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del Mar (CSIC), Barcelona, Spain

(Manuscript received 4 June 2006; in final form 20 May 2007)

ABSTRACT
We consider the relative advantages of two advanced data assimilation systems, 4-D-Var and ensemble Kalman filter
(EnKF), currently in use or under consideration for operational implementation. With the Lorenz model, we explore the
impact of tuning assimilation parameters such as the assimilation window length and background error covariance in
4-D-Var, variance inflation in EnKF, and the effect of model errors and reduced observation coverage. For short assim-
ilation windows EnKF gives more accurate analyses. Both systems reach similar levels of accuracy if long windows
are used for 4-D-Var. For infrequent observations, when ensemble perturbations grow non-linearly and become non-
Gaussian, 4-D-Var attains lower errors than EnKF. If the model is imperfect, the 4-D-Var with long windows requires
weak constraint. Similar results are obtained with a quasi-geostrophic channel model. EnKF experiments made with the
primitive equations SPEEDY model provide comparisons with 3-D-Var and guidance on model error and ‘observation
localization’. Results obtained using operational models and both simulated and real observations indicate that currently
EnKF is becoming competitive with 4-D-Var, and that the experience acquired with each of these methods can be used
to improve the other. A table summarizes the pros and cons of the two methods.

1. Introduction

The data assimilation community is at a transition point,
with a choice between variational methods, for which there
is considerable experience, and ensemble methods, which are
relatively new. Many centres use 3-D-Var (e.g. Parrish and
Derber, 1992), which is an economical and accurate sta-
tistical interpolation scheme that does not include the ef-
fects of ‘errors of the day’, although there are several pro-
posed 3-D-Var schemes that incorporate some aspects of flow-
dependent forecast errors (e.g. Riishojgaard, 1998; Corazza
et al., 2002, http://ams.confex.com/ams/pdfpapers/28755.pdf;
De Pondeca et al., 2006, www.emc.ncep.noaa.gov/officenotes/
newernotes/on452.pdf). Several centres (ECMWF, France, UK,
Japan, Canada) have switched to 4-D-Var (e.g. Rabier et al.,
2000), which requires the development and maintenance of an
adjoint model and is computationally much more expensive, but
which has proven to be significantly more accurate than 3-D-
Var in pre-operational tests leading to their implementation. In
addition to its demonstrated higher accuracy, 4-D-Var was de-
veloped and implemented because it allows the assimilation of
asynoptic data such as satellite radiances at their correct obser-
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vation time, and because further improvements, such as weak
constraint formulations, could be incorporated later. One of the
potentially promising extensions to 4-D-Var is the use of re-
duced rank Kalman filters to estimate the analysis error co-
variance, but tests in a high resolution NWP system showed
no significant benefit (Fisher and Hollingsworth, 2004, ams.
confex.com/ams/84Annual/techprogram/paper 74522.htm).

Research on ensemble Kalman filtering (EnKF) started with
Evensen (1994), Evensen and van Leeuwen (1996), Burgers et al.
(1998) and Houtekamer and Mitchell (1998). Their methods can
be classified as perturbed observations (or stochastic) EnKF,
and are essentially ensembles of data assimilation systems. A
second type of EnKF is a class of square root (or determinis-
tic) filters (Anderson, 2001; Bishop et al., 2001; Whitaker and
Hamill, 2002; see review of Tippett et al., 2003), which consist
of a single analysis based on the ensemble mean, and where the
analysis perturbations are obtained from the square root of the
Kalman Filter analysis error covariance. Whitaker and Hamill
(2002) concluded that square root filters are more accurate than
perturbed observation filters because they avoid the additional
sampling error introduced by perturbing the observations with
random errors, but Lawson and Hansen (2004) suggested that
perturbed observations filters could handle non-linearities better
than the square root filters. The three square root filters discussed
by Tippett et al. (2003) assimilate observations serially (as sug-
gested by Houtekamer and Mitchell, 2001), which increases their
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efficiency by avoiding the inversion of large matrices. Zupanski
(2005) proposed the Maximum Likelihood Ensemble Filter
where a 4-D-Var cost function with possibly non-linear observa-
tion operators is minimized within the subspace of the ensemble
forecasts. A review of EnKF methods is presented in Evensen
(2003) and the relationship between EnKF and other low-rank
Kalman Filters is discussed in Nerger et al. (2005).

Ott et al. (2002, 2004) introduced an alternative square root
filter where efficiency is achieved by computing the Kalman filter
analysis at each grid point based on the local (in space) structure
of the ensemble forecasts within a 3-D-grid point volume that
includes neighbouring grid points. The Kalman filter equations
are solved for each grid point using as basis the singular vectors
of the ensemble within the local volume. This method, known as
local ensemble Kalman filter (LEKF) allows processing all the
observations within the local volume simultaneously, and since
the analysis at each grid point is done independently from other
grid points, it allows for parallel implementation. Hunt (2005)
and Hunt et al. (2007) developed the local ensemble transform
Kalman filter (LETKF) using an approach similar to Bishop et al.
(2001) but performed locally as in Ott et al. (2004). Since the
LETKF does not require an orthogonal basis, its computational
cost is reduced when compared to the original LEKF. In the
LETKF localization is based on the selection of observations that
are assimilated at each grid point rather than on a local volume,
allowing for more flexibility than the LEKF (Fertig et al., 2007b).
Keppenne and Rienecker (2002) developed a similar local EnKF
for ocean data assimilation.

Hunt et al. (2004) extended EnKF to four dimensions, allow-
ing the assimilation of asynchronous observations, a procedure
also suggested by Evensen (2003, section 4.6), and by Lorenc
(2003), that becomes particularly efficient in the LETKF for-
mulation. This method (4-DEnKF) expresses an observation as
a linear combination of the ensemble perturbations at the time
of the observation. The same linear combination of ensemble
members can then be used to move the observation forward
(or backward) in time to the analysis time. This simple method
gives the Ensemble Kalman Filter the ability of 4-D-Var to as-
similate observations at their right time, but without iterations
and allowing the use of future observations when available (e.g.
within reanalysis). Although 4-D-Var transports the observations
in the subspace of the tangent linear model rather than the en-
semble subspace, Fertig et al. (2007a) found that 4-D-Var and
4-D-LETKF yield similar results when the 4-D-Var assimila-
tion window is sufficiently long, and when the 4-D-LETKF is
performed frequently enough.

