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In this current era, biomedical big data handling is a challenging task. Interestingly,
the integration of multi-modal data, followed by significant feature mining (gene
signature detection), becomes a daunting task. Remembering this, here, we
proposed a novel framework, namely, three-factor penalized, non-negative
matrix factorization-based multiple kernel learning with soft margin hinge loss
(3PNMF-MKL) for multi-modal data integration, followed by gene signature
detection. In brief, limma, employing the empirical Bayes statistics, was initially
applied to each individual molecular profile, and the statistically significant
features were extracted, which was followed by the three-factor penalized
non-negative matrix factorization method used for data/matrix fusion using
the reduced feature sets. Multiple kernel learning models with soft margin
hinge loss had been deployed to estimate average accuracy scores and the
area under the curve (AUC). Gene modules had been identified by the
consecutive analysis of average linkage clustering and dynamic tree cut. The
best module containing the highest correlation was considered the potential gene
signature. We utilized an acute myeloid leukemia cancer dataset from The Cancer
Genome Atlas (TCGA) repository containing fivemolecular profiles. Our algorithm
generated a 50-gene signature that achieved a high classification AUC score (viz.,
0.827). We explored the functions of signature genes using pathway and Gene
Ontology (GO) databases. Our method outperformed the state-of-the-art
methods in terms of computing AUC. Furthermore, we included some
comparative studies with other related methods to enhance the acceptability
of our method. Finally, it can be notified that our algorithm can be applied to any
multi-modal dataset for data integration, followed by gene module discovery.
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1 Introduction

Rapid advances in biotechnology have enabled the generation of
data in multiple platforms from the same or similar bio-samples. For
example, The Cancer Genome Atlas (TCGA) comprehensively
generated multi-omics profiles in 33 cancer types and subtypes.
Therefore, it is made available to conduct an in-depth investigation
into various molecular incidents at different biological stages and for
specific tumor categories. The challenging task here is to develop
algorithms to properly integrate these multi-omics (i.e., multi-
modal) data, which will deepen our understanding of human
tumorigenesis.

The integration of multi-omics profiles is a fast emerging
area of the biomedical research (Imielinski et al., 2012; Mo et al.,
2013; Mallik et al., 2017; Gaur et al., 2022; Ghose et al., 2022;
Saeed et al., 2022). From the perspective of biology, cellular
processes are based on the communication among different
biomolecules (viz., mutations, epigenetic regulators, proteins,
and metabolites). Molecular regulations occur in multi-layers
and multi-vantage points to orchestrate complex biological
events. An integrated analysis of profiles on the common set
of samples from multi-omics data shows great potential to yield
more biologically meaningful outcomes over an individual
analysis on a single data layer. Overall, it shows a more
comprehensive view and a global functional orientation of the
biological system.

One of the major challenges for integration is to deal with the
heterogeneity of these profiles. Profiles from various sources are often
complicated to integrate or interpret together because of the inherent
discrepancies. Various genomic variables can be measured and
accumulated in different ways, which are also vulnerable to
different kinds of noise and various confounding effects.
Interestingly, these profiles show individual aspects of the biological
system at different angles. The discrepancy among multi-omics data,
therefore, provides an opportunity for detecting reliable and consistent
signals for biological studies in a comprehensive manner. Multi-
dimensional data integration and gene signature identification are
among themost challenging tasks for bioinformaticians (Li et al., 2019;
Mallik and Zhao, 2020; Qiu et al., 2020; Pellet et al., 2015; Serra et al.,
2015). Mallik et al. (2017) proposed a scheme to recognize epigenetic
biomarkers applying maximal relevance and minimal redundancy-
based feature selection for multi-omics data. An approach of the
integration of multi-omics data was proposed by Li et al. (2019) to
identify biomarkers in the domain of cancer research. Qiu et al. (2020)
suggested an approach regarding the revelation of 172 osteoporosis
biomarkers by multi-omics data integration. A scheme of multi-omics
data integration was presented by Pellet et al. (2015) to determine
predictive molecular signatures regarding CLAD. Because specific
profiles contain different characteristics/phenomena, integration of
multi-view data with significant feature reduction and gene signature
detection is fundamentally important. In this upcoming era, the multi-
platform integration approach has been applied to accomplish various
important tasks, such as signature/bio-marker detection, disease
classification, and gene clustering. Prior research works in bio-

