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Abstract 

The so-called 3σ-rule is a simple and widely used heuristic for outlier detection. This term is a generic 

term of some statistical hypothesis tests whose test statistics are known as normalized or 

studentized residuals. The conditions, under which this rule is statistically substantiated, were 

analyzed, and the extent it applies to geodetic least-squares adjustment was investigated. Then, the 

efficiency or non-efficiency of this method was analyzed and demonstrated on the example of 

repeated observations. 
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Introduction 

Geodetic observations are sometimes contaminated by outliers, particularly if they are plentiful. At 

the starting point, an outlier should be defined. Unfortunately, this is not easy because the 

definitions found in the literature are countless. Therefore, this paper is restricted to the most 

widespread definition, which goes back to Hawkins (1980): “An outlier is an observation that deviates 
so much from other observations as to arouse suspicions that it was generated by a different 

mechanism.” This is not a precise definition because it does not say in which sense the observations 

are to fit together and when the suspicion that an observation does not fit with the rest is justified. 

Such a general definition does not exist. In geodesy, the term outlier is defined based on a statistical 

hypothesis test for the presence of gross measurement errors in the observations (Baarda 1968; 

Pope 1976; Heck 1981). Observations that are rejected by such an outlier test are called outliers. 

Therefore, an observation that is not grossly erroneous but is rejected by an outlier test can also be 

called outlier. It is sufficient that it arouses suspicion in the sense of Hawkins. 

The question of what a different mechanism is within the meaning of Hawkins remains. In geodesy, 

the model of a gross error, i.e., blunder or a large measurement error that occurs rarely and is said to 

be avoidable, is referred to. The total avoidance of gross measurement errors, however, is connected 

to a now mostly economically unjustifiable expense. Therefore, it is better to allow for a small 

number of gross errors and to make them harmless by outlier detection. 

The standard adjustment procedure by the least-squares method does not tolerate grossly erroneous 

observations (e.g., Baarda 1968). In recent years, two categories of advanced techniques for the 

treatment of observations contaminated by outliers have been developed: 
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1. Robust adjustment procedures are able to tolerate a small number of grossly erroneous 

observations without providing immediate grossly erroneous results. Many such methods 

have been developed in the last decades and their number is increasing at present [see 

Huber (1981); Hampel et al. (1986); Rousseeuw and Leroy (1987); and Wilcox (2012) for an 

overview]. The user is often confronted with the problem of choosing the proper procedure, 

if he has access to software in which such procedures are implemented at all. 

2. The already mentioned outlier tests can detect and reject some grossly erroneous 

observations under the condition that the model design is reasonably good, i.e., the partial 

redundancy of the tested observation is not too low. 

Besides the undoubted advantages of robust adjustment, the outlier tests are also used. The 

following advantages of outlier analysis are mentioned: 

 Detected outliers provide the opportunity to investigate causes of gross measurement 

errors; 

 Detected outliers can be re-measured; and 

 If the outliers were discarded from the observations then the standard adjustment software, 

which operates according to the least squares principle, can be used. 

Some robust estimation procedures like Huber's M-estimation by iterative re-weighting (Huber 1981) 

can also be viewed as a sort of outlier detection. One can recognize  detected outliers by their low 

weights. Therefore, the first two advantages apply also here. 

Robust estimation procedures can also be considered as preparatory tools for improved outlier 

testing. They should be applied in cases in which the standard outlier tests are expected to be 

insufficient [see, for instance, Koch (1999), Section 3.8.1]. The rationale for this is that robust 

estimates can be expected to be less distorted than least-squares estimates so that the robustly 

estimated residuals that correspond to outlying observations are larger than the least-squares 

residual would be; hence, the robustified outlier statistics can be expected to be more sensitive than 

the least-squares-based counterparts. 

A simple and in geodetic practice (and not only there) widespread method for outlier detection is 

known as 3σ-rule. An observation is considered as an outlier if its least squares residual exceeds 

three times its standard deviation (SD). Some authors even refer to the 3σ-rule for the definition of 

outliers, e.g. Hekimoglu and Koch (2000). 

In this paragraph, some selected scientific publications in the field of geodesy, which refer explicitly 

to the 3σ-rule, are listed. Kutterer et al. (2003) apply the 3σ-rule to the analysis of very long baseline 

interferometry (VLBI) observations. Both normalized residuals (see subsequently) as well as 

externally studentized residuals (see subsequently) are considered. If they exceed the critical value of 

3, the observation is downweighted such that its impact is practically nulled. Neitzel (2004, p. 91) 

mentions the 3σ-rule and calls it well known but does not actually recommend or apply it. Instead, 

the choice of a probability of type I decision error α is preferred (see subsequently). Featherstone 

and Morgan (2007) use the 3σ-rule for validation of the AUSGeoid98 model in Western Australia. 

Together with their SDs, 435 differences between astronomic Helmert deviations and AUSGeoid98-

derived deviations or deflections of the vertical are computed. Of these, 15 exceed the ratio of 3 and 

are rejected as outliers. van Loon (2008, p. 100) refers to the 3σ-rule as widely used and tries to 

apply it to the processing of CHAMP satellite gravity data. However, it is found that a method called 

cost-function estimation performs better. 

Because initially it remains unclear how the SD is calculated, the 3σ-rule is actually a generic term for 

several simple methods for outlier detection, as is shown in the following. The different test statistics 

used when applying the 3σ-rule are reviewed. Then, the efficiency or nonefficiency of this method is 

analyzed and demonstrated on the example of repeated observations. 



3 Postprint of J. Surv. Eng., 139(4), 157–165. DOI: 10.1061/(ASCE)SU.1943-5428.0000112 

 

Residuals in Least Squares Adjustment 

To evaluate the results of a least squares adjustment, the residuals 𝑣 are of the greatest significance. 