In the Meteorological Service of Canada, where perturbed
observations EnKF was pioneered for the atmosphere, preop-
erational tests indicated that 4-D-Var yielded forecasts clearly
superior to those of 3-D-Var, whereas EnKF forecasts were only
comparable to 3-D-Var (Houtekamer et al., 2005). Until recently,
there was no clear evidence that EnKF could outperform an oper-
ational 3-D-Var analysis, let alone 4-D-Var. However, in the last

year there have been a number of encouraging new results. In an
intercomparison organized by NCEP, Whitaker et al. (2007) and
Szunyogh et al. (2007) showed that the application of the Ensem-
ble Square Root Filter (EnSRF) and the LETKF to the NCEP
global forecasting system (GFS) at resolution T62/L28, using
all operationally available atmospheric observations (except for
satellite radiances), yields better forecasts than the operational
3-D-Var using the same data. Houtekamer and Mitchell (2005)
tested a number of changes to the configuration that became op-
erational in 2005 to create the ensemble forecasting system initial
perturbations. A configuration that included a few changes such
as increased model resolution, the addition of perturbations rep-
resenting model errors after the analysis (rather than after the
forecast), and a 4-DEnKF extension, yielded a performance of
their EnKF comparable to that of 4-D-Var, and hence better than
3-D-Var (Peter Houtekamer, personal communication, 2006).
The next 5–10 yr will show whether EnKF becomes the oper-
ational approach of choice, or 4-D-Var and its improvements
remains the preferred advanced data assimilation method.

The purpose of this paper is to compare some of the advan-
tages and disadvantages of these two methods based on recent
experience. In Section 2, we discuss experimental results with
the very non-linear Lorenz (1963) model, which although sim-
ple, bring up several important aspects of practical optimization.
Section 3 contains a discussion of the characteristics of different
approaches of EnKF and the experience acquired implement-
ing the Local Ensemble Kalman Filter developed at the Uni-
versity of Maryland on a quasi-geostrophic channel model and
a low-resolution primitive equations model using both perfect
model and reanalysis ‘observations’. It also contains a summary
of recent results obtained using the LETKF at the University of
Maryland and with the Earth Simulator of Japan. In Section 4,
we discuss questions of efficiency, model error and non-linearity,
and summarize arguments in favour and against the two meth-
ods. We conclude by adapting and modifying a table presented
by Lorenc (2003) in view of these results.

2. Experiments with the Lorenz (1963) model

In this section, we compare the performance of 4-D-Var, EnKF,
and the Extended Kalman Filter (EKF). The EKF allows the
Kalman filter to be applied to non-linear models via the lin-
ear tangent and adjoint models. We follow the classic papers of
Miller et al. (1994) and Pires et al. (1996) and use the Lorenz
(1963) model for a simulation of data assimilation. This model
has only 3 degrees of freedom, so (unlike experiments with real-
istic models) it is possible to implement the Ensemble Kalman
Filter at full rank, or even with more ensemble members than the
size of the model.1 Its numerical cost allows tuning the 4-D-Var

1Evensen (1997) compared for this model a non-linear solution of the 4D-
Var cost function minimized over a very long assimilation period (many
cycles) using a method of gradient descent with a weak constraint, with
1000-member ensembles of Kalman filter and Kalman smoother.
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Table 1. Impact of the window length on the RMS Analysis error for 4-D-Var when x, y, z are observed every eight or 25 steps (perfect model
experiments)

Obs./8 steps Win = 8 16 24 32 40 48 56 64 72
Fixed window 0.59 0.51 0.47 0.43 0.62 0.95 0.96 0.91 0.98
QVA (starting with short window) 0.59 0.51 0.47 0.43 0.42 0.39 0.44 0.38 0.43
Obs./25 steps Win = 25 50 75 100 125 150
Fixed window 0.71 0.86 0.94 1.22 1.58 2.11
QVA (starting with short window) 0.71 0.62 0.62 0.62 0.62 0.80

background error covariance and window length. First, perfect
model experiments are performed observing all variables over a
short interval (eight time steps) during which perturbations grow
essentially linearly, and over a longer interval (25 time steps)
allowing perturbations to develop non-linearly. Then we com-
pare the impacts of observing only subsets of variables and of
model errors. The results illustrate several characteristics of the
schemes that in more realistic settings require special attention
or tuning.

2.1. D-Var: tuning the window length and background
error covariance

In the standard formulation of 4-D-Var (e.g. Rabier and Liu,
2003) the analysis is obtained by minimizing a cost function

J (x0) = 1

2

(
x0 − xb

0

)T
B−1

(
x0 − xb

0

) + 1

2

N∑

i=0

[Hi (xi ) − yi ]
T

R−1
i [Hi (xi ) − yi ] = J b + J o (1)

computed over an assimilation window of length tN − t0, where
xb

0 is the background or first guess at t0, yi and Ri are vector
of observations made at time ti and its corresponding observa-
tion error covariance, B is the background error covariance, xi =
Mi (x0) is the model state at the observation time ti obtained by
integrating the non-linear model Mi , and Hi is the (non-linear)
observation operator at time ti that maps model variables to ob-
servation variables. The control variable is the model state vector
x0 at the beginning of the window t0. This is a strong constraint
minimization in which the analysis valid at tN is given by the
model forecast xN = MN (x0).

For the first set of experiments all three model variables are
observed, so that H and its tangent linear operator H are equal
to the identity matrix I. In order to obtain the minimum of J by
iterative methods the most efficient computation of the gradient
requires the integration of the adjoint model MT

i (transpose of the
linear tangent model Mi ). Although Mi and MT

i are linear with
respect to perturbations, they do depend on the evolving model
state (e.g. Kalnay, 2003, p. 213). The simulated observations
contain errors in accordance to R = 2I as in Miller et al. (1994).
The corresponding observational error standard deviation (

√
2),

is an order of magnitude smaller than the natural variability, and
all successful data assimilation experiments have RMS errors
smaller than this value even with sparse observations. The ex-
periment design consists of a perfect model scenario where the
initial conditions are chosen as a random state of the truth run.
The performance of each assimilation experiment is measured
using the Root Mean Square (RMS) of the difference between
the analysis and the true solution. We performed experiments as-
similating observations of the three variables every 8 time steps
of length 0.01, and every 25 steps as in Miller et al. (1994).
The shortest decorrelation time scale for the model is about
16 steps, so that during 8 steps perturbations generally evolve
linearly and there is little difficulty in obtaining an accurate anal-
ysis. 25 steps is an interval long enough to introduce some non-
linear evolution of perturbations and the problems associated
with the presence of multiple minima. The corresponding opti-
mal 3-D-Var background error covariances obtained iteratively
(Yang et al., 2006) have eigenvalues 0.10, 1.11, 1.76 for eight
time steps (a size comparable to that of the observational errors),
and are an order of magnitude larger for 25 steps (0.67, 9.59 and
14.10).

In order to be competitive with a full rank EnKF, 4-D-Var
requires longer assimilation windows, but this risks introducing
the problem of multiple minima (Pires et al., 1996). As shown
in Table 1, with observations every eight steps, lengthening the
window of assimilation reduces the RMS analysis error (at the
expense of increased computational cost) up to 32 steps. Beyond
that, errors become larger because of the problem of multiple
minima (Miller et al., 1994). This problem can be overcome
with the Quasi-static Variational Assimilation (QVA) approach
proposed by Pires et al. (1996), where short windows are used
initially and progressively increased to the maximum, while per-
forming quasi-static adjustments of the minimizing solution.

