EPI volume-
based enhancement CNN, substantially improves
the reconstruction quality of the high-resolution
EPI volume. The proposed enhancement network
built on 3D convolutional operations and efficient
deep learning structures, i.e., global/local resid-
ual learning, dense connection, multi-path learn-
ing, and attention-based scaling, effectively com-
bines angular and spatial information from the 3D
EPI volume structure to reconstruct high-frequency
details. An extensive evaluation on 90 challeng-
ing synthetic and real-world light field scenes from
7 published datasets shows that the proposed ap-
proach outperforms state-of-the-art methods to a
large extend for both spatial and angular super-
resolution problems, i.e., an average PSNR im-
provement of more than 2.0 dB, 1.4 dB, and 3.14 dB
in SSR×2, SSR×4, and ASR respectively. The re-
constructed 4D light field demonstrates a balanced
performance distribution across all perspective im-
ages and presents superior visual quality compared
to the previous works.
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