marker discovery (Bandyopadhyay and Mallik, 2016; Kandimalla
et al., 2022), classification (Henry et al., 2014; Maulik et al., 2015;
Zhang and Kuster, 2019), and clustering (Wang and Gu, 2016) have
improved the promising performance of multi-modal integration
approaches. Nevertheless, the outcomes of such approaches are not
always satisfactory. Zhang and Kuster (2019) represented an approach
with the incorporation of proteomics data to express the significance of
omics data integration with higher accuracy. Kandimalla et al. (2022)
showed mRNA–miRNA regulatory network analyses to improve the
approach of multi-omics data integration. In this work, we propose a
novel framework, namely three-factor penalized non-negative matrix
factorization-based multiple kernel learning with soft margin hinge
loss (3PNMF-MKL), which applies consecutive utilization of a couple
of multi-dimensional strategies: i) statistical empirical Bayes-based
feature selection, ii) three-factor penalized non-negative matrix
factorization, iii) multiple kernel learning with soft margin hinge
loss, iv) average linkage clustering, and v) the dynamic tree cut
method for multi-platform data integration and gene signature
detection. For evaluation of the performance of our proposed
approach, a cancer dataset from TCGA acute myeloid leukemia
(LAML) containing five different profiles [gene expression, DNA
methylation, exon expression, pathway activity, and copy number
variation (CNV)] was used. We demonstrated that our approach is
capable of multi-modal data integration, and thus, it can be applied to
any kind of multi-platform datasets.

2 Experimental procedures

In this section, we illustrate our proposed approach for
identifying Pareto-optimal gene signatures by feature clustering
on a cancer multi-omics dataset. The major steps are described
as follows.

2.1 Feature selection by the empirical Bayes
test

Commonly shared features (genes/probes) and samples are
chosen across all the profiles from the multi-omics cancer
dataset. Specifically, probes (features) from DNA methylation
arrays containing any missing values are discarded. The
individual profile is normalized using the zero-mean
normalization for each feature (Bandyopadhyay et al., 2013), as
described in the following formula: xik′ � xik−μ

σ . Here, μ is the mean
across the data for the feature i prior to normalization, and σ denotes
standard deviation. xik and xik′ signify the value of the i-th feature at
k-th patient (sample) prior and after normalization, respectively. To
determine statistically significant features, the empirical Bayes
statistical test is applied using the package “Linear Models for
Microarray and RNA-Seq Data” (Smyth, 2004; Bandyopadhyay
et al., 2013), which works better on the dataset with a small
sample size. The moderated t-statistic (Ritchie et al., 2015) is
elaborated as follows:
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~tpr � 1������
1
m1

+ 1
m2

√ β̂pr
~spr

, (1)

where m1 and m2 are the number of patients (cases) and that of the
normal samples (controls), respectively. Here, β̂pr signifies the
contrast estimator for the feature pr, whereas ~s2pr refers to the
posterior sample variance for pr. The statistic to compute the
contrast estimator for the probe pr is formulated as follows:
β̂pr|σ2pr ~ N(βpr, σ2pr). Here, N represents the normal distribution.
The statistic to estimate the posterior sample variance for pr is
formulated as follows:

~s2pr �
d0s20 + dprs2pr
d0 + dpr

, (2)

where d0 (<∞) signifies the prior degrees of freedom, and s20
denotes the variance. In addition, dpr (> 0) symbolizes the
experimental degrees of freedom of pr, and s2pr denotes the
sample variance of pr. The significance of the level of the p-value

is then determined from ~s2pr with the help of the cumulative
distribution function (cdf). If the p-value of the feature is less
than the standard cutoff of 0.05, the feature is defined as
statistically significant. The filtered differentially expressed
features are then ordered according to the p-values. Notably, if
any gene corresponds to more than one probe (feature), the probe
with the lowest p-value will be selected to represent the gene, and the
rest of the probes for the gene are simply ignored.We apply the same
approach to each layer of the molecular profile, and then, we
perform the combination of the significant non-redundant
features (genes/probes/copy number variation, etc.) from all
layers (let, UF).