If an observation generates an unexpectedly large (in magnitude) residual, then the suspicion that 

the assumptions of the adjustment model do not apply is justified. The only false assumption under 

investigation in this paper is that the observations are free of outliers.  

The magnitude of a residual is unexpectedly large if it is outside of its confidence interval. This 

interval covers the true value of the residual with high probability 1-α, the confidence level. It is 

derived for each residual by its probability distribution implied by the adjustment model. Starting 

from a linear or linearized functional adjustment model (observation equations) 𝑙 = 𝐴𝑥 + 𝑒 

with the 𝑛-vector of observations 𝑙, the 𝑛-vector of observation errors 𝑒, the 𝑢-vector of adjustment 

parameters 𝑥 and the 𝑛 × 𝑢-matrix 𝐴 (matrix of observation equations) and from a stochastic 

adjustment model for normal distributed observation errors 𝑒~𝑁(0, 𝜎²𝑃−1) 
with positive definite symmetric weight matrix 𝑃 and the a priori variance factor 𝜎², the following is 

found for the least squares solution for the vector of residuals: 𝑣 = −𝑄𝑣𝑣𝑃𝑙 
the multivariate normal distribution 𝑣~𝑁(0, 𝜎²𝑄𝑣𝑣) 
with cofactor matrix of the residuals 𝑄𝑣𝑣 = 𝑃−1 − 𝐴(𝐴𝑇𝑃𝐴)−𝐴𝑇 . 
The superscript minus sign symbolizes a generalized matrix inverse. It will be requested for rank 

deficient adjustment models. If 𝐴 and 𝑃 have full column rank then the generalized matrix inverse is 

unique and coincides with the classical matrix inverse.  

If one is interested only in a single residual 𝑣𝑖, then the confidence interval is derived from the 

marginal distribution of Eq. (4), which assumes the form 𝑣𝑖~𝑁(0, 𝜎2𝑞𝑣𝑣,𝑖𝑖). 
where 𝑞𝑣𝑣,𝑖𝑖  denotes the 𝑖th diagonal element of 𝑄𝑣𝑣. The test of whether or not 𝑣𝑖 is inside its 

confidence interval corresponds to the statistical test of the null hypothesis 𝐻0: 𝐸{𝑣𝑖} = 0 

versus the alternative hypothesis 𝐻𝐴: 𝐸{𝑣𝑖} ≠ 0. 
It should be stressed that Eq. (7) refers to one outlier in the 𝑖th observation only. Therefore, the 

corresponding test cannot be expected to correctly detect multiple outliers. And in fact, it often fails 

to do so (see Hekimoglu and Koch 2000; Xu 2005; Baselga 2007, 2011). Detecting multiple outliers 

gets more complicated. 

In contrast to the calculation of the adjusted parameters 𝑥 and their SDs, for the calculation of 

confidence intervals and for hypothesis testing a distribution assumption, Eq. (2), is mandatory. 

  

(2) 

(3) 
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(7) 

(1) 
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Normalized Residuals: Gauss Test 

In geodetic adjustment textbooks (e.g. Koch 1999, Teunissen 2000), one finds for the test of 𝐻0 

versus 𝐻𝐴, the test statistic 𝑇𝑛,𝑖 = 𝑣𝑖𝜎√𝑞𝑣𝑣,𝑖𝑖  
and refers to this as individual normalized (or standardized) residual. The residual is divided by its a 

priori SD, which only has the advantage that for 𝑇𝑛,𝑖, the limits of the confidence interval are found in 

statistical lookup tables. Under the null hypothesis 𝐻0 in Eq. (6), 𝑇𝑛,𝑖 is found to be standard normally 

distributed 𝑇𝑛,𝑖|𝐻0~𝑁(0,1) 
A rationale for the choice of test statistic, Eq. (8), is that for a systematically acting gross error (bias) 

in the observation 𝑙𝑖 the corresponding test has maximum test power. Kargoll (2012) provides a 

comprehensive treatise on this topic. Besides the global or overall test, this so-called local or 

individual test is part of the famous data snooping according to Baarda (1968). 

For a confidence interval [−𝑐, 𝑐] of 𝑇𝑛,𝑖, with the cumulative distribution function Φ of 𝑁(0,1), the 

probability of test decision error or significance level is 𝛼 = 2Φ(−c) = 2 − 2Φ(c). 
Inversely, one derives 𝑐 from α using the inverse function Φ−1 𝑐 = Φ−1(1 − α/2) 
Implementations of both functions are widely accessible, e.g. in Microsoft Excel as NORMSDIST and 

NORMSINV. 

The null hypothesis 𝐻0 is to be rejected if |𝑇𝑛,𝑖| exceeds the critical value 𝑐. This value is equal to the 

quantile of the corresponding distribution. Table 1 lists some common pairs (𝛼, 𝑐). The general 

standard values for tests 𝛼 = 0.05, where 𝑇𝑛,𝑖 differs significantly from 0, and 𝛼 = 0.01, where 𝑇𝑛,𝑖 
differs highly significantly from 0, which are occasionally recommended for normalized residuals, 

yield small critical values, 𝑐. The 3σ-rule suggests directly using a critical value of 𝑐 = 3, which 

corresponds to a probability of type I decision error of  𝛼 = 2Φ(−3) = 0.0027. 
Such a very small probability of decision error 𝛼 causes 𝐻0 to be rejected rarely, if it is true, which is 

only with probability 𝛼 = 0.0027 (type I decision error). However, it is also more likely to be 

accepted even if it is false (type II decision error). This probability is denoted by β and depends on the 

size or the stochastic properties of the gross errors. Therefore, outliers remain unidentified more 

often and useful observations are discarded more rarely than, e.g., for 𝛼 = 0.05. 