Table 1 compares the performance of the assimilation as a
function of the assimilation window length (either fixing the
window, or with the QVA approach). With 8 steps the improve-
ment of the analysis RMS errors with window length extends up
to a window of about 48 steps. For observations every 25 steps,
the optimal window length is between 50 and 125 steps, but the
results are strongly sensitive to the choice of background error
covariance. In operations, if a new analysis is needed every 6 hr,
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Table 2. Impact of tuning the background error covariance by reducing the size of the covariance obtained for 3-D-Var but retaining its structure
(perfect model experiments). Observations and analyses are made every eight steps (top) and 25 steps (bottom). B = ∞ corresponds to not including
the background term in the cost function

Win = 8 B = ∞ B3-DV 0.5B3-DV 0.4B3-DV 0.3B3-DV 0.2B3-DV 0.1B3-DV 0.05 B3-DV

RMSE 0.78 0.59 0.53 0.52 0.50 0.51 0.65 >2.5
Win = 25 B = ∞ B3-DV 0.5B3-DV 0.05B3-DV 0.03B3-DV 0.02B3-DV 0.01B3-DV 0.005B3−DV

RMSE 0.75 0.71 0.69 0.56 0.54 0.53 0.58 >3

and if the optimal window length is a few days, the computation
of overlapping windows is required (Fisher et al., 2005).

The minimization of (1) requires an estimation of the back-
ground error covariance B. If 4-D-Var is started from a 3-D-Var
analysis, the use of B = B3-DV (the optimal 3-D-Var background
error covariance) is a reasonable and widely used estimation.
However, if 4-D-Var is cycled, the background xb

0 is provided by
the 4-D-Var analysis xN of the previous cycle, and after a tran-
sient of a few cycles, this background should be more accurate
than the 3-D-Var forecast. Therefore, B should be significantly
smaller than B3-DV. In our experiments we obtained B3-DV by
iteratively optimizing the 3-D-Var data assimilation as in Yang
et al. (2006). We also computed the background error covariance
from the 4-D-Var analysis errors (which cannot be done in prac-
tice) and found that its structure was very similar to that of B3-DV

with a magnitude about 20 times smaller for the case of 25 steps,
suggesting that the use in 4-D-Var of a covariance proportional
to B3-DV and tuning its amplitude is a good strategy to estimate
B. Table 2 shows that tuning the amplitude of the background
error covariance has a large impact on the results. Similar results
were obtained with the more complex quasi-geostrophic model
of Rotunno and Bao (1996) (Section 3.1). The ratio of the size
of B3-DV to the optimal B4-DV is larger than would be expected
in a more realistic model because in a perfect model scenario
the improvement over 3-D-Var obtained using 4-D-Var with op-
timal parameters is larger than in the presence of model errors
(see Sections 2.3 and 3.2).

2.1. Kalman filter: formulation and tuning the
covariance inflation

4-D-Var is next compared with both extended and Ensemble
Kalman filter (EKF), which are briefly described here. The EKF
(e.g. Ide et al., 1997) consists of a forecast step,

xb
n = Mn

(
xa

n−1

)
(2a)

Bn = MnAn−1MT
n + Qn (2b)

and an analysis step,

xa
n = xb

n + Kn

(
yn − Hxb

n

)
(3a)

An = (I − KnH)nBn, (3b)

where Kn is the Kalman gain matrix given by two equivalent
formulations,

Kn = BnHT
(
R + HBnHT

)−1 = (
B−1

n + HT R−1H
)−1

HT R−1,
(4)

and An is the new analysis error covariance. Here n denotes the
analysis step (in our case the analysis is done at the observation
time, either 8 or 25 model time steps), Mn is the non-linear model
that provides the forecast or background xb

n at step n starting from
the previous analysis xa

n−1, Mn and MT
n are the linear tangent

and adjoint models, Bn is the background error covariance at the
time of the analysis, and Qn is the covariance of the model errors
(assumed to be zero here). As in the 4-D-Var experiments, we
used Hn = I and Rn = 2I.

The EnKF is similar to EKF, the main difference being that
an ensemble of K forecasts

xb
n,k = Mn

(
xa

n−1,k

)
, k = 1...K (5a)

is carried out in order to estimate the background error covariance
Bn . Defining the forecast ensemble mean as x̄b

n = 1
K

∑K
k=1 xb

n,k ,
and Xb

n as the MxK matrix whose columns are the K ensem-
ble perturbations xb

n,k − x̄b
n , and M is the dimension of the state

vector, then

Bn = 1

K − 1
Xb

nXbT
n . (5b)

In the analysis step we used the second formulation in (4) and
solved
[
I + BnHT R−1H

](
x̄a

n − x̄b
n

) = BnHT R−1
(
yn − H x̄b

n

)
(6a)

iteratively to obtain x̄a
n , the new analysis ensemble mean.

Alternatively, the analysis mean can be obtained from (3a)
with

Kn = (
HT R−1H + B−1

n

)−1
HT R−1 = Xb

n

[(
HXb

n

)T
R−1

(
HXb

n

)

+ (K − 1)I
]−1(

HXb
n

)T
R−1 (6b)

where the matrix inversion is performed in the KxK space of the
ensemble perturbations.

We used the ETKF approach to obtain the analysis perturba-
tions (Bishop et al., 2001; Hunt, 2005; Hunt et al., 2007):

An = 1

K − 1
Xa

nXaT
n = Xb

nÂnXbT
n ,

where Ân = [(K − 1)I + (HXb
n)T R−1(HXb

n)]−1, a KxK matrix,
represents the new analysis covariance in the K space of the
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“errors of the day”
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Fig. 1. Schematic of EnKF with an
ensemble of K = 2 forecasts x f

1 and x f
2 lying

on a local attractor (dotted line) which
indicates the direction of the ‘errors of the
day’. They are assumed to be Gaussian, with
mean x̄ f and background error covariance B.
The analysis is performed within the error
subspace defined by the ensemble forecasts,
an approximation of the local attractor (solid
line). Only the projection ŷ of the
observations y (with error covariance R̂) on
the ensemble subspace is assimilated. The
analysis ensemble xa

1, xa
2 used as initial

conditions for the following forecast, and the
analysis mean x̄a are also linear
combinations of the ensemble forecasts. A
3-D-Var analysis, by contrast, does not
include information on the errors of the day.

ensemble forecasts. The new analysis perturbations are then ob-
tained from the columns of

Xa
n = Xb

n[(K − 1)Ân]1/2. (7)

Since HXb
n,k ; Hxb

n,k − H x̄b
n ; Hxb

n,k − Hx
b
n and H always ap-

pears multiplying a perturbation vector or matrix, in EnKF it
is possible to use the full non-linear observation operator, with-
out the need for its Jacobian or adjoint (e.g. Houtekamer and
Mitchell, 2001; Evensen, 2003; Lorenc, 2003).

Figure 1 is a schematic representing the characteristics of an
EnKF with K ensemble forecasts (black circles, K = 2 in the
schematic). Although the forecasts states have the model dimen-
sion M, the ensemble lies on an attractor of much lower dimen-
sion (dotted curve). The ensemble of K � M forecasts defines
the subspace spanned by the background error covariance (solid
line) of dimension K – 1 (denoted ‘error subspace’ by Nerger
et al., 2005), which is an approximation of the model attractor.
Only the projection of the observations (crosses) onto the error
subspace is assimilated in EnKF. The analysis ensemble mem-
bers (white circles) are also defined within the error subspace,
that is, they are linear combinations of the ensemble forecasts
obtained using the Kalman filter equations in the error subspace.
The analysis ensemble mean is the best estimate of the analy-
sis, and its spread is the best estimate of the analysis error, so
that for a given ensemble size, the analysis ensemble provides
the optimal initial conditions for the next ensemble of forecasts
(Ehrendorfer and Tribbia, 1997).