2.2 Fusion by matrix factorization

Let oi and oj denote two object types, namely, gene expression
and DNA methylation, in all resulted features UF. The number of
genes is N, while each gene is denoted by ni, where i = 1, 2,. . ., N.

FIGURE 1
Algorithm of the proposed 3PNMF-MK model.
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There are M number of DNA methylation samples, while each
sample is termed asmj, where j = 1, 2, . . ., M. In addition, there is a P
set consisting of p types of profiles from the multi-omics datasets.
The input to this implemented variant of the 3-FPNMF model is R,
which is a relational block matrix shown as follows:

R �
p R12 . . . R1p

R21 p . . . R2p

..

. ..
.

1 ..
.

Rp1 Rp2 . . . p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)

Here, p denotes that similar object relationships are not considered
in this approach. Rij denotes the relationship between oith and ojth
object types. The respective correlation of the xth object of type oi
(e.g., gene) and the yth object of type oj (e.g., sample) is represented
as Roioj(x, y). In this implementation, we have experimented with
six object types, as described later.

For each object type from each profile, there is a constraint in the
input constraint block diagonal matrix, as shown in the following
expression:

τP � Diag τ1, τ2, . . . , τp( ). (4)
The relational block matrixR is tri-factorized into matrix factors

G and S (Žitnik and Zupan, 2014), which is shown as follows:

G � Diag G1
n1 × m1

, G2
n2 × m2

, . . . , Gp
np × mp

( ), (5)

S �
* Sr1×r212 . . . S

r1×rp
1p

Sr2×r121 * . . . S
r2×rp
2p

..

. ..
.

1 ..
.

S
rp×r1
p1 S

rp×r2
p2 . . . *

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (6)

Here, r denotes rank factorization to the object type op inferenced by
the 3-FPNMF model. The factor S denotes the block relation
between object types oi and oj. The factor Goi reconstructs
relations specifically to the object type oi.

Thus, each relation matrix Roioj obtains matrix factorization as
GoiSoiojG

T
oj
. In a simplified way, this relational block 3-FPNMF

model is shown as follows:

* Go1So1o2G
T
o2

. . . Go1So1opG
T
op

Go2So2o1G
T
o1

* . . . Go2So2opG
T
op

..

. ..
.

1 ..
.

GopSopo1G
T
o1

GopSopo2G
T
o2

. . . *

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

The objective function of this tri-factor penalized matrix
decomposition (PMD) model is to minimize the distance
between the input block relational matrix R and its 3-FPNMF
system adhering to the constraint matrix τP, which is shown as
follows:

min
G≥0

j R: G, S( ) � ∑
Roioj∈R

‖Roioj − GoiSoiojG
T
oj
‖2

+∑P
p�1

tr GTτpG( ) .
(8)

Here, ‖.‖ denotes the Frobenius norm, and tr (.) denotes the
trace. Our sparse implementation for this 3-FPNMF model reduces
the missing relational matrix problemwith zero values. Our model is
more suitable for real-life heterogeneous datasets with missing
values, which differs from those of Žitnik and Zupan (2014) in
its non-negative sparse implementation. Our proposed 3FPNMF −
MKLmodel is shown briefly in Figure 1, while a detailed flowchart is
represented in Supplementary Figure S1.

2.3 Multiple kernel learning

Next, we introduce the multiple Kernel Learning (MKL)
algorithm (Xu et al., 2013) with the hinge loss soft margin, in
which the classifier and the kernel combination coefficients are
optimized by solving the hinge loss soft margin MKL problem.

After using the 3-FPNMF model in the first phase, the
approximate sparse relation matrix R̂oioj for target object type
pairs oi and oj is reconstructed as

R̂oioj � GoiSoiojG
T
oj
. (9)

Then, to develop kernel fusion, the resulting kernel matrices are
generated using the “Kernel Trick”: K(oi, oj) � R̂oioj.R̂

T
oioj

. The
kernels are further normalized and smoothed using 2-
dimensional linear filters.