In geodetic literature, β is sometimes used to denote the test power. This is the probability that a 

false 𝐻0 is rejected. Here the line of the current statistical literature is followed, where β usually 

denotes the probability of type II  decision error and 1-β denotes the test power. 

Table 1. Critical values 𝑐 for Individual Normalized Residual [Eq. (8)] 

Significance level 𝛼 0.05 0.01 0.0027 0.001 

Critical value 𝑐 for Eq. (8) 1.96 2.58 3.00 3.29 

 

(10b) 

(9) 

(10a) 

(8) 
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Internally Studentized Residuals: τ Test according to Pope 

If the variance factor σ² is not known a priori because there is insufficient experience with the 

measuring technology, then the calculation of normalized residual is impossible. But σ² can be 

replaced by an a posteriori estimated variance factor �̂�². The new test statistic 𝑇𝑠,𝑖 = 𝑣𝑖�̂� √𝑞𝑣𝑣,𝑖𝑖 
has no normal distribution and is called individual studentized residual. In statistics studentization  

means the standardization with respect to an estimate of the variance. The name is derived from the 

pseudonym Student of the statistician William Sealy Gosset. The rationale for the choice of this test 

statistic is equivalent to that of normalized residuals (Kargoll 2012). 

Depending on which estimate of σ² is computed, a different distribution of 𝑇𝑠,𝑖 is obtained. The most 

common estimate is the best quadratic unbiased estimate �̂�² = 𝑣𝑇𝑃𝑣𝑟  

with redundancy 𝑟 = 𝑛 − rank(𝐴), which for regular adjustment problems equals 𝑟 = 𝑛 − 𝑢. Here, 𝑟 > 1 is routinely assumed. Internally studentized residuals are then spoken of, and it is found that 

under 𝐻0 in Eq. (6), the test statistic Eq. (11) has a so-called τ distribution with 𝑟 − 1 degrees of 

freedom (Pope 1976; Heck 1981) 𝑇𝑠,𝑖|𝐻0~𝜏(𝑟 − 1). 
This is the distribution of a random variable (Pope 1976, p.13) 

𝜏 = √ 𝑟𝑟 − 1 + 𝑡𝑟−12 𝑡𝑟−1 

where 𝑡𝑟−1 = random variable with Student's 𝑡 distribution with 𝑟 − 1 degrees of freedom (Fig. 1). It 

is found that the τ distribution has a bounded support, i.e. the random variable τ cannot assume 

arbitrarily small or large values (Baselga 2007). Namely 

|𝜏| = |√ 𝑟𝑟 − 1 + 𝑡𝑟−12 𝑡𝑟−1| ≤ |√ 𝑟𝑡𝑟−12 𝑡𝑟−1| = √𝑟. 
Moreover, this bound is also valid if 𝐻0 is not true. This can be verified as follows: After the 

observation 𝑙𝑖 has been discarded from vector 𝑙, the variance factor σ² can be estimated according to 

Heck (1981) from the rest of the observations by �̂�𝑖′2 = 1𝑟 − 1(𝑣𝑇𝑃𝑣 − 𝑣𝑖2𝑞𝑣𝑣,𝑖𝑖) ≥ 0. 
Taking Eq. (12) into account, this can be re-written as  𝑟�̂�² ≥ 𝑣𝑖2𝑞𝑣𝑣,𝑖𝑖  
and by Eq. (11) this is equivalent to |𝑇𝑠,𝑖| ≤ √𝑟. Magnitudes of internally studentized residuals of Eq. 

(11) can therefore not exceed √𝑟, not even if arbitrarily large outliers are present in the 

observations. The application of the 3σ-rule to 𝑇𝑠,𝑖, which must now more correctly be called the 3�̂�-

rule, is therefore meaningless right from the beginning if 𝑟 ≤  9. Not the most nonsensical 

observation is detected in this way. 

Critical values for the τ distribution can be calculated from those of the 𝑡 distribution by 

(13a) 

(14) 

(12) 

(13b) 

(11) 
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𝑐 = 𝐹𝜏−1 (1 − 𝛼2 |𝑟 − 1) = √ 𝑟𝑟 − 1 + 𝑐𝑡2 𝑐𝑡  with  𝑐𝑡 = 𝐹𝑡−1 (1 − 𝛼2 |𝑟 − 1) 

where 𝐹𝜏−1 and 𝐹𝑡−1 denote the inverse cumulative distribution functions of the τ- und 𝑡-distribution. 

This relationship is a direct consequence of Eq. (13b). Critical values may be computed e.g. with 

Microsoft Excel using the function T.INV as an implementation of 𝐹𝑡−1. 

Table 2 gives some critical values. Conversely, one can calculate the significance level α, which 

belongs to 𝑐 = 3 (3�̂�-rule). It is increasing with redundancy 𝑟 (see Table 2). The larger the 

redundancy, the more likely a true 𝐻0 is rejected, i.e., the more likely useful observations are 

discarded. One could argue that with high redundancy, this loss is rather to be tolerated. The 

probability of type I error does fortunately not exceed 0.0027, but approaches this value for 

increasing 𝑟 as �̂�² in Eq. (12) approaches σ² (see Table 2). 

Finally, it should be stressed that the studentized residuals, Eq. (11), should only be used if 

normalized residuals, Eq. (8), cannot be computed due to unknown 𝜎. 

