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4-D Tensor Voting Motion Segmentation for Obstacle Detection in

Autonomous Guided Vehicle
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B.P 105 78153 Le Chesnay Cedex France

Email: {firstname}.{lastname}@inria.fr

Abstract— Creating an obstacle detection system is an impor-
tant challenge to improve safety for road vehicles. A way to meet
the industrial cost requirements is to gather a monocular vision
sensor. This paper tackles this problem and defines an highly
parallelisable image motion segmentation method for taking
into account the current evolution of multi processor computer
technology. A complete and modular solution is proposed, based
on the Tensor Voting framework extended to the 4D space (x, y,
dx, dy), where surfaces describe homogeneous moving areas in
the image plan. Watershed segmentation is applied on the result
to obtain closed boundaries. Cells are then clustered and labeled
with respect to planar parallax rigidity constraints. A visual
odometry method, based on texture learning and tracking, is
used to estimate residual parallax displacement.

I. INTRODUCTION

A. Context

This contribution addresses moving obstacle detection

for intelligent transport systems with a monocular video

sensor. Automotive manufacturers integrate more and more

assistance systems in their new cars, like Automatic Cruise

Control, Lane Crossing Detection or obstacle location.

Perception issues for Autonomous Guided Vehicle are the

free space estimation and the moving obstacles detection.

Depending on used sensor, such systems will have different

price, accuracy and speed characteristics. On one hand,

there are active sensors with range-finders. Among them,

lasers provide high spatial resolutions data at high scanning

speeds, but are too expensive, whereas cheaper sensors like

sonars, are limited to parking applications owing to their

range. Furthermore, the presence of several active sensors in

the same environment may disrupts the measure acquisition.

On the other hand, video sensors appear well adapted for

automotive applications due to the rich 2-D information

contained in a single image and the 3-D information inferred

by two images. Up to date, research has mostly focused on

the detection of moving objects either from fix cameras or

from mobile ones in static and highly constrained dynamic

scenes [1][2].

The visible motion in an image sequence is due to

the 3-D camera displacement (the ego-motion) and some

objects’motion. In order to detect moving obstacles, various

approaches compensate the ego-motion, then segment the

residual motion [4]. But numerical estimations by using

motion models may provide some noise. Thus, other

methods prefer first to segment the global image motion and

then apply rigid geometric constraints to identify moving

objects [14]. Although monocular systems based on optical

flow algorithms have been studied [3], the accuracy of flow

fields and its impact is never discussed despite noisy or

sparse estimation. Furthermore, usual optical flow filters [5]

are not efficient in the context of obstacle detection,

because motion models induces a smoothing of mobile

obstacle displacements. Nevertheless, [6] provided an

original approach, using the Tensor Voting framework [7],

to evaluate the accuracy of the velocity values according

to their neighborhood. Based on this work, we developed

an obstacle detection solution using different velocity

fields to improve the robustness of our method. Unlike

most of the motion-based image segmentation methods,

this work addresses the difficult case of radial image motion.

Section II-A presents the Tensor Voting framework and its

use in a specific 4-D space to estimate input velocity data

and perform motion segmentation. Section II-B deals with a

watershed approach to provide closed boundaries. Then, III-

A discusses about the planar parallax rigidity constraint

to differentiate moving objects from static ones. III-B

addresses a solution to estimate the camera motion in order

to recover parallax displacements. In section III-C, the

rigidity constraint is applied on the segmentation supplied

by the watershed. At last, conclusions and directions for

future works are given in section IV.

II. 2D MOTION SEGMENTATION

A. Tensor Voting

The Tensor Voting is a unified framework which has been

developed by G. Medioni since the 90’s. This formalism,

based on tensor calculus for data representation, and non-

linear voting for communication, allows identification of

geometrical structures from sparse and noisy N-D data. The

method is non-iterative and can be processed in O(1) by

parallel implementation. The N-dimensional approach is an

extension of the two-dimensional one.

1) Overview: The Tensor Voting attempt to recover,

from a set of sparse and isotropic data, the geometrical

structure such as curve elements and points in a 2-D

space. The idea is to use the neighborhood layout of each

considered input site to constrained its identification. The



Fig. 1. Decay function of a stick tensor.

second order representation, in the form of a second order,

symmetric, non-negative definite tensor, allows to encode

the structural information of the input data, and to propagate

this information according to a simple accumulation process.

A 2D tensor T is equivalent to a 2x2 matrix, and

describes an ellipse. It can be decomposed with the

following equation:

T = λ1ê1êT
1 + λ2ê2êT

2

= (λ1 −λ2) ê1êT
1 + λ2

(
ê1êT

1 + ê2êT
2

)
,

(1)

where λi are the eigenvalues in decreasing order (λ i ≥ λi+1)

and êi the corresponding eigenvectors. The two terms

correspond to elementary 2D tensors: the first one is a

degenerate elongated tensor and the second is an isotropic

one. They are respectively named stick tensor and ball

tensor. Input data are encoded according to their isotropy by

such unitary tensors. Points of a curve are coded by stick

tensors belonging to the normal of the considered curve

whereas points without structural information are described

by ball tensors.