Given p base-kernels K � {K1, K2, . . . , Kp} developed from the
reconstructed relational block matrix
R̂ � {R̂oioj|i � 1, . . . , p; j � 1, . . . , p}, kernel slack variables for the

FIGURE 2
Flowchart of the proposed 3PNMF-MKL framework.
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kernel Kp ∈ K are defined as the difference between the target
margin θ and the SVM dual objective function

DSVM Kp, α( )
� max

α∈RN
∑N
n�1

αn − 1
2
∑N
m�1

∑N
n�1

αnαmynymKp xn, xm( )

subject to ∑N
n�1ynαn � 0, αn ≥ 0,∀n. Then, the slack variable is ζp =

θ − DSVM(Kp, α), and the hinge loss is shown as follows:

zp � ℓ ζp( ) � max 0, ζp( ). (10)
Therefore, the objective function for this hinge loss soft marginMKL
algorithm becomes

min
θ,α∈Dom α( ),ζp

−θ + π∑P
p�1

ζp. (11)

subject to DSVM(Kp, α) ≥θ − ζp, ζp ≥ 0, p = 1, . . ., P.
The objective of the aforementioned hinge loss soft margin MKL

is to maximize the margin θ while considering the “errors” from the
given P-based kernels. The parameter π balances the contribution of
the loss term represented by slack variables ζp and the margin θ. π
should be in the range {π|π ≥ 1/P}. Otherwise, there is no solution to
the proposed problem. Our proposed framework for gene signature
detection from heterogeneous data sources using the 3FPNMF −
MKL model is depicted in Figure 2.

2.4 Determining best combination of class
labels using non-matrix factorization
and AUC

In biological datasets such as TCGA, the clinical data are
made available. This includes patient sample groups, biological
subtypes, drug treatment, and survival/prognosis information. In
our current study, we obtain accuracies for different
combinations of class labels using the non-matrix factorization
technique for the case where there were more than two class
labels or subtypes. Among them, the combination of class labels,
which produces the highest area under curve (AUC), is chosen
for the next step (i.e., module detection). Say, q is the specific
combination of class labels, which produces the highest AUC.
Find q = {∃i, ∃j}|{∃a, ∃b, ∃k} such that

AUCq � argmax ∀i,jAUCcliclj′,∀a,b,kAUCclaclbk′( ), (12)

where cl denotes the left part of the group combination, cl′ signifies
the right part of any sample group combination, and i ∈ {1, 2, . . .,
(m − 1)}, j ∈ {(i + 1), (i + 2), . . .,m}, a ∈ {1, 2, . . .,m}, b ∈ {1, 2, . . .,m}
& b ≠ a, k ∈ {, 2, . . ., m}, and k ≠ a and k ≠ b.

2.5 Feature clustering and module detection

After selecting the right class-label combination, we extracted
the sub-gene expression data consisting of only the selected class
labels and then used them for gene module detection and signature
identification.

In our procedure, we first evaluated the power of the soft
thresholding, which was then applied to evaluate the adjacency
matrix using Pearson’s correlation. The topological overlap matrix
(TOM) similarity score (Ravasz et al., 2002) was computed from the
employed adjacency matrix. The TOM score between two nodes
(say, i and j) symbolized as TOM(i, j) is defined as follows:

TOM i, j( ) �
∑
v≠i,j

X i, v( )X j, v( ) +X i, j( )
min ∑

v≠i
X i, v( ), ∑

v≠j
X j, v( ){ } − X i, j( ) + 1

, if i ≠ j,

1, if i � j,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(13)

where X denotes the corresponding adjacency matrix containing
Boolean entries. The entry of 1 indicates that the corresponding two
nodes share the same connection (i.e., direct connection), while the
entry of 0 signifies that no direct connection exists between them.

After obtaining the TOM score, we computed the distance/
dissimilarity value between genes (i and j) denoted by dissTOM(i,
j),which is shown as follows: dissTOM(i, j) = 1 − TOM(i, j). We
conducted average linkage clustering on the multi-omics
dissimilarity matrix dissTOM via considering all potential pairs
of genes/features. Finally, the dynamic tree cut technique
(Langfelder et al., 2008) was applied on the clustering
dendrogram to determine the gene modules. In order to evaluate
the quality of the aforementioned clustering, we calculated different
cluster validity index measures, viz., cluster coefficient,
heterogeneity, Dunn Index, maximum adjacency ratio,
centralization, silhouette width, and scaled connectivity.