Table 2. Critical values 𝑐 for Individual Studentized Residual and Error Probabilities α When Using 3�̂�-

rule 

Redundancy 𝑟  2 3 4 5 10 15 20 25 30 40 50 

τ-Test 𝑐 for α=0.05 1.41 1.65 1.76 1.81 1.9 1.93 1.94 1.94 1.94 1.95 1.95 

 𝑐 for α=0.001 1.41 1.73 1.98 2.18 2.68 2.87 2.97 3.04 3.08 3.13 3.16 

α for c=3 0 0 0 0 0.0000 0.0004 0.0009 0.0012 0.0014 0.0017 0.0019 

t-Test 𝑐 for α=0.05 12.71 4.3 3.18 2.78 2.26 2.14 2.09 2.06 2.05 2.02 2.01 𝑐 for α=0.001 636.62 31.6 12.92 8.61 4.78 4.14 3.88 3.75 3.66 3.56 3.5 

α for c=3 0.2048 0.0955 0.0577 0.0399 0.015 0.0096 0.0074 0.0062 0.0055 0.0047 0.0042 

 

 

 

Fig. 1. Some probability density functions of the τ-distribution with 𝑟 degrees of freedom 
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Externally Studentized Residuals: t-Test 

The reason that the 3σ-rule applied to internal studentized residuals, Eq. (11), (3�̂�-rule) at 𝑟 ≤  9 

cannot detect outliers, is rooted in the fact that the residual 𝑣𝑖 is also used within the calculation of 

the estimate Eq. (12). Thus, the potentially large magnitude of the numerator is partly 

counterbalanced by a large magnitude of the denominator. The magnitude of the test statistic Eq. 

(11) cannot exceed the critical value of 3 when 𝑟 ≤  9. 

A remedy of this situation is to replace the estimate Eq. (12) with Eq. (14). The resulting test statistic 𝑇𝑠,𝑖′ = 𝑣𝑖�̂�𝑖′ √𝑞𝑣𝑣,𝑖𝑖. 
is called individual externally studentized residual. It turns out that under the condition Eq. (2), the 

numerator and denominator are stochastically independent and constitute a t statistic (Pope 1976, 

Heck 1981) 𝑇𝑠,𝑖′ |𝐻0~𝑡(𝑟 − 1). 
The calculation of the critical value is now slightly easier 𝑐 = 𝐹𝑡−1 (1 − 𝛼2 |𝑟 − 1) 

because 𝐹𝑡−1 is more widely accessible. However, this convenience comes at the cost of computing a 

new value �̂�𝑖′2 for each outlier-suspected observation 𝑙𝑖. 
Table 2 gives some 𝑐 values and the error probabilities α belonging to 𝑐 =  3. It is noticeable that at 

low redundancy, the 3�̂�-rule is connected with a very high significance level, α, even 𝛼 > 0.2. The 

reason for this is that for low redundancy 𝑇𝑠,𝑖′  assumes significantly larger values than 𝑇𝑠,𝑖, even 

without outliers. Here |𝑇𝑠,𝑖′ | > 3 is then probably not a serious indication of one or more outliers. 

The test statistics 𝑇𝑠,𝑖 and 𝑇𝑠,𝑖′  satisfy the identity 𝑟 − 1𝑇𝑠,𝑖′2 = 𝑟𝑇𝑠,𝑖2 − 1. 
If one is given, the other can be easily calculated. Both test statistics thus convey the same 

information about possible outliers. For the same significance level α and the corresponding critical 

value 𝑐 both 𝑇𝑠,𝑖 as well as 𝑇𝑠,𝑖′  bring about the same test decision for 𝐻0. But this is not valid if the 

3�̂�-rule is used, where in the first place 𝑐 is fixed instead of α: 𝐻0 is rejected more often using 𝑇𝑠,𝑖′  

than using 𝑇𝑠,𝑖. Moreover, if 𝑟 ≤ 9 then 𝐻0 can be rejected exclusively using 𝑇𝑠,𝑖′ . Here, the 3�̂�-rule 

turns out to be too simple. 

Ignorance of Outlier-Suspected Observations 

Testing the hypotheses Eq. (6) versus Eq. (7) only makes sense if it is known a priori, which 

observation might be affected by a gross measurement error and is therefore candidate for an 

outlier. In case of Eq. (7), the outlier-suspected observation is 𝑙𝑖. This knowledge should not be 

derived from the observed values themselves, otherwise, a post-hoc hypothesis, a hypothesis 

suggested by the observations, is reached. If one already detects a feature in the observations and 

then tests the hypothesis that this feature is present, this hypothesis will almost never be rejected, 

even if the feature in the observations occurred only by chance. In using the residual with the 

extreme, i.e., largest magnitude, normalized or studentized value is not allowed in Eqs. (8), (11), or 

(15). Example: Assume that a vector of five repeated observation 𝑙 = (16,10,63,17,11)𝑇 is obtained. 

By inspection of the observations it is suspected that the 3rd observation is an outlier. Simply setting 𝑖 = 3 in Eqs. (8), (11), or (15) is not allowed because Eqs. (6) and (7) and therefore also 𝑖 must be 

formulated independently of the observations. 

(15) 

(16) 
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An immediately admissible way to get knowledge of an outlier-suspected observation is only that 

irregularities occurred and were reported during the measurement, e.g., during a leveling campaign, 

and it could have been reported that the leveling rod was exceptionally not established on firm 

ground. At most, a reading that has an unusual number of zeros at the end may arouse suspicion that 

in the process of preevaluation, it was rounded inadmissibly and may therefore be grossly erroneous, 

or two observations surprisingly assume the same value, so a blunder in the processing of 

observations is suspected. 

However, if no outlier-suspected observation is known a priori then only testing the null hypothesis 

remains 𝐻0: 𝐸{𝑣1} = 0 ∧ …∧ 𝐸{𝑣𝑛} = 0 

No outliers exists in the observations. This is compared to the alternative hypothesis 𝐻𝐴: 𝐸{𝑣1} ≠ 0 ∨ …∨ 𝐸{𝑣𝑛} ≠ 0 

At least one outlier exists in the observations. The next procedure is to convert this hypothesis 

testing to a family of hypothesis tests as follows: 𝐻0(1): 𝐸{𝑣1} = 0 vs. 𝐻𝐴(1): 𝐸{𝑣1} ≠ 0 

       ⋮ 𝐻0(𝑛): 𝐸{𝑣𝑛} = 0 vs. 𝐻𝐴(𝑛): 𝐸{𝑣𝑛} ≠ 0. 
These are sequentially performed as described previously, respectively. If any 𝐻0(𝑖) is rejected then 

also 𝐻0 must be rejected because if 𝐻0(𝑖) is false, then so is 𝐻0. 

