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Abstract— We have developed an optical parametric amplifi-
cation module for quadrature squeezing with input and output
ports coupled with optical fibers for both fundamental and second
harmonic. The module consists of a periodically poled LiNbO3
ridge waveguide fabricated with dry etching, dichroic beamsplit-
ters, lenses and four optical fiber pigtales. The high durability
of the waveguide and the good separation of squeezed light
from a pump beam by the dichroic beamsplitter enable us to
inject intense continuous-wave pump light with the power of
over 300 mW. We perform −4.0±0.1 dB of noise reduction
for a vacuum state at 1553.3 nm by using a fiber-optics-based
measurement setup, which consists of a fiber-optic beamsplitter
and a homemade fiber-receptacle balanced detector. The intrinsic
loss of the squeezed vacuum in the module is estimated to
be 25%. Excluding the extrinsic loss of the measuremental
system, the squeezing level in the output fiber of the module
is estimated to be −5.7±0.1 dB. A modularized alignment-free
fiber-coupled quadrature squeezer could help to realize quantum
information processing with fiber optics.

Index Terms— PPLN waveguide, squeezed light, fiber optics.

I. INTRODUCTION

Q
UADRATURE squeezed states are quantum resources

in continuous-variable quantum information process-

ing with quadrature amplitudes of light [1]–[3]. Especially,

squeezed vacua are used as ancillary inputs for quantum

operations such as quantum teleportation [4], a quantum non-

demolition gate [5], and quantum key distribution [6].

To realize a large-scale quantum circuit, it is important

to utilize guided-wave optical components. Nowadays, with

the development of telecommunication, highly reliable various

fiber-coupled optical components, such as lasers, modula-

tors and optical beamsplitters, have become commercially

available. However, generation of high-level squeezed vacua
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still relies on optical parametric oscillators (OPOs) with bulk

optics [7]–[9]. This is because guided-wave components have

larger loss and lower durability for intense pump beams

compared to free space optics. OPOs with capability of direct

coupling with optical fibers [10], [11] and a compact OPO on

a breadboard [12] have been proposed, but the need to control

and adjust the cavity length could be an obstacle to scaling up

of quantum circuits in the future.

By reducing propagation loss and improving the durability

for intense pump beams, optical parametric amplifiers (OPAs)

with χ (2) waveguides could take the place of OPOs. A prac-

tical advantage of OPAs is that, unlike OPOs, they do not

require troublesome optical length control for the cavities,

which enables stable fiber coupling. Additionally, OPAs can

achieve THz-order operational bandwidth limited only by

dispersion or phase matching conditions [13]–[16], and have

a potential for chip-integration [17]. Although it is still below

the level for quantum information processing, for example

3 dB, which is a condition of entanglement swapping [18],

the performance of fiber-coupled OPAs as sources of squeezed

vacua has made remarkable progress in recent years. The

level of squeezed vacua obtained from these components has

reached 1.83 dB in 2016 [19] and 2.00 dB in 2019 [17].

In this letter, we report generation and detection of a

4.0-dB squeezed vacuum from our newly developed fiber-

coupled single-pass OPA module based on a dry etched period-

ically poled LiNbO3 (PPLN) waveguide. The module consists

of the PPLN ridge waveguide, lenses for fiber coupling, four

optical fiber pigtales, and dichroic beamsplitters. The high

durability of the waveguide and the good separation of the

dichroic beamsplitters allows to inject an intense pump beam,

resulting in high squeezing level. We detect −4.0±0.1 dB of

squeezing and 14.1±0.1 dB of anti-squeezing at 10 MHz with

pump power up to 330 mW. We use a fiber-optic beamsplitter

for a homodyne detection, assuming applications of the mod-

ule in fiber systems. Correcting for the deterioration caused

by the measuremental system, the squeezing level and anti-

squeezing level at the output port of the module are estimated

to be −5.7±0.1 dB and 14.9±0.1 dB.