2.6 Expression signature detection and
classifier models

After finding the gene modules, we estimated Pearson’s correlation
coefficient (PCC) between each gene pair within the resulted modules.
For eachmodule, the mean of the correlations for each gene pair within
that particular module was obtained. The module with the maximum
mean correlation coefficient was elected as a gene signature. Notably,
genes with the elected gene signature are differentially expressed
between case and control samples. In order to validate the
classification performance of the employed gene signature, we
utilized the Prediction Analysis of Microarrays (PAM) classifier with
10-fold cross-validation (CV) on the expression sub-data to classify the
underlying class labels. The entire procedure was then repeated ten
times. Moreover, we calculated the average scores of several
classification performance metrics such as sensitivity, specificity,
precision, accuracy, and AUC, individually.

2.7 Functional annotation analysis

We carried out KEGG pathway and Gene Ontology (GO)
analyses using the Enrichr database (Chen et al., 2013). Notably,
GO terms can be categorized into three kinds, viz., biological process
(BP), cellular component (CC), and molecular function (MF). Those
significant pathways/GO terms with an adjusted p-value less than
0.05 were identified. Meanwhile, literature research studies were also
performed to identify disease-related pathways/GO terms.

Frontiers in Genetics frontiersin.org05

Mallik et al. 10.3389/fgene.2023.1095330

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1095330


3 Results

3.1 Data sources

For our experiment, TCGA acute myeloid leukemia (LAML)
multi-omics dataset (https://xenabrowser.net/datapages/?cohort=
GDC%20TCGA%20Acute%20Myeloid%20Leukemia%20(LAML)
&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443)
contained six heterogeneous profiles such as the gene expression
(IlluminaGA) profile, DNA methylation (Illumina Methylation
27k) profile, exon expression (IlluminaGA) profile, miRNA profile,
pathway activity (Paradigm IPLs) profile, and copy number
(GISTIC2) profile. Initially, the gene expression profile included
179 samples and 20,113 genes. For the methylation profile, there
are 194 samples and 27,578 methylation probes. Particularly, for
the methylation profile, many genes are profiled with more than
one probe. In the exon expression profile, there are a total of
219,296 chromosome ids and 179 samples. Here, many genes are
connected with more than one chromosome id. The miRNA
profile contains 705 miRNAs and 188 samples. The pathway

activity profile has 7,203 genes and 173 samples, while the copy
number profile consists of 24,776 genes and 191 samples. There are
three categories of samples (i.e., class labels) for the LAML multi-
omics dataset: i) favorable, ii) intermediate (also called normal),
and iii) poor. Specifically, every profile consists of 161 commonly
shared LAML samples. Among them, 31 samples belong to the first
category, 96 samples are in the second category, and the rest of the
samples (= 34) are in the third category. In addition, there are
1,501 uniquely matched genes among the five profiles [i.e., gene
expression, DNA methylation, exon expression, pathway activity,
and copy number variation (GISTIC2) profiles].

3.2 Statistical validation

First, we selected the sub-data, which contain commonly shared
samples (i.e., 161) and genes (i.e., 1,501) for each of the five profiles
(i.e., gene expression, DNA methylation, exon expression, pathway
activity, and copy number variation profiles). Many matched genes
are connected with more than one probe (or chromosome id) for each

TABLE 1 Predictive performance of classification for each pairwise class using the proposed method in LAML multi-omics data, where classes 1, 2, and 3 denote
“favorable,” “intermediate/normal,” and “poor,” respectively.