Extreme Normalized and Studentized Residuals 

Test statistics 𝑇𝑖 in the 𝑛 individual tests of the test family, Eq. (19), are preferably the normalized 

residuals, Eq. (8), or, if σ² is not known, either the internally or the externally studentized residuals, 

Eq. (11) or (15). 

If 𝑙𝑖 and 𝑙𝑗 are both outliers, then it is expected that 𝐻0(𝑖)and 𝐻0(𝑗) are both rejected, and therefore 𝐻0 

is rejected. This shows that Eqs. (17)–(19) are also valid for multiple outliers. But in this case, test 

statistics Eqs. (8), (11), and (15) are not optimal, such that the test often yields a decision error. 

Because the redundancies are equal in all n tests, the same critical value 𝑐 is obtained throughout. If 

in at least one of these tests |𝑇𝑖| > 𝑐 

then 𝐻0(𝑖) must be rejected and consequently 𝐻0 is also rejected.. This is equivalent to saying that 𝐻0 

must be rejected if 𝑇 ≔ max𝑖=1…𝑛|𝑇𝑖| > 𝑐 

holds. The new test statistic 𝑇 for testing the hypothesis 𝐻0 in Eq. (17) vs. 𝐻𝐴 in Eq. (18) is thus either 

the extreme normalized or extreme studentized residual. At this point there seems to be a 

contradiction to the remarks of the last section, where it was said that these values should not be 

used to identify the outlier-suspected observation. But this was not done here, because the 

hypotheses 𝐻0 and 𝐻𝐴, for which 𝑇 is the test statistic, were established without reference to a 

special observation. Consequently they are no post-hoc hypotheses. Strictly speaking, with 𝑇 > 𝑐 

only the hypothesis 𝐻𝐴 is accepted, but this does not yet say which observation is an outlier. 

A remaining problem is the calculation of the critical value 𝑐 of 𝑇 or vice versa with the calculation of 

the significance level α associated with 𝑐 = 3. This would require the determination of the 

probability distribution of 𝑇|𝐻0. There is no analytical solution and a numerical solution is 

(17) 

(18) 

(20) 

(19) 
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computationally demanding. With today's computer technology, computing such a solution is 

feasible (Lehmann 2012b), but from the literature a simple and popular approximation method is 

known (Pope 1976, Koch 1999). If 𝑇𝑖|𝐻0, 𝑖 = 1,… , 𝑛 are stochastically nearly independent, then 1 − 𝛼 = 𝑃(𝑇 < 𝑐|𝐻0) = 𝑃(|𝑇1| < 𝑐 ∧ …∧ |𝑇𝑛| < 𝑐|𝐻0) ≈∏𝑃(−𝑐 < 𝑇𝑖 < 𝑐|𝐻0)𝑛
𝑖=1 =∏(1 − 𝛼′)𝑛

𝑖=1 = (1 − 𝛼′)𝑛. 
if the correlations between 𝑇𝑖 and 𝑇𝑗, 𝑗 ≠ 𝑖 are neglected. Here, α’ denotes the significance level of 

the individual tests, Eq. (19), and α is the significance level of the initial test Eq. (17) versus Eq. (18). 

Baarda (1968) recommends 𝛼 = 0.001 for geodesy (see also Mierlo 1983). 

Lehmann (2012b) first tested the assumption of approximate stochastical independence of 𝑇𝑖|𝐻0. 

Based on a levelling network, it has been shown that there may be significant differences, at least if 

the redundancy is small, compared with the number of observations (𝑟 ≪ 𝑛). The test statistics 𝑇𝑖 
are never completely independent because already the numerators are stochastically dependent. 

Because 𝛼′ ≪ 1 is typically chosen, the so-called Bonferroni equation (Abdi 2007) is derived from (1 − 𝛼′)𝑛 ≈ 1 − 𝑛𝛼′ 𝛼 ≈ 𝑛𝛼′. 
Because 𝑇𝑖 has a known distribution, normal, τ, or 𝑡 distribution, the relationship between 𝑐 and α’ is 
known and the relationship between 𝑐 and α is also known with Eq. (22): The test of the extreme test 

statistic Eq. (20) corresponds approximately to the test of the individual test statistic 𝑇𝑖, where 𝑖 is 

the index, for which the maximum in (20) is attained if the significance level α is further divided by 𝑛. 

If, however, 𝑐 is fixed instead of α, as implied by the 3σ-rule or 3�̂�-rule, then this difference 

disappears. This could lead to misunderstandings. 

For extreme normalized residuals, 𝑐 = 3 corresponds to a value 𝛼’ =  0.0027 [see Eq. (10a)], and 

from Eq. (22) 𝛼 ≈ 𝑛 ∙ 0.0027 

For extreme studentized residuals one would have to multiply the appropriate α value in Table 2 by 𝑛. This variant of the outlier test is the standard variant in most nongeodetic areas of application and 

is called the Grubbs outlier test (Grubbs 1969). If was originally designed for and is mostly applied to 

the detection of outliers in repeated observations (statistical samples). 

The 3σ-rule applied to extreme test statistics, Eq. (20), means in each case that α is much larger 

again, especially for adjustment calculations with a large number of observations. Here, a true 𝐻0 is 

probably rejected, which is equivalent to the loss of useful observations. One should realize that 

already 𝑛 = 200 causes 𝛼 ≈ 0.5. 