The communication step involves a voter and a receiver.

As represented in Fig. 2, the voter infers on the receiver

according to the distance l between them, and, for the

stick tensor, with respect to its relative orientation θ with

the receiver. Each input site communicates its structural

information, coded with a tensor, to its neighborhood

through a predefined voting field. All tensor voting fields

derive from the stick one whose scope is defined with a

decay function (Fig. 1) such as:

DF (θ , l) = e
(

s(θ , l)2 + ck (θ , l)2

σ2
)

, (2)

s(θ , l) =
θ l

sin(θ )
, k (θ , l) =

2sin(θ )

l
,

with s(θ , l) the length of the arc between the voter and

the receiver and k (θ , l) its curvature. σ is the only free

Fig. 2. Voting from a stick tensor located at the origin and aligned with
the y-axis.

parameter of Tensor Voting, defining the scale of voting.

c is a predefined constant, optimized not to give a round

corner an advantage over a right angle.

Thus, the vote of a stick tensor, located at the origin

O and aligned with the y-axis, to any site P (Fig. 2), is

expressed by:

S(θ ) = DF(θ )

[
−sin(2θ )

cos(θ )

]
[
−sin(2θ ) cos(θ )

]
. (3)

The 2-D ball voting field is obtained by integrating over

θ the vote of the 2-D stick tensor. Only the distance with

the receiver infers on the casted information. At the end of

the communication step, resulting tensors are specialized by

the sum of their neighbors’vote. The geometrical structures

encoded are obtained with the decomposition (1).

N-dimension Tensor Voting is derived from the 2-D

framework: each additional dimension brings a new

structural element (the surface in 3-D, the volume in

4-D, ...) to be coded. Elements of a N-D space are therefore

encoded by tensors of the same dimension which can be

decomposed in N-1 weighted elementary tensors. The N-D

ball voting field is computed by integrating the 2-D stick

voting field over all degrees of freedom.

2) 4D Tensor Voting: Our work is based on [6] which

presents an original approach for motion grouping by

Tensor Voting. Let us consider the 4-D space (x,y,dx,dy),
where (dx,dy)

T is the velocity vector of the pixel located

at (x,y). In such space, image areas with coherent motion

are described as surfaces, and can be identified by Tensor

Voting. As in 2D, encoding unoriented input data with ball

tensors and applying a voting step, specialize all tensors

according to the layout of their neighborhood.

The decomposition of a generic tensor in 4-D is given by:

T = (λ1 −λ2)ê1êT
1 +(λ2 −λ3)(ê1êT

1 + ê2êT
2 )

+(λ3 −λ4)(ê1êT
1 + ê2êT

2 + ê3êT
3 )

+λ4(ê1êT
1 + ê2êT

2 + ê3êT
3 + ê4êT

4 ),
(4)

where (λ2 −λ3) is the coefficient attributed to the elementary

S-Plate tensor
(
ê2êT

2 + ê1êT
1

)
and (λ3 −λ4) the coefficient



Fig. 3. From left to right, the current image, the correspondent velocity field image (with the color map on the bottom-right corner) and the surface
saliency map from 4-D Tensor Voting.

to the elementary C-Plate tensor
(
ê1êT

1 + ê2êT
2 + ê3êT

3

)
,

which respectively describe surface and curve in the space

(x,y,dx,dy).

3) Motion segmentation: From two consecutive frames,

we first process an optical flow algorithm to obtain 4-D

input data (x,y,dx,dy). Each site is coded with a ball

tensor and accumulates the votes cast at its location.

After decomposition, the analysis of eigenvalues allows to

estimate the confidence with which input points belong to a

surface, so to an homogeneous motion area. Fig. 3 displays

a surface saliency image given by Tensor Voting process.

Two points which are close in the image plan, but

belonging to different moving areas, become distant in the

space (x,y,dx,dy) due to their different velocity. Therefore

tensors from different moving areas have no impact on each

other. At the end of the communication process, specialized

tensors are decomposed to weighted elementary tensors

according to (4). Inverse of the saliency of S-Plate tensors

and the saliency of C-Plate tensors, coding respectively

surface and curve information, are both used to draw

the saliency map (Fig. 3) and to segment the image

motion.