Sensitivity Specificity Precision (PPV) Negative predictive value Accuracy AUC

Class 1 vs. Class 2 0.5161 0.6907 0.3478 0.8171 0.6484 0.6202

Class 1 vs. Class 3 0.5484 0.8235 0.7391 0.6667 0.6923 0.7713

Class 1 vs. classes 2 and 3 0.5385 0.3871 0.7865 0.1667 0.5093 0.4608

Class 2 vs. Class 3 0.6289 0.5 0.7821 0.3208 0.5954 0.5215

Class 2 vs. classes 1 and 3 0.5 0.5052 0.4 0.6049 0.5031 0.4863

Class 3 vs. classes 1 and 2 0.5547 0.4848 0.8068 0.2192 0.5404 0.5528

Max 0.6289 0.8235 0.8068 0.8171 0.6923 0.7713

FIGURE 3
Plots for soft thresholding and dendrogram for our proposed method. (A) Power computing for soft thresholding and (B) dendrogram plots with
dynamic tree cut.
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profile. In the case of the miRNA profile, we started to work with the
matched samples (n = 161) and all of its miRNAs (n = 705). The
empirical Bayes test is performed by limma software on each gene probe
or chromosome id for each of the five profiles (i.e., gene expression, DNA
methylation, exon expression, pathway activity, and copy number
variation profiles) across all the three classes (viz., favorable,
intermediate, and poor).

Notably, since there are three classes/groups of samples, here,
limma is initially performed between each group pair (i.e., i)
favorable vs. intermediate, ii) intermediate vs. poor, and finally
iii) favorable vs. poor), then an F-statistics is computed, and
finally, the respective p-value is generated from the F-statistics.
After the test, for every gene, we only selected the probe or
chromosome id with the lowest p-value achieved among all the
probes or chromosome ids connected with that gene. As a result, we
obtained 728, 272, 1,100, 265, and 904 significant genes for the gene
expression, methylation, exon expression, pathway activity, and
copy number profiles, respectively. Thereafter, we took the
combination of all the significant gene sets, which led to a
molecular set of a total of 1,388 genes. Furthermore, the
same significance test was applied on each miRNA of the
miRNA profile across all the three classes (viz., favorable,
intermediate, and poor) as well. We obtained a total of
229 significant miRNAs.

3.3 Expression signature detection and
classification

Using the non-matrix factorization technique, we obtained
accuracies for different combinations of class labels such as i)

Class 1 (favorite) vs. Class 2 (intermediate), ii) Class 1 vs. Class 3
(Poor), iii) Class 1 vs. classes 2 and 3, iv) Class 2 vs. Class 3, v)
Class 2 vs. classes 1 and 3, and vi) Class 3 vs. Classes 1 and 2 (as
depicted in Table 1). Among them, the second combination,
i.e., Class 1 vs. Class 3 produced the highest area under curve
(AUC = 0.7713). Hence, we selected the combination for gene
signature discovery since other combinations did not produce
better AUC scores. After obtaining right combinations of class
labels, we first evaluated the power (=1) for soft thresholding
(illustrated in Figure 3A), which was then applied to estimate the
adjacency matrix through Pearson’s correlation score. Then, the
TOM score and distance matrix were computed. To determine
gene modules, we applied average linkage clustering and dynamic
tree cut methodologies. As a result, we generated a total of
10 gene modules. The numbers of participating differentially
expressed genes (DEGs) for these 10 gene modules (represented
by black, blue, brown, green, magenta, pink, purple, red,
turquoise, and yellow colors) were 50, 99, 90, 74, 23, 25, 22,
51, 214, and 80, respectively. The dendrogram is represented in
Figure 3B. The corresponding cluster validity indices in that
module detection are illustrated in Table 2. The Average
silhouette width plot generated during clustering is
represented in Supplementary Figure S2. PCC was calculated
between each gene pair within each module. The mean
correlation scores of the 10 modules (depicted by blue, green,
turquoise, magenta, brown, red, yellow, black, purple, and pink
colors) were 0.0268, 0.2562, 0.0321, 0.3914, 0.1143, 0.0215,
0.0570, 0.4029, 0.3455, and 0.1605, respectively. The black
module had the highest mean correlation coefficient score (=
0.4029 in Table 3). Thus, it was selected as the gene signature. The
resultant gene signature contained 50 DEGs (see Table 3). To
verify the classification performance of the resultant signature,
we applied the PAM classifier through the 10-fold cross-
validation (CV) on all the features and samples of signature
data in order to classify the groups (favorite and poor). The entire
procedure was then repeated 10 times. In the experiment, the
mean sensitivity, mean specificity, mean precision, mean
accuracy, and mean AUC were 69.12%, 84.19%, 82.79%, 76.31,
and 0.8273, respectively (see Figure 4; Table 4). Based on the gene
set enrichment analysis on the 50 genes of the signature using the
Enrichr web database, we extracted significant KEGG pathway
and Gene Ontology (GO) terms. Among the KEGG pathways, the
Rap1 signaling pathway (hsa04015) is the most significant
pathway (adjusted p-value = 7.497 × 10−06) that contains eight
genes (viz., EFNA1, GNAO1, TIAM1, CSF1, ITGB3, ITGA2B,
THBS1, and MAPK13). Second, the most significant pathway
is the PI3K-Akt signaling pathway (hsa04151) with an adjusted

