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Abstract

Background: Integrative and comparative analyses of multiple transcriptomics, proteomics and metabolomics

datasets require an intensive knowledge of tools and background concepts. Thus, it is challenging for users to

perform such analyses, highlighting the need for a single tool for such purposes. The 3Omics one-click web tool

was developed to visualize and rapidly integrate multiple human inter- or intra-transcriptomic, proteomic, and

metabolomic data by combining five commonly used analyses: correlation networking, coexpression, phenotyping,

pathway enrichment, and GO (Gene Ontology) enrichment.

Results: 3Omics generates inter-omic correlation networks to visualize relationships in data with respect to time or

experimental conditions for all transcripts, proteins and metabolites. If only two of three omics datasets are input,

then 3Omics supplements the missing transcript, protein or metabolite information related to the input data by

text-mining the PubMed database. 3Omics’ coexpression analysis assists in revealing functions shared among

different omics datasets. 3Omics’ phenotype analysis integrates Online Mendelian Inheritance in Man with available

transcript or protein data. Pathway enrichment analysis on metabolomics data by 3Omics reveals enriched

pathways in the KEGG/HumanCyc database. 3Omics performs statistical Gene Ontology-based functional

enrichment analyses to display significantly overrepresented GO terms in transcriptomic experiments. Although the

principal application of 3Omics is the integration of multiple omics datasets, it is also capable of analyzing

individual omics datasets. The information obtained from the analyses of 3Omics in Case Studies 1 and 2 are also in

accordance with comprehensive findings in the literature.

Conclusions: 3Omics incorporates the advantages and functionality of existing software into a single platform,

thereby simplifying data analysis and enabling the user to perform a one-click integrated analysis. Visualization and

analysis results are downloadable for further user customization and analysis. The 3Omics software can be freely

accessed at http://3omics.cmdm.tw.
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Background
The development and integration of transcriptomics,

proteomics and metabolomics comprise the majority of

current systems biology studies and provide a significant

capacity for the investigation of biological mechanisms

and their associations with diseases in a “big picture”

approach [1-3]. Integrated analyses of transcriptomics

and metabolomics [4-6] have revealed significant associ-

ations between gene and metabolite expression profiles.

Nam et al. [7] demonstrated the increased coherence

and robustness of newly discovered breast cancer bio-

markers by utilizing both gene expression profiles and

metabolic profiles to validate biomarker significance. Su

et al. [8] combined metabolomic and transcriptomic

analyses of the NCI-60 dataset to identify significant tis-

sue/organ-specific metabolome and transcriptome fea-

tures that are related to various cancer types. Using

integrated metabolomic and transcriptomic analysis, Su
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et al. [8] identified biologically meaningful gene-metabolite

associations, including several abnormal gene-metabolite

relationships that were directly linked to known gene muta-

tions and copy-number variations in the corresponding cell

lines. Improved data visualization tools are required to effi-

ciently incorporate these vast amounts of data into an intui-

tive, integrated and knowledge-based environment.

Current tools for integrating omics data

Current visualization tools for integrating omics data can

be loosely classified as biological network-based or

pathway-based tools [9]. Biological networks reveal hidden

patterns in the original unstructured data by transforming

raw data into logically structured and visually tangible rep-

resentations—with nodes representing genes, proteins and

metabolites and with edges indicating interactions be-

tween nodes or clusters that share similar molecular func-

tions. The majority of network-based visualization tools, e.

g., VANTED [10], VisAnt [11], and Metscape2 [12], are in-

tegrated with public databases. Arena3D further allows

users to visualize biological networks in three dimensions

[13]. For small networks, interactive editing is often

performed manually. For large networks, however, it is

easier to utilize automated layout tools, such as Cytoscape

[14], NAViGaTOR [15], and Cerebral [16].

Alternatively, pathway visualization tools allow users to

explore the biochemical activities found in experimental

datasets along different interactive pathways. Pathguide

[17] provides an overview of over 190 web-accessible bio-

logical pathway and network databases. Arakawa et al. [18]

developed a KEGG-based pathway visualization tool for

KEGG pathway databases [19]. Pathway-level visualization

of different omics data representations allows users to

capture systematic properties of biochemical activities.

Paintomics [20] focuses on gene expression and metabolite

concentration data and displays the data on KEGG path-

way maps. ProMeTra [21] accepts annotated images in

SVG format and is capable of displaying dynamic data.

KaPPa-View [22] and MapMan [23] display metabolite

and transcript levels for predefined pathway blocks in

plants. ChromeTracks for MAYDAY [24] allows for the

visualization of expression data with any metadata within

a genomic context. PaVESy [25] builds customized path-

ways from user-provided proteins and metabolites.