4) Accuracy motion estimation: Obstacle detection meth-

ods based on image motion are highly dependent on the

implemented optical flow method, which is usually tuned

for one specific context. 4-D Tensor Voting can assess the

relevance of a point P(x,y,dx,dy) according to its belonging

to the surface formed by its neighborhood. Therefore, among

several velocity values (dx,dy) for one input site (x,y), 4-D

Tensor Voting allows to estimate which one is closest to the

true motion. In practice, we have selected a pyramidal Lucas

and Kanadé algorithm providing three velocity values per

site. The voting step determines the best result as represented

in Fig. 4. Nevertheless, the Tensor Voting does not supply a

closed contour image but a confidence value, for each pixel,

to its belonging to an homogeneous motion area.

B. Boundary closing

Considering the gray level value of a pixel as an height, an

image can be seen as a topographical relief. The watershed

segmentation provides closed boundaries by extracting the

basin junction lines after flooding the relief from seeds.

Usually, seeds are located at local minimas, so the method

may induce an over-segmentation (Fig. 5). A filtering step

has to be performed to avoid it.

Developed in the mathematical morphology framework,

attribute opening (closing) is an efficient solution for

area opening (closing). Whereas the classic operation is

constrained by the shape of a structural element, attributes

openings (closings) allow to filter a region according to

some topographical criteria such as the height, the area

or the volume. The process can use a tree-based image

representation, where each node in the tree stands for a

connected component and where the edges are weighted

with the value of the specific attribute associated to the

connected component (Fig. 6).

In order to use efficiently the information provided by

the Tensor Voting, the watershed segmentation is applied

on the inverse of the surface saliency map. Thus, seeds

are located at the most confident points in each motion

areas. The occlusions induced by the camera motion and

the lake of texture, provide some error in the optical flow

estimation. In our application, the high frequency noise

is first removed by an attribute opening using a criteria

of small area. Then, seeds belonging to the same moving

area are merged using an attribute of type height. Finally,

a wathershed segmentation is performed on the filtered

saliency map to obtain closed contours.

Fig. 5. Watershed segmentation (right) from colored seeds (left). The
watersheds are in black.

Fig. 6. Filtering step with attribute openings (height1). Original 1D signal
(left) and result (right).



Fig. 4. Accurate motion estimation obtained (bottom) from Tensor Voting on three first estimations (top).

III. 2D MOTION GROUPING AND CLASSIFICATION

After the filtering step and the watershed segmentation

has been applied, a slight over-segmentation persists, so

a clustering and labeling step is necessary. Objects which

are static in the 3-D environment are however moving in

the 2-D image plane due to the ego-motion, this prevents

to differentiate correctly moving and static obstacles. [14]

presents some parallax-based constraints that are used in the

next subsection. It deals with rigidity constraints on pairs

of points to 3-D scene analysis in the presence of camera

motion.

A. Planar parallax constraint

Let us consider the coordinates
→
P= (X ,Y,Z)T and

→

P′=
(X ′,Y ′,Z′)T of a point P of the scene, expressed in two

different camera systems.
→
p and

→

p′ are their projections in

the corresponding image planes, I1 and I2. Let Π be an

arbitrary static plane, dπ and d ′
π its distances to the camera

centers, and
→
pw the projection of

→

p′ in I1 according to the

homography induced by Π. To derive the parallax constraint

on each point P, we assume the decomposition of the image

motion
→
u into an homography

→
uπ and a residual parallax

motion
→
µ [15] such as:

→
u=

→
uπ +

→
µ , (5)

→
µ= −γ

TZ

d′
π

(
→
pw −

→
e
)

,

where
→
e is the epipole in the first image, TZ the z-translation

from the first camera to the second one, and γ the 3-D

projective structure of
→
P with respect to Π (γ = H

Z
, with H

the distance of
→
P from the plane Π). Note that the parallax

displacements are the relative image motions of objects

induced by the camera translations (rotations do not induce

any parallax displacement).

Let us consider two points, P1 and P2, belonging to

the same solid object, and their image projection,
→
p1 and

→
p2. The relation between them can be expressed by:

→
µ1 γ2−

→
µ2 γ1 = γ1γ2

TZ

d′
π

(
→

pw2 −
→

pw1

)

(6)

removing the epipole from the formula. Since γ 1γ2
TZ

d′π
is

a scalar,
(
→
µ1 γ2−

→
µ2 γ1

)

and
(

→
pw2 −

→
pw1

)

are collinear.

Therefore,

(
→
µ1 γ2−

→
µ2 γ1

)T (

∆
→
pw

)

⊥
= 0, (7)

where
→
v⊥ is a vector perpendicular to

→
v and ∆

→
pw=(

→
pw2 −

→
pw1

)

. The temporal invariant relationship γ2/γ1 can

easily be derived from (7),

γ2

γ1

=

→
µ2

T (

∆
→
pw

)

⊥
→
µ1

T
(

∆
→
pw

)

⊥

. (8)

Thus, (8) provides a parallax-based rigidity constraint, al-

lowing to verify over three frames if two points belong to

the same solid object.