Because of non-linearities, even with a perfect model (Qn =
0) both EKF and EnKF analyses can drift away from the real
solution due to an underestimation of the true forecast error co-
variance. In addition, the EnKF is also affected by the lack of
representation of the background error covariance outside the
subspace defined by the ensemble forecasts (Fig. 1). Miller et al.
(1994) suggested a Monte Carlo approach of adding perturba-
tions to avoid the underestimation of the forecast errors in the
EKF. Similarly, Corazza et al. (2002) found that ‘refreshing’ bred
vectors by adding to them random perturbations after the analy-
sis solved the related problem that bred vectors tend to collapse
into a too small subspace (Wang and Bishop, 2003), and im-
proved the performance of bred vectors in estimating the ‘errors
of the day’. Yang et al. (2006) tested two approaches to avoid
‘filter divergence’ in the EKF. The first one is the multiplica-
tive variance inflation suggested by Anderson (2001), in which
the background error covariance is multiplied by (1 + �), and
the second method is to enhance the analysis error covariance
matrix by adding to the diagonal elements random perturbations
uniformly distributed between 0 and 1, multiplied by a coeffi-
cient μ before performing the time integration. With the Lorenz
model it was found for EKF multiplicative inflation alone did
not converge. Here, for the EnKF, we multiplied the background
ensemble perturbation by (1 + δ), equivalent to multiplying the
background error covariance by (1 + δ)2.

In the 4-D-Var and EKF formulations for the Lorenz (1963)
model, a seemingly minor approximation in the adjoint model of
keeping the non-linear model trajectory constant within a single
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Table 3. Comparison of the RMS error in perfect model experiments obtained observing x, y and z every eight and every 25 steps, using EnKF with
three or six members and optimal inflation factors, and EKF with optimal random and inflation factors (from Yang et al., 2006). The best results
obtained with 4-D-Var optimizing simultaneously the window length and the background error covariance, are also included. The best results
obtained with 3-D-Var are 0.64 and 1.02 for observations every eight and 25 steps, respectively (Yang et al., 2006)

a) Observations and analysis every 8 time steps
EnKF, 3 Members EnKF, 6 members EKF from Yang et al. (2005) Optimal 4-D-Var (W = Window)
0.30 (δ = 0.04) 0.28 (δ = 0.02) 0.32 (μ = 0.02, δ = 0) 0.31 (W = 48)
b) Observations and analysis every 25 time steps
EnKF, 3 members EnKF, 6 members EKF from Yang et al. (2005) Optimal 4-D-Var (W = Window)
0.71 (δ = 0.39) 0.59 (δ = 0.13) 0.63 (μ = 0.1, δ = 0.05) 0.53 (W = 75)
0.61 (hybrid + δ = 0.12) 0.55 (hybrid, + δ = 0.04)

time step (without updating it at every substep of the Runge-Kutta
time scheme) resulted in a substantial deterioration of about 50%
in the analysis errors (Yang et al., 2006). The Runge-Kutta time
scheme, which requires 4 estimations of the time derivative per
time step, is too expensive to be used in operational applications,
so other time schemes such as leap-frog are used, and this par-
ticular problem does not appear. However, it is common to make
even stronger approximations of the adjoint by either keeping the
trajectory constant or interpolating it in time within the adjoint
integration. The results with the Lorenz model suggest that any
approximation to the exact adjoint can significantly increase the
4-D-Var analysis errors. Since the EnKF method uses non-linear
model integrations, it is not affected by this problem, although it
still requires the use of variance inflation (Anderson, 2001).

Table 3 shows that if the number of ensemble members K
is larger than M, the size of the model, EnKF becomes more
accurate than EKF, but for realistically large models we al-
ways have K � M. With a long interval between observations
(25 steps) there were short episodes of large analysis errors, so
that we found useful to perform a ‘sanity check’ (Miller et al.,
1994). Whenever ||y − H x̄b|| was found to be greater than 5, in-
dicating that forecast errors were growing faster than suggested
by EnKF, the background error covariance was taken as the av-
erage of the EnKF estimate and B3-D-Var. This simple ‘hybrid’
approach, which increases the size of the background error co-
variance beyond its EnKF Gaussian estimation when the ob-
servational increments are unexpectedly large, had a significant
positive impact.

Table 4. Comparison of EnKF and 4-D-Var with different subsets of variables observed every eight steps (perfect model experiments)

RMS Obs. type) EnKF (inflation) 4-D-Var (Window = 8) 4-D-Var (Optimal Window ∼48)

x 0.82 (.05) 1.10 (0.3 B3-DVAR) 0.84 (0.15 B3-DVAR)
y 0.49 (.02) 0.75 (0.3 B3-DVAR) 0.49 (0.07 B3-DVAR)
z >5 >5 >5
x, y 0.39 (.03) 0.61 (0.3 B3-DVAR) 0.42 (0.08 B3-DVAR)
x, z 0.41 (.05) 0.77 (0.2 B3-DVAR) 0.44 (0.03 B3-DVAR)
y, z 0.31 (.03) 0.58 (0.2 B3-DVAR) 0.35 (0.04 B3-DVAR)
x, y, z 0.30 (.04) 0.50 (0.3 B3-DVAR) 0.31 (0.04 B3-DVAR)

For short observation intervals (8 steps) EnKF and 4-D-Var
with long windows and optimal B give similar optimal results.
However, it is striking that with longer intervals (25 steps), the
optimal 4-D-Var yields significantly lower errors than those that
could be obtained with a full rank EnKF, even using a hybrid
system. This is because the KF assumption that forecast per-
turbations are Gaussian becomes inaccurate when they grow
non-linearly (see discussion in Section 4.2). Although for lin-
ear perfect models KF and 4-D-Var solve the same problem, for
non-linear models the EnKF analysis is still constrained to the er-
ror subspace (Fig. 1), whereas 4-D-Var finds iteratively the initial
condition for a non-linear forecast that best fits the observations.
This advantage of strong-constraint 4-D-Var, which is present
even without non-linear observation operators, disappears in the
presence of model errors (Section 2.3).

So far we presented tests observing all variables. Table 4 shows
results obtained when the observation coverage is reduced by
observing only one or two variables. The impact of reduced
observations is similar in the 4-DVar with optimal window length
and in the EnKF, but generally 4-D-Var is worse than EnKF even
with optimal window length.