The critical value 

Whether 𝑐 = 3 is generally suitable as a critical value is now considered. It can not be achieved in 

this way that both α and β become arbitrarily small. With a 2σ-rule more grossly erroneous 

observations were detected (β small), but also more useful observations will be lost (α large). At a 

4σ-rule the relation would be reversed. This complementary behavior with respect to  α and β is 

typical in parametric hypothesis tests. A smaller α implies a larger β and vice versa (Lehmann and 

Romano 2005, p.57). 

A compromise must surely depend upon which loss weighs more heavily (Mierlo 1983). To find the 

best compromise, the loss function premium and the profit function protection, originally introduced 

by Anscombe (1960), are applied to geodesy for the first time by Lehmann (2013). Actually already 

(21) 

(22) 
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(Lehmann 2010) and (Lehmann and Scheffler 2011) worked with the protection-term, without 

naming it so, because at that time the term was not known to the authors. Fixed values for α and β, 

as can be found in the geodetic literature (e.g. Baarda 1968) should be scrutinized in the current 

state of computing technology. 

Example: Repeated Observations 

Adjustment Model 

Consider for illustration the simplest conceivable example, namely the 𝑛-fold direct measurement of 

a scalar parameter 𝑥, i.e. 𝑢 = 1. The system (1) assumes the form 𝑙 = (1⋮1) 𝑥 + 𝑒 

with the stochastic model, Eq. (2), belonging to 𝐻0 in the form 𝐻0: 𝑒~𝑁(0, 𝜎2𝐼) 
where 𝜎2 is based on long-standing experiences with this type of measurement and is therefore 

assumed known. From Eq. (5) 

𝑄𝑣𝑣 = 1𝑛(𝑛 − 1  −1 −1 𝑛 − 1 …  −1⋱ ⋮⋮ ⋱−1 … ⋱  −1 −1 𝑛 − 1) 

and consequently 𝑞𝑣𝑣,𝑖𝑖 = (𝑛 − 1)/𝑛. 

Null Hypothesis Is True 

Since an outlier-suspected observation is not known a priori, the extreme normalized residual is used 

as the test statistic. The relationship between α and c is established approximately by using Eqs. (10) 

and (22): 𝛼 ≈ 2𝑛Φ(−𝑐) 
By the method of Lehmann (2012b), an accurate calculation can also be performed. Fig. 2 shows this 

for 𝑛 = 3. The null hypothesis 𝐻0 is rejected, whenever |𝑇𝑛,1| > 𝑐 or |𝑇𝑛,2| > 𝑐 or |𝑇𝑛,3| > 𝑐, where 

because of 𝑣1 + 𝑣2 + 𝑣3 = 0 |𝑇𝑛,3| = |𝑣3|𝜎√𝑞𝑣𝑣,𝑖𝑖 = |𝑣1 + 𝑣2|𝜎√2/3 = |𝑇𝑛,1 + 𝑇𝑛,2| 
and 1 − 𝛼 is the probability, that (𝑇𝑛,1, 𝑇𝑛,2) falls into the region of acceptance (white area in Fig. 2) 𝛼 = 1 −∬ 𝜑region of acceptance (𝑇𝑛,1, 𝑇𝑛,2)𝑑𝑇𝑛,2𝑑𝑇𝑛,1 

Here, 𝜑 is the probability density of (𝑇𝑛,1 𝑇𝑛,2), which can easily be deduced from Eqs. (4) and (24) (𝑇𝑛,1 𝑇𝑛,2) |𝐻0~𝑁(0, ( 1 −0.5−0.5 1 )). 
The integral in Eq. (26) can be easily calculated for this case with a numerical cubature formula. In 

higher dimensions, the calculation requires a Monte Carlo integration (Lehmann 2012b). Fig. 3 shows 

that there are no significant differences between Eq. (25) and the cubature, Eq. (26), so that the 

approximation, Eqs. (21) and (22), practically suffices here. This may be surprising because the 

correlation between the test statistics exhibits a correlation coefficient of -0.5, which does not seem 

to  be negligible. 

(23) 

(24) 

(26) 

(25) 
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Fig. 2. Test for three repeated observations: 𝐻0 is rejected whenever |𝑇𝑛,1| or |𝑇𝑛,2| or |𝑇𝑛,1 + 𝑇𝑛,2| 
exceed the critical value 𝑐. The ellipses represent the contour lines of φ in Eq. (26). 

 

 

Fig. 3. Relationship between the probability of type I error 𝛼 and the critical value 𝑐 for 𝑛 = 3, 10 und 

30 repeated observations; dashed curves: approximation according to Eq. (25); solid curves: 

numerical calculation for 𝑛=3 by cubature of Eq. (26), otherwise by Monte Carlo integration 
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Alternative Hypothesis Is True: Gross Errors Act Systematically 

The relationship between the probability of type II decision error β and the critical value 𝑐 is not as 

easily established. In particular, a specific alternative hypothesis 𝐻𝐴 is needed. This should generally 

be 𝐻𝐴: At least one outlier is present in the observations. 

This hypothesis is converted into a family of 𝑛 hypotheses 

 𝐻𝐴(𝑖): The observation 𝑙𝑖 is an outlier, 𝑖 = 1,… , 𝑛, 
of which at least one must be accepted to be able to reject 𝐻0, i.e., to have one or more outliers 

detected. For each 𝐻𝐴(𝑖) the appropriate test statistic is the corresponding 𝑇𝑛,𝑖 in Eq. (8). 