B. Visual odometry

According to (5), the planar parallax constraint requires

to compute the parallax displacement of each image point.

Thus, we propose a visual odometry method, inspired

by [11], looking for the homography induced by the

projection of the road plane over two frames.



Fig. 7. Texture learning stage

Assuming known position of the camera with the road

plane, a 3-D patch is projected in the image. We use the

pinhole camera model to describe the relationship between
→
P (X ,Y,Z,1)T

, a point in the camera referential system ,

and
→
p (u,v,1)T

its projection in the image plane such as:

⎛

⎝

u

v

1

⎞

⎠ =
1

Z

⎛

⎝

f ku 0 x0 0

0 f kv y0 0

0 0 1 0

⎞

⎠

︸ ︷︷ ︸

K

⎛

⎜
⎜
⎝

X

Y

Z

1

⎞

⎟
⎟
⎠

, (9)

with f the focal length, (u0 v0)
T

the image coordinates

of the intersection of the optical axis of the lens with the

image plane, ku and kv the scale factors. These parameters

are obtained by off-line calibration. The texture is directly

mapped on the patch projection using current frame pixels.

Then, a second stage looks for the 3-D transformation

which matches, in the next frame, the patch mapped in

the current one. Since the road is assumed to be locally

plane, the transformation is a warp between two planar

patches describing the camera 3D motion and projection.

Such a perspective projection, restricted to coplanar points,

can be expressed as an homography which is a projective

transformation between two planes [10].

H = K (R+

→
t

→
n

T

d
) K

−1 . (10)

where T(R,t) describes the camera motion, with R the 3x3

rotation matrix and
→
t the translation vector. d is the distance

from the camera to the road plane and
→
n a normal of

this plane. At each iteration, a correlation is performed

between the warped patch and the current frame patch, using

a cost function applied on the red, green and blue image

components:

fcost =
1

3N

N

∑
i=1

3

∑
j=1

(
∣
∣ppatch(i j)− pimage(i j)

∣
∣) , (11)

with N denotes the number of pixel, p patch(i) the ith pixel

value of the warped patch, p image(i) its correspondent located
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Fig. 8. Vehicle path estimation from a RTK GPS in green (reference) and
from the presented visual odometry method in red.

at the same coordinates in the next image and j the color

component. A simple gradient descent method is applied

to minimize the fcost cost function and find the camera

displacement.

C. Grouping and labeling

Acording to (10) and the camera motion T (R,t) provided

by the visual odometry, the homography induced by any

virtual static planar surface can be computed. As some

plan projections are not defined in the whole image, their

homography has no meaning for all pixels for which the

residual parallax displacements cannot compute using (5).

Therefore, we only consider the plan perpendicular to the

focal axis and located at infinity, whose homography is

H = K R K
−1 .

The computation for all pixels would be time consuming,

so the constraint is checked with the few ones selected with

respect to their saliency, provided by the 4-D Tensor Voting.

In such way, only relevant velocities get involved in this

step, and the overall approach remains robust. Then, cells

are clustering according to a threshold applied on the rigidity

constraint result (8). By assuming static the lower part of

the picture, we can continuously discriminate moving objects

from static ones.

IV. CONCLUSION

In this paper, we presented an image-motion-based

approach for moving obstacle detection from one embedded

Fig. 10. Estimation of the parallax-based rigidity constraint with respect
to the point circled in red. In black, the points consistent with the reference
one according to the constraint given by (8).



Fig. 9. Correct patch tracking sequence (we can notice that very few texture information enable a good tracking)

Fig. 11. Obstacle detection though three successive frames in the case of a radial motion.

monocular vision sensor. The 4-D Tensor Voting allows to

appraise many set of input data together, to select the best

velocity value for each image coordinate. Furthermore, a

single parameter enable to tune the whole approach: the

scope which is the only free parameter of the Tensor Voting.

Its value is directly related to the topography magnitude

of the resulting surface saliency map. Thus, the watershed

associated to the attribute filtering, is particularly well-

adapted to perform the closing stage. The visual odometry,

used for clustering cells ensuing, has been evaluate with a

centimetric RTK GPS, as illustrated fig. 8.

The method offers a robust solution to the problem of

dynamic scene perception for autonomous guided vehicles.

It has been successfully assessed in different situations

including both translational and radial motions. In this last

case, obstacles have been detected up to 60 meters with

an image resolution of 640x480. As the Tensor Voting

process is highly paralellisable and can be executed with a

complexity of O(1) in parallel architectures, we are currently

working on integrating all the process on graphic chipset to

a frame rate execution. Acquisition frequency depends on

relative autonomous vehicle and obstacle speeds, our goal

is to provide a system working at 15 Hz.
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