2.3. Imperfect model experiments

Handling model errors in data assimilation is a subject of con-
siderable current research (e.g. Dee and DaSilva, 1998; Dee
and Todling, 2000; Andersson et al., 2005; Tremolet, 2005;
Keppenne et al., 2005, Baek et al., 2006; Danforth et al., 2007;
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Table 5. Comparison of EnKF and 4-D-Var with complete observations every eight steps but using an imperfect model (the parameter r is 28 in the
nature run and 26 in the forecast model). B is the 3-D-Var background error covariance

EnKF, 3 ensemble members, no hybrid, 8 steps observations
Inflation coeff. 0.1 0.2 0.3 0.4 0.5 0.6 0.7
RMS 1.19 0.97 0.89 0.83 0.81 0.81 0.81

Strong constraint
4-D-Var 100B 10B B 0.1B 0.01B
Win = 8 0.84 0.84 0.84 0.84 0.87
Win = 16 0.83 0.83 0.84 0.87 0.93
Win = 24 0.93 0.93 0.93 0.96 0.99
Win = 32 1.01 1.01 1.01 1.02 1.03

Weak constraint
4-D-Var Q = 0.001B Q = 0.005B Q = 0.01B Q = 0.05B Q = 0.1B Q = 0.5B
Win = 8 0.84 0.83 0.83 0.87 0.92 1.05
Win = 16 0.81 0.77 0.75 0.81 0.87 1.00
Win = 24 0.87 0.76 0.73 0.79 0.84 0.93
Win = 32 0.91 0.75 0.71 0.77 0.80 0.90

Whitaker et al., 2007). In the final set of experiments with the
Lorenz (1963) model, we allowed for an imperfect forecast
model, by reducing the parameter r from 28 in the nature run
used to create the observations, to r = 26 in the forecast model.
This increases the forecast errors by an order of magnitude, and
the optimal 3-D-Var background error covariance is two orders
of magnitude larger.

In order to account for model errors, in the 4-D-Var experi-
ments we used a weak constraint approach as in Tremolet (2005),
modifying the cost function (1) by including a model bias β as-
sumed to be constant within the assimilation window:

J (x0, β) = 1

2

(
x0 − xb

0

)T
B−1

(
x0 − xb

0

) + 1

2

N∑

i=0

[Hi (xi + β) − yi ]
T R−1

i [Hi (xi + β) − yi ]

+ 1

2
βT Q−1β = J b + J o + J β

.

(8)

The bias β shifts the trajectory so that H(xi + β) best fits the
observations within each assimilation window. We tuned the am-
plitude of Q, the bias error covariance, by making it proportional
to the background error covariance, although this may not be op-
timal (Tremolet, 2005).

Several different approaches have been suggested to deal with
model errors within EnKF. The simplest is to increase the mul-
tiplicative inflation (Anderson, 2001), which reduces the weight
given to the imperfect model compared to the observations. Ad-
ditive inflation was found to be more effective than multiplicative
inflation by Whitaker et al. (2007). Baek et al. (2006) showed
how to correct constant model error by augmenting the model
state with the model bias, and Danforth et al. (2007) proposed a
low order approach to estimate bias, diurnal and seasonal errors,
and state dependent model errors. Li et al. (2007) compared
these methods on the SPEEDY model. For simplicity, in the
experiments presented here we only tested increasing the EnKF

multiplicative inflation discussed in Section 1.2 beyond the value
needed in a perfect model.

Table 5 (with observations every eight steps) shows that the
RMS analysis error of the EnKF in the presence of model er-
rors becomes quite large (1.19), but that increasing inflation,
although not optimal, reduces the errors substantially (to 0.81).
With model errors, strong constraint 4-D-Var becomes less sen-
sitive to the background error covariance and increasing the
window only reduces the error very slightly, from 0.84 to 0.83,
confirming that model errors strongly limit the length of the as-
similation window of the 4-D-Var (Schröter et al., 1993). The
introduction of a model bias in the cost function as in (8) has
little effect for short windows but improves substantially the re-
sults for long assimilation windows, reducing the RMS error to
0.71 when Q is optimally tuned. Note that with the long assim-
ilation window, more observations are available to better define
the unbiased increment y – h(xi + β), and the 4-D-Var results
show the benefits after the model trajectory is corrected with β.
In EnKF there is only one set of observation to estimate the best
analysis state, and multiplicative inflation is not optimal to deal
with a state-dependent bias like this. Despite its simplicity, the
inflation method results are an improvement, but a more sophis-
ticated strategy that accounts for model error based on recent
training would be expected to further improve the results.

Table 6 (with observations every 25 steps) indicates that for
infrequent observations, EnKF with inflation alone gives RMS
errors similar to those of strong constraint 4-D-Var, about 1.04.
Increasing the number of ensemble members in EnKF or using
weak constraint with 4-D-Var improves their results to similar
levels, and there is no advantage to windows longer than 50.

In summary, the three methods are able to reach similar levels
of accuracy for the very non-linear Lorenz (1963) system, but
each of them requires considerable tuning and empirical tech-
niques, such as ‘sanity checks’ and inflation for the Kalman
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Table 6. As Table 5, but with observations every 25 steps

EnKF, 3 ensemble members, no hybrid, 25 steps observations
Inflation coeff. 0.1 0.2 0.5 0.7 0.9 0.97 1.0
RMS 2.84 2.02 1.26 1.13 1.07 1.04 1.06

EnKF, 6 ensemble members, no hybrid, 25 steps observations
Inflation coeff 0.1 0.2 0.5 0.7 0.9 0.98 1.0
RMS 1.61 1.16 0.99 0.96 0.95 0.95 0.95

Strong constraint
4-D-Var No Jb 100B3-DV 10B3-DV 5B3-DV B3-DV 0.3B3-DV 0.1B3-DV

Win = 25 1.04 1.04 1.05 1.06 1.08 1.08 1.07
Win = 50 1.17 1.17 1.16 1.16 1.16 1.17 1.20
Win = 75 1.26 1.22 1.27 1.36 1.38 1.29 1.70
Win = 100 1.47 1.48 1.56 1.50 1.59 1.54 1.64

Weak constraint
4-D-Var Q = 0.001B Q = 0.005B Q = 0.01B Q = 0.05B Q = 0.1B Q = 0.5B
Win = 25 1.01 0.93 0.91 0.96 1.02 1.15
Win = 50 1.11 0.97 0.91 0.98 1.03 1.09
Win = 75 1.17 1.05 1.00 1.04 1.13 1.19
Win = 100 1.31 1.06 1.03 1.15 1.20 1.35

Filter, and optimization of B and long windows with the QVA
approach for 4-D-Var, without which the results are significantly
worse. In the presence of model errors, weak constraint for
4-D-Var is somewhat more effective than simple multiplicative
inflation in EnKF. We found that EnKF was the easiest method
to implement even for the Lorenz (1963) model, because EKF
and 4-D-Var required the computation of the linear tangent and
adjoint models using the non-linear model corresponding to each
substep of the Runge-Kutta time integration, and because 4-D-
Var required the estimation of the background error covariance.

3. Comparisons of EnKF, 3-D-Var and 4-D-Var
in QG and PE models

3.1. Quasi-geostrophic channel model

We now present comparisons of 3-D-Var (developed by Morss
et al., 2001), 4-D-Var and LETKF, using the Rotunno and Bao
(1996) quasi-geostrophic channel model in a perfect model set-
up. We found that for this model multiplicative inflation alone
is not enough to prevent filter divergence. Instead, as in Corazza
et al. (2002, 2007), random perturbations are added after the
analysis with a standard deviation of 5% of the natural variability
of the model. For optimal 4-D-Var results, the background error
covariance B had to be tuned as discussed in the previous Section,
with an optimal value of about 0.02B3-DV.