TABLE 2 Cluster Validity Index measures of our experiment.

Cluster Validity Index Score

Dunn Index 0.6461

Average scaled connectivity 0.6834

Silhouette width −0.0012

Average cluster coefficient 0.2390

Average maximum adjacency ratio 0.2386

Density 0.2327

Centralization 0.1081

Heterogeneity 0.1143

TABLE 3 Feature (gene) names and average (avg.) Pearson’s correlation coefficient (PCC) for the pairwise manner within the TCGA LAML signature.

Measure Value/description

# Features 50

Gene symbols HK2, CHRDL1, EFNA1, ARNTL, EIF4A1, MS4A2, BMP2, FHL2, SH2D2A, CSF1, KLRG1, ITGB3, SH3BP5, CCL4, RORA, CAMK2D, BIRC3,
TP53, S1PR5,GNAZ, EPOR, TBX21,GATA3, TIAM1, IL2RB, LRIG1,GRAP2, PLEKHA1, THBS1,MAF, IL18RAP, EDN1, ETS1,GATA1, ITGA2B,
A2M, LCK, MAPK13, GZMB, PTGDR, MYBL1, RASGRP1, ARG1, PKLR, GNAO1, PRF1, CD8A, FASLG, ABCG2, and CCL5

Average PCC 0.403
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p-value of 1.128 × 10−05, which consists of nine genes (viz.,
EFNA1, CSF1, ITGB3, ITGA2B, IL2RB, FASLG, TP53, THBS1,
and EPOR). The following eight pathways are the
cytokine–cytokine receptor interaction (hsa04060) (adj.
p-value = 1.437 × 10−05), inflammatory bowel disease (IBD)
(hsa05321) (adj. p-value = 2.1E-05), proteoglycans in cancer
(hsa05205) (adj. p-value = 2.1 × 10−05), hematopoietic cell
lineage (hsa04640) (adj. p-value = 6.752 × 10−05), T-cell
receptor signaling pathway (hsa04660) (adj. p-value = 1 ×
10−4), TNF signaling pathway (hsa04668) (adj. p-value = 2 ×
10−4), osteoclast differentiation (hsa04380) (adj. p-value = 3 ×
10−4), and Ras signaling pathway (hsa04014) (adj. p-value = 3 ×
10−4) (also see Table 5). Among the significant GO:BP terms, the
positive regulation of cellular metabolic processes (GO:0031325)
(adjusted p-value = 8.02947 × 10−05) was ranked as the most
significant, which contains six genes (EDN1, CSF1, CCL5,
GATA3, THBS1, and TP53). The second most significant GO

term is the regulation of inflammatory responses (GO:0050727)
with an adjusted p-value of 8.029 × 10−05. This term consists of
seven genes (CCL5, CCL4, RORA, GATA3, ETS1, BIRC3, and
MAPK13) (Table 5). Among the significant GO:CC terms, the
platelet alpha granule (GO:0031091) (adjusted p-value = 4 × 10−3)
contains four genes (viz., ITGB3, ITGA2B, A2M, and THBS1),
while among the GO:MF terms, the core promoter binding factor
(GO:0001047) (adjusted p-value = 8 × 10−4) contains five genes
(viz., RORA, GATA3, GATA1, TP53, and ARNTL). For details of
the top significant pathways and GO terms, see Table 5.