Comparison of 3Omics with other software

A summary and comparison of accessibility, data export

and exchange, functions and utilities, and source data

types found in the currently available software with

those in 3Omics is presented in Table 1.

3Omics is specifically designed for the analysis of hu-

man data because all of the incorporated transcripts,

proteins, metabolites, pathways, and gene information

are human-specific. The majority of the existing software

described in Table 1 is designed for a wide variety of spe-

cific organisms, except for KaPPa-View and MapMan,

which are plant-specific tools. Ingenuity Pathway Analysis

(IPA) [26] provides the full suite of omics analysis tools;

however, users may not have access to this commercial

software. While IPA supports various network visualization

and analyses, 3Omics simplifies the data analysis by com-

bining the advantages and operations of several existing

systems and packages into a single platform. 3Omics ac-

cepts multiple experimental conditions or time-dependent

transcriptomics data, proteomics data or metabolomics

data. Users can perform correlation analysis, coexpression

profiling, phenotype mapping, pathway enrichment ana-

lysis and GO enrichment analysis on each dataset via a sin-

gle platform. These features enable users to perform an

integrated analysis with one click, a versatile function not

featured in other software.

Implementation
System overview

3Omics is a platform-independent web application con-

structed with Perl and PHP scripts and running on a

Linux-based Apache web server. A typical session work-

flow is illustrated in Additional 1: Figure S1. When users

upload experimental data via the 3Omics web interface,

the server immediately computes correlation coefficients,

coexpression values and pathway enrichment scores. Re-

lated information from publicly accessible databases, such

as iHOP (information hyperlinked over proteins) [27,28],

KEGG [19], HumanCyc [29], DAVID [30], Entrez Gene

[31], OMIM and UniProt [32], are automatically incorpo-

rated and stored in an internal database. To maintain up-

to-date information, the internal database is updated with

new data each month (from KEGG, HumanCyc, Entrez

Gene, OMIM, and UniProt) or queried immediately

(iHOP and DAVID).

Users can export network images in SVG or SIF formats.

SVG is an XML-based file format for describing two-

dimensional vector graphics that is compatible with mul-

tiple platforms. Processed SIF files can be imported and

edited in Cytoscape. 3Omics users can also download all

of the processed data for further analysis. All analyzed data

and network/pathway images can be downloaded in PNG

or SVG format. Detailed descriptions of the supported

data formats are found on the 3Omics online help page.

All uploaded data files are temporarily stored during a

3Omics session and automatically deleted after processing

to safeguard data confidentiality. In the following subsec-

tions, we briefly explain the methods used in 3Omics.

Summary of 3Omics features

3Omics offers four types of multiple omics analysis de-

pending on the data provided by the user (see options

a, b, c and d on the 3Omics homepage in Figure 1):
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Table 1 Features of integrated analysis tools according to requirements identified in 3Omics

Tool
name

Ref R1 R1 R1 R2 R2 R3 R3 R3 R3

Installation-free Free for
academics

No
registration

Save as
SVG/SIF

Processed data
downloaded

Human-
specific
analysis

Network
visualization

Omics data
integrated
analysis

Correlation
analysis

3Omics ● ● ● ● ● ● ● ● ●

VANTED [10] ● ● ● ○ ●

VisANT [11] ○ ● ○ ● ● ○ ●

NAViGaTOR [15] ● ● ○ ●

Cerebral [16] ● ● ● ○ ●

Paintomics [20] ● ● ● ● ● ○ ○

ProMeTra [21] ● ● ● ● ● ○ ○

KappaView [22] ● ● ● ● ● ●

MapMan [23] ● ●

ChromeTracks [24] ● ● ● ● ○ ○

PaVESy [25] ● ● ● ● ○

IPA [26] ● ● ● ● ●

Tool
name

R3 R3 R3 R3 R3 R4 R4 R4 R4

Coexpression
profiling

Phenotype
mapping

Pathway
enrichment
analysis

GO
enrichment
analysis

Links to
external DBs

Multiple conditions
and time-series data

Transcriptome
data

Proteome
data

Metabolome
data

3Omics ● ● ● ● ● ● ● ● ●

VANTED ● ● ● ●

VisANT ○ ● ● ○ ○

NAViGaTOR ○ ○ ○

Cerebral ○ ○ ○

Paintomics ○ ● ● ●

ProMeTra ○ ● ● ● ● ●

KappaView ○ ● ● ● ●

MapMan

ChromeTracks ○ ● ● ● ●

PaVESy ○ ● ○ ○ ○

IPA ● ● ● ● ● ● ● ● ●

(R1) Accessibility, (R2) Data Export and Exchange, (R3) Functions and Utilities, (R4) Data Source Type. Filled circles indicate tools with the corresponding features. Empty circles indicate tools with partial functionality.
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Transcriptomics – Proteomics - Metabolomics (T – P -

M) analysis, Transcriptomics - Proteomics (T - P) ana-

lysis, Proteomics - Metabolomics (P - M) analysis, and

Transcriptomics - Metabolomics (T - M) analysis.