The variable 𝛽 is now the probability that 𝐻0 is accepted, although at least one 𝐻𝐴(𝑖) is true. Under 

the already previously used assumption of the approximate statistical independence of the test 

statistics 𝑇𝑛,𝑖, 𝑖 = 1,… , 𝑛, which may also be valid under 𝐻𝐴, the following is obtained: 

𝛽 = 𝑃(𝑇 < 𝑐|𝐻𝐴) ≈∏𝑃(|𝑇𝑛,𝑖| < 𝑐|𝐻𝐴)𝑛
𝑖=1 =∏(1 − 𝑃(|𝑇𝑛,𝑖| > 𝑐|𝐻𝐴)) .𝑛

𝑖=1  

where 𝑇 = extreme normalized residual. Now, 𝑇𝑛,𝑖 is assumed to be large in magnitude mainly due to 𝑙𝑖 being an outlier. This motivates the approximation 𝑃(|𝑇𝑛,𝑖| > 𝑐|𝐻𝐴) ≈ 𝑃 (|𝑇𝑛,𝑖| > 𝑐|𝐻𝐴(𝑖)). 
The latter probability is the same for each repeated observation. Therefore, it is sufficient to 

compute it for the first observation (𝑖 = 1) only 𝑃 (|𝑇𝑛,𝑖| > 𝑐|𝐻𝐴(𝑖)) = 𝑃 (|𝑇𝑛,1| > 𝑐|𝐻𝐴(1)) 

 This is summarized as 

𝛽 ≈∏(1 − 𝑃 (|𝑇𝑛,1| > 𝑐|𝐻𝐴(1))) =𝑛
𝑖=1 (𝑃 (|𝑇𝑛,1| < 𝑐|𝐻𝐴(1)))𝑛 

and using 𝑞𝑣𝑣,𝑖𝑖 = (𝑛 − 1)/𝑛, it is found that 𝛽 ≈ 𝑃 (|𝑣1| < 𝜎𝑐√(𝑛 − 1)/𝑛|𝐻𝐴(1))𝑛. 
As an alternative to 𝐻0 in Eq. (23), the first observation was falsified by an additional non-random, 

i.e. systematically acting, gross error 𝑒𝑔. This is the standard assumption in outlier detection, e.g. 

(Hekimoglu et al. 2012). Accordingly, the following is formulated: 

𝐻𝐴(1): 𝑒~𝑁( (
𝑒𝑔0⋮0 ) , 𝜎2𝐼) . 

From that, the following is found with Eq. (3): 

𝑣|𝐻𝐴(1)~𝑁(𝑒𝑔𝑛 (1 − 𝑛1⋮1 ) , 𝜎2𝑄𝑣𝑣). 
To calculate the probability β in Eq. (27), the marginal distribution of 𝑣 with respect to 𝑣1is needed. 

This one reads directly from the joint distribution of the components of the vector 𝑣 

(27a) 

(28) 

(27b) 
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𝑣1|𝐻𝐴(1)~𝑁(1 − 𝑛𝑛 𝑒𝑔, 𝑛 − 1𝑛 𝜎2) 

and hence 

𝑇𝑛,1|𝐻𝐴(1)~𝑁(−√𝑛 − 1𝑛 𝑒𝑔𝜎 , 1). 
These distributions are actually the same for all individual test statistics, thus independent of the 

index 𝑖 of the outlier-suspected observation. Finally, the following is deduced from Eq. (27a) 

𝛽 = 𝛽(𝑐) ≈ 𝑃 (−𝑐 < 𝑇𝑛,1 < 𝑐|𝐻𝐴(1))𝑛 = [𝛷(√𝑛 − 1𝑛 𝑒𝑔𝜎 + 𝑐) − 𝛷(√𝑛 − 1𝑛 𝑒𝑔𝜎 − 𝑐)]𝑛 . 
Fig. 4 shows some functions 𝛽(𝑐). First it is understood that the size of the gross error 𝑒𝑔 has an 

effect on β, (see Hekimoglu and Koch 2000). Surprising, perhaps, is how large this influence actually 

is. Example: For 𝑛 = 10 observations, with the 3σ-rule , it is found that 𝛼 = 0.027 in Fig. 3 and 𝛽 = 0.82 for 𝑒𝑔 = 𝜎, 𝛽 = 0.0031 for 𝑒𝑔 = 3𝜎 as well as 𝛽 = 1.2 ∙ 10−14 for 𝑒𝑔 = 5𝜎 in Fig. 4. Fig. 4 

does not display the last value. Small gross errors are predictive of an acceptance of 𝐻0 and are thus 

rarely detected. On the other hand, gross errors of a size of 3σ and larger are almost certainly 

detected in a practically not too small set of observations. 

 

Fig. 4. Relationship between the probability of type II error 𝛽 and the critical value 𝑐 for 𝑛 = 3, 10 und 

30 repeated observations; solid curves: 𝑒𝑔 = 𝜎; dashed curves: 𝑒𝑔 = 3𝜎; dotted curves: 𝑒𝑔 = 5𝜎  

In comparison with Fig. 3, Fig. 4 also shows the following: 

1. The variable 𝛽 depends on 𝑐 in the opposite way as α does: 𝛽(𝑐) increases monotonically. An 

increase of 𝑐, i.e. in the direction of a 4σ-rule, will therefore not only detect good 

observations as outliers less frequently, but will also leave grossly erroneous observations 

more often undetected, with a decrease of 𝑐 accordingly reversed. 

2. Also the dependence of 𝑛 is reversed for β. More observations cause a grossly erroneous 

observation to go less probably undetected (Hekimoglu and Koch 2000). This is due to the 

exponent 𝑛 in Eqs. (27) and (29). The more individual tests are performed, the less probable 

it is that none reject 𝐻0.  