4 Discussion

Multi-view data integration and gene signature detection are
currently the most challenging tasks for biomedical researchers.
As different datasets contain different characteristics, integration
of data from multi-platforms with significant feature reduction
and gene module detection will give a more comprehensive view
of how biology unravels at a granular level. Therefore, we
introduced the novel approach of multi-platform data
integration technique, 3PNMF-MKL, for multi-platform data
integration and gene signature detection. This approach
applies the integrated utilization of statistical methods, data
fusion through three-factor penalized non-negative matrix
factorization, and soft margin hinge loss-based multiple kernel
learning. We then tested our approach using TCGA LAMLmulti-
omics dataset, which contains five different profiles (viz., gene
expression, DNAmethylation, exon expression, pathway activity,
and copy number). Overall, our algorithm provides excellent
AUC (= 0.827) for classifying the class labels for the underlying
features (genes) within the chosen gene signature. Furthermore,
we performed a functional analysis using the KEGG pathway and
Gene Ontology database to interpret those identified relevant
feature genes. Collectively, our novel approach is applicable to
any kind of multi-modal datasets.

Our proposed method 3PNMF-MKL includes data
integration employed by means of differential expression/
methylation analysis using limma, non-negative matrix
factorization, and soft margin hinge loss, as well as gene
signature detection together. 3PNMF-MKL employs the
application of best gene module discovery with the help of
dynamic linkage clustering, dynamic tree cut, and correlation
analysis to achieve the use of best gene module discovery (in
terms of gene signature discovery) . So far, there are many state-
of-the-art methods available regarding data integration (Yang
and Michailidis, 2016; Ray et al., 2017) and gene signature
discovery (Cun and Frohlich, 2012; (Zhang and Xiao, 2020),
but very few existing methods are recently available where data
integration and gene signature detection work together in the
same framework (Fujita et al., 2018). We, here, compared our
proposed method 3PNMF-MKL with the existing method (Zhang
and Xiao, 2020) used for TCGA acute myeloid leukemia dataset.
In our proposed method, we obtained a 50-gene signature
generated after analyzing multi-omics data integration
where the other method (Zhang and Xiao, 2020) produced an
eight-gene signature from analyzing the only gene expression
data not by multi-omics data integration. Also, we obtained

FIGURE 4
Plots of the area under curve (AUC) for 10-fold cross-validation.

TABLE 4 Classification metrics for our experiment.

Evaluation metric Average score (std)

Precision 0.8279 (±0.027)

Sensitivity 0.6912 (±0.025)

Specificity 0.8419 (±0.028)

Accuracy 0.7631 (±0.0208)

AUC 0.8273
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0.87 as the training set’s 1-year AUC and 0.72 as the test set’s 1-
year AUC in the signature survival study (by cox regression),
while the other method obtained 0.86 as the training set’s 1-year
AUC and 0.69 as the test set’s 1-year AUC for the gene expression
data. Therefore, in all perspectives, our signatures are stronger
than the other.

5 Conclusion and future directions

No method, which deals with data integration non-matrix
factorization, soft margin hinge loss, and gene signature together,
exists in the field of bioinformatics, whereas our work is concerned
with the process of integration of multi-omics data employing multi-
dimensional schemes such as differential expression/methylation
analysis using limma, non-negative matrix factorization, soft margin
hinge loss, and gene signature detection through the use of best gene
module discovery using dynamic linkage clustering, dynamic tree
cut method, and correlation analysis, respectively. The achievement
of a high classification accuracy of 0.8273 also represents superior

performance for our proposed algorithm. In addition, our method
outperformed the state-of-the-art methods in terms of computing
AUC. Expansion of our current approach with a deep learning
strategy to tackle the integrative problem at a single-cell level is our
future directive. In future work, we will collaborate with a wet
laboratory to validate our experimental results in order to make it
more promising.
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MAPK13

−1.910 2.1 × 10−05

Positive regulation of the cellular metabolic process (GO:BP: GO:0031325) EDN1, CSF1, CCL5, GATA3, THBS1, and TP53 −1.551 8.029 × 10−05
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*Gene Ontology (GO) has three domains: biological process (BP), cellular component (CC), and molecular function (MF).
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