3Omics also offers analysis in single-omics mode to re-

veal “intra-omics” relationships (see options e, f, and g in

Figure 1).

3Omics analysis requires the use of transcript, protein,

or metabolite IDs and their corresponding variations (e.

g., concentration or intensity levels) under specific ex-

perimental conditions (e.g., different times, nucleic mag-

netic resonance shifts (in parts per million) or mass

spectrometry mass-to-charge ratios). Acceptable IDs in-

clude Entrez Gene IDs, UniprotKB IDs and PubChem

CIDs [33]. Users can also utilize the 3Omics Name-ID

Converter to match gene, protein and metabolite names

with their corresponding IDs. Once users select an ana-

lysis method, a data input page is dynamically generated

to upload the required data. For example, when a user

would like to perform a T-P analysis, 3Omics loads the

page shown in the upper-right corner of Figure 1. T and

P data from large-scale biochemical experiments are

then uploaded in a comma-separated value format.

Where different data integrations may require different

analyses, 3Omics, in general terms, provides correlation,

coexpression, phenotype, pathway enrichment, and GO

enrichment analyses.

Table 2 lists the various data integration methods and

analyses incorporated into 3Omics. When a user pos-

sesses transcriptomics, proteomics and metabolomics

data, all analyses are performed. When only two of the

three omics datasets are available, 3Omics supplements

missing transcript, protein and metabolite information

related to the user-input data by text-mining biomedical

literature from iHOP to generate literature-derived ob-

jects and relationships for correlation analysis (see the

dotted line depicting the literature-derived relationship

in Figure 2B). Coexpression analysis is available for all

omics data types. For transcriptomic or proteomic

datasets, phenotype- and GO-based enrichment analyses

can be performed. In addition, pathway enrichment ana-

lysis can be employed to map metabolite data to a

KEGG/HumanCyc pathway to determine significant or

differentially expressed metabolites that may play vital

roles in the corresponding biological pathway.

Correlation analysis

3Omics incorporates the “corr” function from R [34] to

compute the Pearson correlation coefficient (PCC). PCC

is widely used and accepted as a measure of correlation in

systems biology. Nodes and edges are stored in a Graph

Description Language (GDL) format and sent to the net-

work generator, aiSee3 (AbsInt, Angewandte Informatik

GmbH, Saarbrücken, Germany). A force-directed layout

Figure 1 3Omics User interface. (A) 3Omics implements seven inter-omic analyses: (a) Transcriptomics-Proteomics-Metabolomics,

(b) Transcriptomics-Proteomics, (c) Proteomics-Metabolomics, (d) Treanscriptomics-Metabolomics, and intra-omics analyses, such as

(e) Transcriptomics, (f) Proteomics, and (g) Metabolomics. Users select the desired analysis by selecting the corresponding icon. (B) Interface for

the Transcriptomics-Proteomics analysis. (C) Interface for the Metabolomics analysis.
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Figure 2 3Omics-generated Correlation network analysis. Features include the following: (A) toggling zoom/explore mode, saving as SVG

format, downloading the full-size image and SIF files for Cytoscape import; (B) literature-derived edges are presented as dotted lines; (C)

adjusting parameters to customize the correlation network.

Table 2 Types of analyses available in 3Omics

Type of
analysis

Correlation
analysis

Coexpression
analysis

Phenotype
analysis

Pathway enrichment
analysis

Gene ontology
enrichment analysis

T-P-M Yes Yes Yes Yes Yes

T-P Yes, M is derived from the literature. Yes Yes No Yes

P-M Yes, T is derived from the literature. Yes Yes Yes No

T-M Yes, P is derived from the literature. Yes Yes Yes Yes

T Yes Yes Yes No Yes

P Yes Yes Yes No No

M Yes Yes No Yes No

T: Transcriptomics dataset, P: Proteomics dataset, and M: Metabolomics dataset. T, P, or M linked with hyphens stands for two or three omics dataset are provided

by users.