With simulated rawinsonde observations every 12 hr, Fig. 2
shows that the LETKF is more accurate than 4-D-Var with
12 hr windows, and comparable with 4-D-Var with a 24 hr
window. The advantage that 4-D-Var has for longer windows
(48 hr) is analogous to that observed with the three-variable per-
fect Lorenz model. As with the Lorenz model, seemingly minor

approximations of the adjoint model were found to result in a
significant deterioration of the 4-D-Var results. As noted before
with the Lorenz model, and in Section 3.2, the difference in per-
formance between 3-D-Var and the more advanced methods, is
much larger in perfect model simulations than in real operational
applications, where the presence of model error is more impor-
tant than effects such as parameter optimization and the accuracy
of the adjoint.

These computations were performed on a single proces-
sor Alpha EV6/7 617MHz computer, with the following wall
clock timings for 200 d of simulated data assimilation: 3-D-Var
−0.5 hr, LETKF—3 hr, 4-D-Var (12 hr window)—8 hr, 4-D-Var
(48 hr window)—11.2 hr. These estimates of the computational
requirements are not representative of the relative computational
costs that would be attainable in an operational set up with op-
timized parallelization, since the LETKF is designed to be par-
ticularly efficient in massively parallel computers (Hunt et al.,
2007).

3.2. Global Primitive Equations model (SPEEDY)

In this subsection we discuss several results obtained by Miyoshi
(2005) who developed and tested 3-D-Var, the EnSRF approach
of Whitaker and Hamill (2002), and the LEKF of Ott et al., 2004
using the SPEEDY global primitive equations model of Molteni
(2003). The SPEEDY model has a horizontal spectral resolution
of T30 with seven vertical levels and a simple but fairly complete
parametrization of physical processes, which result in a realistic
simulation of the atmospheric climatology. Miyoshi, 2005 first
performed ‘perfect model’ simulations, and then created realistic
atmospheric ‘soundings’ by sampling the NCEP-NCAR Reanal-
ysis (Kistler et al., 2001).
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Fig. 2. Analysis error in potential vorticity
for 100 d of data assimilation using
rawinsondes with a 3% observational density
randomly distributed in the model domain.
All the data assimilation systems, 3-D-Var,
LETKF (with 30 ensemble members, local
volumes of 9 × 9 horizontal grid points and
the full vertical column, and random
perturbations of 5% size compared to the
natural variability added to the model
variables after the analysis), and 4-D-Var
(12, 24 and 48 hr windows) have been
optimized. All the experiments are based on
a perfect model simulation.

3.2.1. Observation localization. It is well known (e.g. Lorenc,
2003), that the main disadvantage of EnKF is that the use of a
limited (K ∼ 100) number of ensemble members inevitably in-
troduces sampling errors in the background error covariance B,
especially at long distances. Several Ensemble Kalman Filters
now incorporate a localization of the background error covari-
ance (Houtekamer and Mitchell, 2001) to handle this problem
by multiplying each term in B by a Gaussian shaped correlation
that depends on the distance between points (a Schur product
suggested by Gaspari and Cohn, 1999). This approach, easy
to implement on systems that assimilate observations serially
(Tippett et al., 2003) has been found to improve the performance
of the assimilation. In the LEKF/LETKF spurious long distance
correlation of errors due to sampling are avoided by the use of
a region of influence (a local volume), beyond which the cor-
relations are assumed to be zero, so that the localization has a
top-hat and not a Gaussian shape. Miyoshi (2005) found that the
LEKF performed slightly worse than EnSRF using a Gaussian
localization of B. Since in the LEKF it is not possible to effi-
ciently localize B with a Schur product, Miyoshi, following a
suggestion of Hunt (2005), multiplied instead the observation
error covariance R by the inverse of the same Gaussian, thus
increasing the observational error of observations far away from
the grid point. This has an effect similar to the localization of
B and it was found that with this ‘observation localization’ the
performance of the LEKF became as good as that of the EnSRF.
Whitaker et al. (2007) obtained similar results when comparing
EnSRF and LETKF with observation localization.

3.2.2. Model errors. With identical twin experiments (obser-
vations derived from a ‘nature’ run made with the same model as
the forecasts), Miyoshi (2005) obtained EnKF RMS analysis er-
rors much lower than those obtained with an optimized 3-D-Var.

Fig. 3. Analysis geopotential height RMS errors versus pressure (hPa)
in the SPEEDY model using realistic (reanalysis) observations, either
neglecting the presence of model errors (full lines) or correcting them
using a constant bias estimation obtained from the time average of
3-D-Var analysis increments (dotted lines). The closed circles and
squares correspond to 3-D-Var, and the open circles and squares to
EnKF. The line with triangles corresponds to a bias correction in which
the amplitude of the bias is estimated at each EnKF analysis step.

However, when using atmospheric ‘soundings’ derived from the
NCEP Reanalysis, the advantage of EnKF with respect to 3-D-
Var became considerably smaller (Fig. 3, full lines). An attempt
to apply the method of Dee and da Silva (1998) at full resolution
to correct for model bias led to filter divergence because of sam-
pling problems. Following Danforth et al. (2007), 6-hr model
errors including the time average and leading EOFs representing
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Fig. 4. Comparison of the globally averaged RMS analysis errors for the zonal wind (left, m s–1) and temperature (right, K) using PSAS (a 3-D-Var
scheme, dashed line) and the LETKF (solid line) on a finite volume GCM. The same observations (geopotential heights and winds from simulated
rawinsondes) are used by both systems. Adapted from Liu et al. (2007).

the errors associated with the diurnal cycle were first estimated.
The Dee and da Silva (1998) method was then used to estimate
the time evolving amplitude of these error fields, thus reducing
by many orders of magnitude the sampling problem.

Figure 3 compares the geopotential height analysis errors for
both 3-D-Var and EnKF, with (dashed lines) and without (full
lines) bias correction. Without bias correction, the EnKF (open
circles) is only marginally better than 3-D-Var (closed circles).
With bias correction the EnKF (open squares) has a substantial
advantage over 3-D-Var (closed squares). Estimating the ampli-
tude of the bias correction within EnKF (full line with triangles)
does not improve the results further. Miyoshi (2005) also found
that assimilating Reanalysis moisture soundings improved not
only the moisture, but the winds and temperature analysis as
well, whereas humidity information is generally known to have
a low impact on the analysis of other large-scale variables in
3-D-Var (Bengtsson and Hodges, 2005). This indicates that
EnKF provided ‘tracer’ information to the analysis, since perfect
model simulations confirmed that the improvement observed in
winds and temperature analysis when assimilating humidity was
not due to a reduction of the model bias.