(29) 
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Alternative Hypothesis Is True: Gross Errors Act Randomly 

Alternatively, the case that the gross errors act randomly, i.e., by repeating the observations, they 

assume a different value and possibly a different algebraic sign is also considered. The basic 

procedure remains the same as in the previous subsection. The alternative hypothesis 𝐻𝐴(𝑖) does not 

mean that 𝑙𝑖 is shifted in expectation by 𝑒𝑔 anymore, but has an increased variance. According to the 

law of variance propagation, the previous variance 𝜎² is added to the variance 𝜎𝑔2 of gross error 𝑒𝑔. 

Eq. (28) is replaced by 

𝐻𝐴(1): 𝑒~𝑁( 
 0,(𝜎2 + 𝜎𝑔2 00 𝜎2 ⋯ 0⋱ ⋮⋮ ⋱0 ⋯ ⋱ 00 𝜎2)) 

 . 
From that, the following is found with Eq. (3): 

𝑣|𝐻𝐴(1)~𝑁( 
 0, 𝜎2𝑄𝑣𝑣 + 𝜎𝑔2𝑛2((𝑛 − 1)2 1 − 𝑛  … 1 − 𝑛1 − 𝑛⋮1 − 𝑛 1  … 1⋮ ⋱ ⋮1  … 1 )) 

 . 
The marginal distribution of 𝑣 with respect to 𝑣1 assumes the form 𝑣1|𝐻𝐴(1)~𝑁(0, 𝑛 − 1𝑛 𝜎2 + (𝑛 − 1𝑛 )2 𝜎𝑔2) 

and hence 𝑇𝑛,1|𝐻𝐴(1)~𝑁(0,1 + (𝑛 − 1)𝜎𝑔2𝑛𝜎2 ). 
These distributions are again the same for all individual test statistics, thus independent of the index 𝑖 of the outlier-suspected observation. Finally, the following is deduced from Eq. (27a) 

𝛽 = 𝛽(𝑐) ≈ 𝑃 (−𝑐 < 𝑇𝑛,1 < 𝑐|𝐻𝐴(1))𝑛 = [2Φ(𝑐 (1 + (𝑛 − 1)𝜎𝑔2𝑛𝜎2 )−1/2) − 1]𝑛. 
Fig. 5 shows some functions 𝛽(𝑐). Of course, the magnitude of the gross error again influences 𝛽. 

However, the impact is now smaller than before. Even quite sizable gross errors cannot be detected 

very reliably. 

Example 

For 𝑛 = 10 observations for the 3σ-rule now 𝛽 = 0.74 for 𝜎𝑔 = 𝜎, 𝛽 = 0.021 for 𝜎𝑔 = 3𝜎 as well as 𝛽 = 0.00046 for 𝜎𝑔 = 5𝜎 in Fig. 5. This, in comparison to Fig. 4, is a disappointing result. Otherwise, 

qualitatively, the same points apply that were made for Fig. 4. 

 

(30) 
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Fig. 5. Relationship between the probability of type II error 𝛽 and the critical value c for 𝑛 = 3, 10 und 

30 repeated observations; solid curves: 𝜎𝑔 = 𝜎; dashed curves: 𝜎𝑔 = 3𝜎; dotted curves: 𝜎𝑔 = 5𝜎 

Conclusions 

For gross measurement errors, which act randomly, thus at an imaginary repetition of the 

measurement process do not reproduce their magnitude and sign, the 3σ or similar rules seem to be 

working poorly. This has been shown in the example at the end of the last section. One explanation 

lies in the fact that the applied test statistic, Eq. (8), is not optimal for the alternative hypothesis, Eq. 

(30), but only for Eq. (28). This argument also applies to the other test statistics used, i.e., Eqs. (11), 

(15), and (20), and therefore, the same behavior is also expected there.  

It is the author’s opinion that the model of randomly acting gross errors is more relevant to geodetic 

practice [see Lehmann (2013) for a discussion]. Also, in this case, optimum test statistics in terms of 

the most powerful test would be able to be found. Unfortunately, they are much more complicated 

to calculate and numerically expensive. In the period from which the methodology for outlier 

detection originates, this was excluded because of the low processing power of available computers. 

If sticking to a simple rule for outlier detection such as the 3σ-rule is wanted, losses have to be 

accepted due to decision errors in outlier detection. Useful observations are lost, and, in fact, grossly 

erroneous observations remain undetected. 

It can be definitely seen in Figs. 3–5 that an optimal critical value 𝑐 cannot be determined 

irrespective of the number of observations 𝑛. In fact, 𝑐 must be increasing with 𝑛. In current geodetic 

practice, adjustment problems with large amounts of observations are often found. The application 

of the 3σ-rule here means the loss of many useful observations. 

Often, the situation is not as dramatic as it seems now, and here is why. Consider a properly 

formulated adjustment problem, Eqs. (1) and (2). The number of normalized residuals with a 

magnitude greater than 3 will, by Eqs. (9) and (10b), on average amount to 0.0027 × 𝑛, i.e., on 

average, approximately 0.27% of the useful observations is lost. This simple observation provides 

only a distorted picture because all observations are not immediately discarded at once, and the test 

is applied iteratively. After each test, only the one with the extreme normalized residual is discarded. 

A more accurate calculation is complicated. 

It would be ideal if for each geodetic adjustment model, a realistic alternative hypothesis could be 

established and tested using an optimal test statistic, i.e., optimal in terms of the most powerful test 

or even better in terms of minimum premium and maximum protection. A very interesting possibility 
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is to assign a scale-contaminated normal distribution to the observation errors. This is basically a 

normal distribution but with a low probability contaminated by gross errors acting randomly 

(Lehmann 2012a). Critical values cannot be found in statistical tables. They cannot even be calculated 

using functions from standard statistical software libraries, and a computationally demanding Monte 

Carlo method is needed. The effort is nonetheless worthwhile because optimal test statistics can best 

distinguish between useful observations and outliers. 
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