Analyses provided in 3Omics when users input different omics dataset. For example, correlation analysis, coexpression analysis, phenotype analysis, and GO

enrichment analysis are provided for users input transcriptomics-proteomics datasets.
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algorithm is utilized to generate visualizations. The correl-

ation coefficient threshold and the repulsion and attrac-

tion parameters can be adjusted for better visualization

and are set by default to 0.9, 160 and 80, respectively (see

the lower-left corner of Figure 2).

To generate a correlation network, the PCCs are calcu-

lated from two sets of expression values for two entities

(inter- or intra-omics data). The PCC correlation matrix is

calculated for the omics data, which are then used for

visualization. Correlation networks can be generated auto-

matically, and substances can be clustered according to

similar behavior over time or into different experimental

groups. Nodes denoted by squares, triangles and circles

represent transcripts, proteins and metabolites, respect-

ively. Transcript, enzyme and metabolite can be presented

in the context of the correlation network. Correlated rela-

tionships (PCC > 0.9) are represented by solid lines, and

the text-mining results between pairs of input molecules

and literature-derived molecules are indicated by dotted

lines. The results can be downloaded from the web inter-

face. Navigation functions support visual exploration of

the data-enriched networks (Figure 2A).

Literature-derived relationships in the correlation analysis

When only two of the three omics datasets are available

for correlation network analysis, 3Omics supplies the

missing omics information using the following approach.

First, 3Omics identifies related transcript-protein,

protein-metabolite, or transcript-metabolite pairs by in-

corporating 48,631 human genes from NCBI Entrez

Gene, 20,370 human proteins from UniProt, and 16,339

metabolite entries from KEGG Compound [19] into an

internal, relational database. Original data from the May

8, 2012 snapshot were downloaded using NCBI EFetch

and UniProt as well as the KEGG FTP site. Each entity

in the MySQL database should contain a transcript-

protein-metabolite relationship. When an entity contains

only transcript-protein, protein-metabolite, or transcript-

metabolite pairs, 3Omics can rapidly identify the missing

transcripts, proteins or metabolites and their potential

relationships for correlation analysis.

Once the missing information is identified, 3Omics uses

the transcripts or proteins to search iHOP. The missing

omics data are supplied from the iHOP results. For ex-

ample, transcriptomics and proteomics data are inputs,

and 3Omics searches for protein-metabolite pairs. The

missing metabolomics data are recovered by text mining

of the iHOP results. Relationships described in the litera-

ture are depicted as dotted edges in the plot, as shown in

Figure 2.

Coexpression analysis

Coexpression analysis is performed using the R statistical

programming language [34]. Heatmaps are generated

using the R language gplots package [35]. Rows display the

expression of input molecules, and columns display the

expression differences between experimental groups, such

as treatment/control groups or time-series experiments.

Each cell in the resulting image is “heat colorized” based

on the input expression value. Cyan indicates the lowest

expression value, and pink indicates the highest expression

value. Row edges are color coded to indicate their omics

data source types. Heatmap dendrograms are added to the

top and left side of the heatmaps to display similarities

among rows or columns. Dendrograms on the top and left

side of the image display the similarities of the input mole-

cules (each row represents a transcript, protein, or metab-

olite) or experimental groups (each column represents a

treatment group or control group). Dissimilarity coeffi-

cients between rows and columns are computed as the

Euclidean distance, where the closest rows/columns

connected by dendrograms have the most similar expres-

sion profiles.

Phenotype analysis

A phenotype is defined as any observable characteristic

or trait of an organism arising from gene expression, the

influence of environmental factors, and interactions be-

tween gene expression and environmental factors. A

total of 21,746 phenotypes listed in OMIM from the

March 27, 2012 snapshot were downloaded from the

OMIM website and stored in the internal 3Omics data-

base. The OMIM data are used to identify genes and

genetic disorders based on information that relates genes

in the human genome with specific phenotypes.

Phenotype analysis is not available for metabolomics

datasets alone because no transcriptomic or proteomics

data are available.

Pathway enrichment analysis

A total of 499 human pathways from KEGG Pathway and

793 human pathways from HumanCyc were downloaded

and stored in the internal 3Omics database (Release 62.0

and Version 16.0). HumanCyc provides more than 250

human pathways with literature-based curation for at least

one year by experts. The pathways in HumanCyc are small

and similar to biologically functional units. Therefore,

enriched pathways from HumanCyc provide meaningful

information from input metabolomics data. Two modes

are available in 3Omics’ KEGG pathway enrichment ana-

lysis: normal and enrichment. The normal mode displays

user-provided metabolites via simple metabolite mapping

to a pathway from the KEGG Pathway database. The en-

richment mode requires users to upload two datasets: (A)

a metabolite set and (B) a significantly changed metabolite

set. Significantly enriched pathways are identified with a

hypergeometric test for a given list of metabolites. For ex-

ample, there are N metabolites in set A and n metabolites
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in set B, and there are m metabolites in set A and i metab-

olites in set B in a given KEGG human pathway. The

probability of the occurrence of x or fewer metabolites

within set B in a given pathway is calculated by

hypergeometric distribution [36] according to the follow-

ing formula:

Ρ ¼

X

n

i−x

m
i

� �

N−m
n−i

� �

N
n

� �

The hypergeometric test is a standard method for calculat-

ing pathway enrichment. Note that when a large popula-

tion (N) is selected and the total number of mapped

metabolites in set A (m) is also large, the cumulative prob-

ability in the hypergeometric test will be very high.

The pathway enrichment analysis is available for

proteomics-metabolomics, transcriptomics-metabolomics,

transcriptomics-proteomics-metabolomics, and single

metabolomics analyses.

Gene ontology-based enrichment analysis

GO-based functional enrichment analysis is performed

through the DAVID knowledgebase Application Plat-

form Interface (API). Three independent GOs are in-

cluded: (i) biological processes, (ii) cellular components,

and (iii) molecular functions. The input transcripts are

used in 3Omics to calculate the p-value and FDR (False

Discovery Rate) of each GO term using a modified Fish-

er’s exact test in the DAVID API. The enriched GO

terms associated with the given Entrez Gene IDs are

reported in 3Omics. By default, enriched terms with p-

values less than 0.05 are presented in an interactive bar

chart generated with Google Chart Tools [37].

Using GO enrichment analysis, only the enriched terms

are displayed, thus avoiding the display of general terms,

such as “cellular component” or “metabolic process”,

which are of limited use because many transcripts and

proteins can be mapped to them. GO-based enrichment

analysis requires transcriptomics data to calculate the GO-

term enrichment; therefore, GO-based functional enrich-

ment analysis is available for transcriptomics-proteomics,

transcriptomics-metabolomics, transcriptomics-proteomics

-metabolomics and single transcriptomics analyses. GO en-

richment analysis allows users to explore genes represented

by GO terms with automated organization functionality,

thereby avoiding the need for manual editing.

Results and discussion
Case studies

Two cases were selected to demonstrate the main func-

tions of 3Omics and its usefulness for omics analysis: a

transcriptome and proteome dataset for an acute

promyelocytic leukemia human cell line [38] and a urin-

ary metabolome dataset from MetPA [39].

Case study 1: Integrated transcriptome and proteome

analysis of retinoic acid/arsenic trioxide-induced cell

differentiation/apoptosis in promyelocytic leukemia

To demonstrate transcriptome-proteome analysis with

literature-derived metabolites, transcriptome and prote-

ome data from promyelocytic leukemia cells treated with

retinoic acid (RA), arsenic trioxide (ATO), or a combin-

ation of the two were selected for this case study. The

experiments were performed with the NB4 cell line, a

human acute promyelocytic leukemia (APL) cell line. In

this case study, correlation network and GO-enrichment

analyses were used to demonstrate the user interface

and functionality.

A correlation network can be constructed by calculating

the PCCs between pairs of entities to uncover possible in-

teractions in omics data. Figure 2 presents the correlation

network that was automatically generated by 3Omics for

the integrated proteome and transcriptome, showing

highly correlated transcript-transcript, transcript-protein

and protein-protein relationships (PCCs > 0.9). In this

visualization of the correlation network and clusters of

highly correlated molecules (for example, transcripts

(green rectangles), proteins (red triangles), or literature-

derived metabolites (blue circles) in Case Study 1), the

transcripts and proteins sharing similar expression profiles

in each treatment and time point are readily observed.

The clusters in the correlation network are also shown in

a summary table (Additional 2: Figure S2). Clusters are

ranked by descending size (the number of nodes in a clus-

ter). The largest cluster has a size of nineteen input mole-

cules, including BCL2A1, PDCD6IP, TARDBP, TRRAP,

and RAD23B, which are highly correlated. In the second

cluster, seven molecules, including EIF4A1, EEF1D, and

MYOM1, share similar PCCs. This cluster implies that

these molecules may be expressed under the same regula-

tion mechanism or related ones. The correlations of input

molecules analyzed by 3Omics are consistent with those

described in the original report [38]. The transcriptomic ex-

pression levels of BCL2A1, PDCD6IP, and TARDBP are

up-regulated, as are the proteomic expression levels of

TRRAP and RAD23B. These genes and proteins are highly

correlated, suggesting that the results of the correlation net-

work analysis provide reliable information with a one-click

analysis. PCCs also display the significance as a measure of

the correlation between input molecules in 3Omics. The

functionality of the molecules is then revealed in text-

mining results and the GO enrichment analysis, and the

phenotype analysis is used for human phenotypic mapping.