3.3. Recent LETKF experiments with global
operational models

Szunyogh et al. (2005) implemented the LEKF on the NCEP
Global Forecasting System (GFS) model at T62/L28 resolu-
tion in a perfect model set-up, with very accurate analyses. It
was found that, even with a very small number of observa-

tions, the LEKF was able to accurately analyse a gravity wave
present in the nature run. This suggests that the localization of
the LEKF/LETKF is apparently able to maintain well the atmo-
spheric balance. Szunyogh et al. (2007) have tested the assim-
ilation of real observations with encouraging results. Liu et al.
(2007) coupled the LETKF with 40 ensemble members on a ver-
sion of the NASA finite volume GCM (fvGCM) and compared
the results of assimilating simulated rawinsonde observations
with those obtained using the NASA operational PSAS, a form
of 3-D-Var computed in observational space (Cohn et al., 1998).
Figure 4, adapted from their study, shows that the globally av-
eraged LETKF analysis errors were about 30–50% smaller than
those of PSAS.

Miyoshi and Yamane (2007) implemented the LETKF on the
Atmospheric GCM for the Earth Simulator (AFES) in Japan with
a resolution of T159/L48. Figure 5, adapted from their study for a
perfect model scenario, shows that after a single LETKF analysis
step, the analysis error decreases with increasing ensemble size,
(and saturates at about 320 members, not shown). After 10 days
of data assimilation with LETKF, the saturation with respect to
the number of ensemble members is faster, taking place at about
80 members, and there is less dependence on the number of en-
semble members than on whether variance inflation is used or
not. Figure 6 presents 1 month of global RMS analysis errors for
the surface pressure, and confirms that with 80 ensemble mem-
bers the error is close to saturation. Ratios of the analysis error
and the analysis spread (not shown) were very close to 1, as were
the corresponding ratios for the forecasts, suggesting that the sys-
tem is behaving as expected. Tests comparing the current JMA
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Surface pressure analysis error

Fig. 5. Dependence on the number of LETKF ensemble members of
the surface pressure RMS analysis error with the AFES model in a
perfect model simulation on the Earth Simulator. Solid line: after a
single analysis step; short dashes: analysis errors after 10 d, without
using forecast error covariance inflation; long dashes: analysis errors
after 10 d, with forecast error covariance inflation (adapted from
experiments by Miyoshi and Yamane, 2007).

4-D-Var with a 100 members LETKF ensemble assimilating
the operational observations for August 2004 indicated their re-
sults were indistinguishable in the NH and 4-D-Var was slightly
better in the SH.

Fig. 6. One-month time evolution of the LETKF/AFES analysis error for the surface pressure with 10, 20, 40 and 80 ensemble members, in a
perfect model simulation using a T159/L48 model (adapted from Miyoshi and Yamane, 2007).

At the time of this writing, comparisons have been carried out
with the NCEP GFS model at T62/L28, using NCEP operational
3-D-Var (Spectral Statistical Interpolation, SSI, Parrish and
Derber, 1992), EnSRF and LETKF, assimilating all opera-
tional non-radiance observations. Results (Whitaker et al., 2007;
Szunyogh et al., 2007) indicate that the EnKF are similar to each
other and superior to the SSI. With the assimilation of radi-
ances LETKF was still superior to SSI but the gap between the
two methods was reduced (Whitaker, 2007, personal commu-
nication).

4. Summary and discussion

As indicated in the introduction, EnKF is a relatively young area
of research in data assimilation, and until recently there was
no clear evidence that it could outperform an operational 3-D-
Var analysis, let alone 4-D-Var. Whitaker et al. (2007) report-
ing on a comparison between 3-D-Var and EnKF organized by
NCEP have recently shown for the first time that at the resolution
of T62/L28 and using the observations operationally available
at NCEP (except for satellite radiances), their EnSRF and the
LETKF yield better forecasts than the operational 3-D-Var us-
ing the same observations. Szunyogh et al. (2007) obtained sim-
ilar results. Houtekamer et al. (personal communication, 2006)
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implemented a few changes in the Canadian perturbed obser-
vations EnKF (including increasing resolution, assimilating ob-
servations at their right time, and adding the perturbations rep-
resenting model errors after the analysis rather than after the
forecast) that resulted in an improved performance that became
comparable to the operational 4-D-Var.

4.1. Efficiency

When the number of observations is low (e.g. without satellite
data), the serial EnSRF approaches are the most efficient, but
they become less efficient when using large numbers of satellite
observations. The LEKF/LETKF methods handle this problem
by assimilating simultaneously all the observations within a lo-
cal volume surrounding each grid point. Perfect model simula-
tion experiments suggest that the number of ensemble members
needed to estimate the background error covariance using a high
resolution global model may be less than 100, that is, com-
parable to the ensemble size already used in operational
ensemble forecasting. The four-dimensional extension (Hunt
et al., 2004) provides EnKF with one of the major advantages of
4-D-Var, namely the ability to assimilate asynchronous obser-
vations at the right time (but without the need to perform it-
erations). With a perfect model simulation the results of Szun-
yogh et al. (2005) suggest that the volume localization around
each grid point does not affect the balance of the analysis,
to the extent that the analysis is able to reproduce very well
not only the balanced solution, but also gravity waves present
in the integration used as ‘truth’. The wall-clock timings ob-
tained with LETKF and most observations has been found to
be of the order of 5 min both with 40 T62/L28 ensemble
members on a cluster of 25 dual processor PCs, and with 80
T159/L48 ensemble members using 80 processors on the Earth
Simulator.

In principle, EnKF should be able to assimilate time-integrated
observations, such as accumulated rain. Previous experience
with assimilation of rain using nudging indicates that the impact
of precipitation information tends to be ‘forgotten’ soon after the
end of the assimilation, presumably because the potential vor-
ticity was not modified during the assimilation of precipitation
(e.g. Davolio and Buzzi, 2004). Within EnKF the assimilation
of precipitation may have a longer lasting impact because dy-
namical variables, such as potential vorticity, are modified dur-
ing the analysis, which is a linear combination of the ensemble
members (Fig. 1), so that an ensemble member that reproduces
better the accumulated rain will receive a larger analysis weight.
On the other hand, assimilation of rain within EnKF may suf-
fer from the fact that the rain perturbations are very far from
Gaussian (Lorenc, 2003), and may require the use of the Max-
imum Likelihood Ensemble Forecasting approach (Zupanski,
2005).

4.2. Model errors and non-linearity

Because until recently there were no examples of EnKF out-
performing 3-D-Var when using real observations, it has been
generally assumed that EnKF is much more sensitive than 3-
D-Var or 4-D-Var to the problem of model errors. However,
recent results from Miyoshi (2005) and Whitaker et al. (2007)
suggest that when the model errors are addressed even with sim-
ple approaches, the advantages of EnKF with respect to 3-D-
Var become apparent. These results agree with those in Sec-
tion 2, where we found that in the presence of model errors
EnKF with strong inflation gave analysis errors similar to those
obtained with strong constraint 4-D-Var with a short window,
but that weak constraint 4-D-Var further reduces analysis er-
rors. Whitaker et al. (2007) found that additive inflation out-
performed multiplicative inflation in their system, so that their
EnSRF with the T62L28 version of the NCEP GFS yielded bet-
ter scores in the northern and southern extratropics as well as in
the tropics. Houtekamer (2006, personal communication) found
that adding random perturbations representing model errors to
the analysis, so that these perturbations evolve dynamically dur-
ing the 6-hr forecast, improved their results. With a QG model
we also found that additive inflation after the analysis is bet-
ter than multiplicative inflation (Section 3.1). Inflation through
random perturbations added before the model integration is ap-
parently advantageous because it allows the ensemble to explore
unstable directions that lie outside the analysis subspace and
thus to overcome the tendency of the unperturbed ensemble to
collapse towards the dominant unstable directions already in-
cluded in the ensemble. Multiplicative inflation, by contrast, does
not change the ensemble subspace. The low-order approach of
Danforth et al. (2007) may also be advantageous to correct not
only biases but also state-dependent model errors.