Blue circles in the correlation network indicate metabo-

lites, and dotted edges between two nodes indicate rela-

tionships described in the literature. The literature-derived
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metabolite relationships provide insight into the possible

mechanism or phenotype. One input protein may be asso-

ciated with many literature-derived metabolites. One

literature-derived metabolite may likewise be associated

with many input proteins. Thus, both proteins and

literature-derived metabolites may appear several times in

the association table (Additional 3: Figure S3). To further

understand the relationship between the input proteins

and literature-derived metabolites, the user can click on

the input gene/protein ID (For example, click ‘P14060’ in

the first column in Additional 3: Figure S3) to search exter-

nal link in iHOP for further information. In iHOP, relation-

ships among proteins and metabolites are then reported as

sentences and both protein-metabolite and protein-disease

relationships can be found in iHOP. For example, this case

study search revealed that 5-alpha-dihydrotestosterone ac-

tivates androgen receptors and influences steroid receptor

coactivator-1 (SRC-1 or NCOA1, UniProt protein ID:

Q15788) in promyelocytic leukemia, as noted on the

NCOA1 page in iHOP [40]. In addition, the association of

breast/prostate cancer and NCOA1 is found in iHOP

[41,42]. With literature-derived results, the relationships

among input molecules and among molecules and diseases

are easily found. However, such relationships often require

further experimental confirmation, similar to all text-

mining-based discoveries.

Coexpression analysis is employed to display expres-

sion profile similarities among entities. Figure 3 presents

the visualization of a coexpression profile as a 3Omics-

generated heatmap. Rows represent the input transcripts

and metabolites, and the colored bars alongside each

row indicate the type of input molecule. For example,

blue indicates metabolites, and green indicates tran-

scripts. The columns comprise five groups of treatments

and the time points. The dendrogram on the top and left

displays the similarities of rows or columns. The mole-

cules in the lower boxed area, A, (Figure 3A) includes

TARDBP, PDCD6IP, RNPEP and etc. which are mostly

in the largest cluster in correlation analysis (see Figure 2,

and the list of largest and second largest clusters in

Additional 2: Figure S2). The majority of molecules in

the upper boxed area, B, (Figure 3B) belong to the

second-largest cluster in correlation analysis. In co-

expression analysis, molecules connected by dendro-

grams have similar expression levels. However, not all

nodes in the same cluster as seen in the correlation ana-

lysis are closely connected in coexpression analysis. Note

that although both positive and negative correlations are

likely correlated based on the correlation analysis, only

positive correlations are considered in this coexpression

analysis. Therefore, some molecules in the same cluster

in the correlation analysis may not be located in the

same box in a given coexpression analysis (heat map).

For example, BCL2A1 is highly correlated with

PDCD6IP in the largest cluster of the correlation ana-

lysis, but BCL2A1 is not located in the co-expression

analysis in Figure 3A.

GO enrichment analysis provides defined and enriched

terms to represent the properties of gene products.

Based on the GO enrichment results, the functions of

PDCD6IP, BCL2A1, TARDBP and PAK2 are relevant to

apoptosis or cell death (Figure 4). EEF1D, EEF1B2, and

EIF4A1 function as translation factors, while SDHA,

G3BP2, EIF4A1, TARDBP, CSTF2, ACTR3, CAMK1,

WARS, PAK2, and PSMC2 have nucleotide-binding

functions. NUCB2, F8, and ITPR2 have calcium-binding

abilities (Figure 4).

From the correlation network and GO-enrichment

analysis, we observed that BCL2A1, PDCD6IP, and

TARDBP influence apoptosis under RA and ATO treat-

ments as well as RA and ATO combination treatment

[38]. The regulation of translation factors (EEF1D,

EEF1B2, and EIF4A1) may represent the regulation of

tumor growth [43]. The calcium-binding abilities of

many molecules reveal the calcium-dependent nature of

this activity. NUCB2 is a key calcium-storage protein in-

side of the endoplasmic reticulum. The regulation of

NUCB2 may lead to calcium-dependent reactions and/

or pathways [38].

Phenotype analysis is performed by mapping OMIM

entries with input transcripts or protein data. Each result

in the returned list represents a human-related pheno-

type and the corresponding genes, as shown in Figure 5.

The results also list the external database source and ID.

The results of the phenotype analysis provide the pheno-

types that are associated with the genes from the input

transcriptomics data. AKAP9 is related to Long QT Syn-

drome. SDHA, TARDBP, and F8 are related to three

other genetic diseases: Leigh Syndrome, amyotrophic lat-

eral sclerosis 10 and hemophilia A. These genes may not

be directly associated with leukemia, but the associations

provide insights into possible related molecular mecha-

nisms of these diseases.

Case study 2: Intra-omics analysis of urinary metabolite

concentration data from 73 cancer patients measured

by 1H NMR

To demonstrate the usefulness of KEGG and HumanCyc

pathway enrichment analysis for intra-omics datasets,

we used the urinary metabolome dataset from MetPA

[39] to perform a KEGG/HumanCyc pathway enrich-

ment analysis. This study investigated whether certain

metabolic pathways were significantly different during

muscle gain and muscle loss in cancer patients. Urine

was collected from cancer patients experiencing either

muscle gain or muscle loss during a three-month period,

and the urine was analyzed by 1H NMR spectroscopy.

We performed unpaired one-tailed Student’s t-tests on
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the urinary metabolite data to obtain p-values for each

metabolite. Two datasets are required to perform a

3Omics KEGG/HumanCyc pathway enrichment analysis:

one set consists of metabolites with p-values less than

0.01 (significant metabolites), and the other contains all

of the metabolites included in the study (overall metabo-

lites). These two datasets are used as the inputs for this

3Omics intra-omics analysis (intra-metabolomics) with

the “Enrichment Test” (as shown in the checkbox in the

lower-right corner of Figure 1).

KEGG/HumanCyc pathway enrichment analysis (Figure 6)

returns results in tables ranked according to probability.

The enriched KEGG/HumanCyc pathways, ranked by

the probability computed from hypergeometric tests

with the KEGG and HumanCyc pathways, are listed in

the results table. The hypergeometric test is used to

Figure 3 3Omics-generated coexpression profile. An example coexpression profile for a Transcriptomics-Metabolomics analysis is shown.

(A) Molecules in the largest cluster of the correlation analysis have highly similar expression profiles. (B) Molecules in the second-largest cluster

also have highly similar expression profiles. Pink cells denote higher expression, and cyan cells denote lower expression. Row edges are color

coded according to the omics data source type: green, transcriptomics; red, proteomics; and blue, metabolomics.
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determine whether particular metabolic pathways sig-

nificantly differ in two patient groups. Metabolites in

the pathway are displayed alongside the results (Fig-

ure 6). A link to a KEGG pathway map is also gener-

ated. In this case study, the top three enriched

metabolic pathways were amino sugar and nucleotide

sugar metabolism, aminoacyl-tRNA biosynthesis, and

cyanoamino acid metabolism. Xia et al. [39] identified

the “glycine, serine and threonine metabolism” pathway

as the top pathway in a pathway topological analysis;

this pathway was also significant in the MetPA pathway

enrichment analysis. Although the pathway enrichment

analysis utilized in MetPA differs from that utilized in

the KEGG pathway enrichment analysis in 3Omics, the

3Omics analysis returned a probability of 0.74 for the

highly significant enriched pathways for “glycine, serine

and threonine metabolism”, a finding that is consistent

with the results from the original investigation. The six

amino acids highlighted in the rectangular section of

Figure 6A are important in the “glycine, serine and

threonine metabolism” pathway.

The top enriched pathways in the HumanCyc pathway

analysis as seen in Figure 6B are glycine biosynthesis I

& III, glycine betaine degradation and threonine degrad-

ation II, which are also consistent with the “glycine,

serine and threonine metabolism” in the KEGG path-

way. It is much easier to understand how the mechan-

ism may involve the biosynthesis of glycine or the

degradation of betaine and threonine in HumanCyc

pathway analysis due to the more detailed pathways

Figure 4 3Omics GO Enrichment analysis. GO terms with p-values less than 0.05 are displayed in a bar chart. Detailed results are divided into

three sections corresponding to the three ontologies. Each section has a table summarizing the enriched terms with the mapped Entrez Gene

IDs, the coverage of the input Gene IDs, and the p-values.
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Figure 5 3Omics Phenotype analysis. Input transcriptomics data are used to query the internal 3Omics phenotype database. The matched

gene-phenotype results are returned in a table. Each OMIM entry includes a hyperlink to the external OMIM database.