Currently there is also considerable interest in the develop-
ment of 4-D-Var with weak model constraint, that is, allowing
for model errors. Tremolet (2005) obtained very encouraging
preliminary results, and further comparisons between 4-D-Var
and EnKF will be required when these weak constraint systems
are implemented.

Although EnKF does not require linearization of the model,
it is still based on the hypothesis that perturbations evolve lin-
early, so that initial Gaussian perturbations (i.e. perturbations
completely represented by their mean and covariance) remain
Gaussian within the assimilation time window. It was shown
in Section 2.2 that the non-linear growth of perturbations has
a negative impact on EnKF because the Gaussian assumption
is violated if the model is very non-linear or the analysis time
window too long (e.g. in the Lorenz 63 model when the analysis
is performed every 25 time steps). In global atmospheric analy-
sis cycles, this assumption is still accurate for synoptic-scale
perturbations since they grow essentially linearly over 6 hr.
However, a data assimilation system designed to capture faster
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Table 7. Adaptation of the table of advantages and disadvantages of EnKF and 4-D-Var (Lorenc, 2003). Parentheses indicate disadvantages, square
brackets indicate clarifications and italics indicate added comments

Advantages (disadvantages) of EnKF
Simple to design and code.
Does not need a smooth forecast model [i.e. model parametrizations can be discontinuous].
Does not need perturbation [linear tangent] forecast and adjoint models.
Generates [optimal] ensemble [initial perturbations that represent the analysis error covariance].
Complex observation operators, for example rain, coped with automatically, but sample is then fitted with a Gaussian.

Non-linear observation operators are possible within EnKF, for example, MLEF.
Covariances evolved indefinitely (only if represented in ensemble)

Underrepresentation should be helped by ‘refreshing’ the ensemble.
(Sampled covariance is noisy) and (can only fit N data)

Localization reduces the problem of long-distance sampling of the ‘covariance of the day’ and increases the ability to fit many observations.
Observation localization can be used with local filters.

Advantages (disadvantages) of 4-D-Var
[Can assimilate asynchronous observations]

4-DEnKF can also do it without the need for iterations. It can also assimilate time integrated observations such as accumulated rain.
Can extract information from tracers

4-DEnKF should do it just as well
Non-linear observation operators and non-Gaussian errors [can be] modelled

Maximum Likelihood Ensemble Filter allows for the use of non-linear operators and non-Gaussian errors can also be modelled.
Incremental 4-D-Var balance easy.

In EnKF balance is achieved without initialization for perfect models. For real observations, digital filtering may be needed.
Accurate modelling of time-covariances (but only within the 4-D-Var window)

Only if the background error covariance (not provided by 4-D-Var) includes the errors of the day, or if the assimilation window is long.

processes like severe storms would require more frequent anal-
ysis cycles.

As for non-linear observation operators, the computation
of differences between non-linear states in observation space
(Section 2.2) avoids the explicit need for the Jacobian or adjoint
of the observation operators, but the computation is still linearly
approximated. The approach of Maximum Likelihood Ensemble
Filter (MLEF), introduced by Zupanski (2005) is based on the
minimization of a cost function allowing for non-linear obser-
vation operators (as in 4-D-Var) but solving it within the space
spanned by the ensemble forecasts. This avoids the lineariza-
tion of the observation operators while making the minimization
problem better conditioned than in 4-D-Var so that typically only
2–3 iterations are needed.

4.3. Relative advantages and disadvantages

In summary, the main advantages of EnKF are that: (i) it is simple
to implement and model independent; (ii) it automatically filters
out, through non-linear saturation, fast processes such as con-
vection that, if exactly linearized, would dominate error growth
and (iii) it provides optimal initial ensemble perturbations, for
a given ensemble size, because they represent the analysis error
covariance (Ehrendorfer and Tribbia, 1997). Since the number of
ensemble members required is similar to that used for ensemble
prediction, the cost of the 6-hr ensemble integration is covered

by its use in longer ensemble predictions. The main disadvan-
tage of EnKF is the low dimensionality of the ensemble, which
introduces sampling errors in the estimation of the background
error covariance. The background covariance localization solves
this problem in EnKF when observations are assimilated seri-
ally. Although this is not computationally feasible in local EnKF
methods able to handle many observations simultaneously like
the LETKF, an equivalent approach is a simple ‘observation lo-
calization’ where the observations error covariance is increased
for observations far from the grid point being analyzed (Miyoshi,
2005; Hunt et al., 2007).

The main advantages of 4-D-Var are its ability to assimilate
asynchronous observations, (like 4-DEnKF) and the fact that,
when using a long enough window, its performance converges
to that of full rank EKF. Fisher et al. (2005) has shown that long-
window 4-D-Var with model error is equivalent to a Kalman
smoother where the initial guesses for the state and forecast er-
ror covariance are ‘forgotten’. He argues that the approach of
long overlapping windows and weak constraint should be ad-
vantageous compared to EnKF, because the latter is severely
rank-reduced. An additional advantage of 4-D-Var is that it al-
lows for the assimilation of observations with serially-correlated
errors by including such time correlations in R. Järvinen et al.
(1999) showed that this correlation results in less weight given
to the mean of the observations (if biased) and more weight to
their time evolution. However, this time correlation can also be
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included within the 4-DEnKF formulation. The main disad-
vantage of 4-D-Var is that it requires the development and
maintenance of the adjoint model, including special considera-
tion of how to represent fast processes (such as convection) that
become non-linear and quickly saturate in the non-linear model.
Both methods require additional development of advanced ap-
proaches to the treatment of model errors, including weak con-
straint for 4-D-Var and efficient estimates of state-dependent bias
in EnKF. Like 4-D-Var, EnKF has a few tuning ‘handles’ that
need to be explored, including the number of ensemble mem-
bers, the strength and characteristics of the covariance local-
ization, the handling of model errors, the use of multiplicative
or additive inflation, and its adaptive estimation using obser-
vational increments. In the next few years more experiments
with real observations will build up the EnKF experience needed
for operational implementation. Fortunately, because the prob-
lems solved in EnKF and 4-D-Var are very closely related, re-
searchers can take advantage and share advances made in either
method.

We conclude the paper by adapting and updating in Table 7 a
very useful table of advantages and disadvantages from Lorenc
(2003), with additions [in brackets] and comments (in italics).
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