Figure 6 3Omics Pathway enrichment analysis. The enriched KEGG/HumanCyc pathways, ranked by probability from the hypergeometric test, are

returned in a table. (A) Consistent with the original study results, the “glycine, serine and threonine metabolism pathway” (highlighted) is a top search hit,

with a probability of 0.74 based on the KEGG pathway enrichment analysis. (B) The enriched pathways from the HumanCyc pathway enrichment are also

consistent with the original study results and the KEGG Pathway enrichment and provide a significant amount of meaningful information.
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categories in HumanCyc. In addition to the enrichment

results, 3Omics also provides a list of metabolites with

links mapped to a particular pathway for viewing, as

demonstrated in the boxed area of Figure 6. An intuitive

exploration of these results can be performed by

clicking the hyperlink paired with each metabolite.

In addition to the 3Omics KEGG/HumanCyc enrich-

ment analysis, users are encouraged to examine different

statistical analyses. The 3Omics correlation network ana-

lysis for this case study, for example, shows that leucine

and valine have higher correlations compared with other

metabolites (data not shown). This observation is in ac-

cordance with the 3Omics KEGG pathway enrichment

analysis, which also maps the following pathways: valine,

leucine and isoleucine degradation and biosynthesis; ala-

nine, aspartate and glutamate metabolism; amino sugar

and nucleotide sugar metabolism; and cyanoamino acid

metabolism.

Limitations

Integration of multi-omics datasets in one online tool helps

researchers to unravel the complete picture of a biological

system. For example, Ishii et al. [44] studied the responses

to environmental and genetic perturbations in Escherichia

coli using transcriptomics, proteomics, and metabolomics

data. Similarly, Trauger et al. studied the adaptation of

Pyrococcus furiosus to a temperature shift by integrating

transcriptomics, proteomics, and metabolomics analyses

[45]. However, incorporating heterogeneous multi-omics

datasets does not guarantee high-quality results and may

yield poor results due to false-positive results.

Currently, 3Omics accepts human-only data and pro-

vides human-specific analyses, such as literature-derived

information and human phenotypes from human genes/

proteins. However, 3Omics works on human data with a

provision for incorporating data for other species.

Conclusions
We developed a one-click web tool for fast analysis and

visualization of multi-omics data. 3Omics integrates

transcriptomics, proteomics, and metabolomics datasets in

combination or as single omics datasets. For integration,

analysis, and visualization of multi-omics datasets, we in-

corporated five common features to present the informa-

tion from input molecules: correlation and coexpression

analysis to display the relationships among input molecules;

GO-based enrichment analysis to provide information on

biological events, molecular functions, and the cellular

localization of transcripts and proteins; phenotypic analysis

to expose related phenotypes of transcripts; and pathway-

enrichment analysis to cover mapped KEGG/HumanCyc

pathways in the normal mode and enriched pathways in

the enrichment mode. From Case Studies 1 and 2, the re-

sults of the 3Omics analyses are consistent with the original

reports based on the inter- and intra-omics datasets. Fur-

thermore, possible mechanisms and biological functions

are provided without manual editing in 3Omics. 3Omics

incorporates the functionality of existing software into one

piece of software, thereby simplifying data analysis and en-

abling users to perform a one-click integrated analysis.

Availability and requirements
Project name: 3Omics

Project home page: http://3omics.cmdm.tw

Operating system: Platform independent

Programming language: Perl and PHP

Other requirements: Web browsers with JavaScript en-

abled. Microsoft Internet Explorer 7.0 or later, Google

Chrome 5.0 or later, or Mozilla Firefox 2.0 or later.

License: None

Non-academic use restrictions: None

Additional files

Additional file 1: Figure S1. A typical Workflow of 3Omics. After a user

uploads their data to the server, the experimental data is processed by a

series of analytical and visualization methods. The Name ID converter is

optional for converting molecule names into database IDs. Correlation

network analysis and co-expression analysis -omics analysis. Phenotypic

analysis, Pathway and Gene Ontology Enrichment Analysis only utilize

part of the analysis flowutilize all seven type of the analysis flow.

Additional file 2: Figure S2. Summary Table of Clusters in the

Correlation Network. All input molecules formed as clusters in correlation

analysis. Each molecule has a link to external database. Transcripts are

linked to NCBI Entrez Gene, proteins are linked to UniProt, and

metabolites are linked to Human Metabolome.

Additional file 3: Figure S3. Association Table of the Literature-derived

Metabolites and the Proteins. Literature-derived metabolites associates with

proteins are reported in this table. Each literature-derived metabolite has a

link to KEGG, PubChem, HMDB, and HMO (Human Metabolome Ontology).
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KEGG: Kyoto Encyclopedia of Genes and Genomes; OMIM: Online Mendelian

Inheritance in Man; GO: Gene Ontology; iHOP: information Hyperlinked Over

Proteins.
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