II. DEVICE DESIGN AND EXPERIMENTAL SETUP

Figs. 1(a) and (b) shows the external appearance and the

internal schematic of our OPA module. The module consists of

a 45-mm long PPLN ridge waveguide, four dichroic beamsplit-

ters, six collimation lenses and four pigtales. The temperature
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Fig. 1. Design of our OPA module. (a) Photograph of the module. (b) Schematic of the module. The module consists of a 45-mm long PPLN waveguide,
four dichroic beamsplitters, six lenses, and four pigtales. In this experiment, the input pigtale for a 1.55 µm beam is not used. (c) Schematic of the ridge
waveguide. The substrate is LiTaO3, and the core is trapezoidal z-cut ZnO-doped LiNbO3. The waveguide has periodic poling for quasi-phase matching.
(d) A picture of a waveguide end face taken with a scanning electron microscope. (e) A graph of the electric field amplitude distribution at the end face of
the waveguide calculated by a computer simulation.

of the waveguide is controlled for quasi-phase matching.

Dichroic beamsplitters (High transmission at 0.78 µm, high

reflection at 1.5 µm) are used for separating a squeezed

vacuum from a pump beam. For better separation, a squeezed

vacuum is reflected twice on the beamsplitters. The good

separation allows the intensity of a pump beam to be increased

without any problems in the homodyne detection due to the

transmission of an intense pump beam. The transmittance of

the module is 56% at 1.55 µm and 60% at 0.78 µm, which is

mainly due to propagation loss in the waveguide and coupling

loss on both ends. The propagation loss is considered to be

mainly caused by surface roughness on the both sidewalls. The

bandwidth of the parametric process in the PPLN waveguide

is considered to be limited to THz order by its quasi-phase

matching condition.

Fig. 1(c) shows the schematic of our ridge waveguide.

A core layer of z-cut PPLN is directly bonded to LiTaO3

substrate. PPLN has large nonlinear efficiency and is a

promising material for squeezing [20]. The waveguide is

fabricated by dry etching with argon gas using photoresist

patterned by photolithography as an etching mask [21]. The

periodically poled structure is formed with an electrical poling

method [22]. Unlike diffusion methods, the direct bonding

method does not cause defects in the crystal, which helps to

increase the durability of the waveguide [23]. The dry etching

method allows to make various shapes of waveguides. For

instance, it enables to change the core size according to the

position, while mechanical saws which are used to make diced

waveguides moves only straightly. Taking this advantage,

we create tapered structures at both ends of the waveguide

to obtain better coupling with optical fibers. The tapered

structures approximate the spot size of a propagating beam

to a circle, which optimizes coupling efficiency with optical

fibers under the constraint that the waveguide is trapezoidal.

Fig. 1(d) is a picture of a waveguide end face taken with a

scanning electron microscope, and Fig. 1(e) is a graph of the

electric field amplitude distribution at the end face calculated

Fig. 2. Schematic of the experimental setup. A seed laser is a single frequency
laser at 1553.3 nm. Output of the seed laser is amplified by a fiber amplifier.
The amplified beam is split into two beams by a 10 dB (90:10) coupler, and
the main output of the coupler pumps a frequency doubler after it passes
through a bandpass filter. A frequency doubled beam pumps the OPA after
it passes through a variable optical attenuator consisting of a half-wave plate
and a polarizing beamsplitter. The intensity of the frequency doubled beam
is monitored after transmission through the OPA. The tapped output of the
10 dB beamsplitter is used as a local oscillator of a homodyne measurement
after passing a variable optical attenuator and a phase modulator. A squeezed
vacuum from the OPA and the local oscillator are interfered in a 3 dB
coupler, and the difference of the intensities of the output beams of the
coupler is detected by a balanced photodetector. Note that only important
elements are depicted. BPF, bandpass filter; VOA, variable optical attenuator;
PBS, polarizing beamsplitter; HWP, half-wave plate; NC, not connected; PD,
photodetector; PM, phase modulator; LO, local oscillator; AR, anti-reflection;
BPD, balanced photodetector.

by a simulation using a finite-difference method (Optiwave

Systems Inc., OptiBPM 12). The mode-match between the

calculated mode and a TEM00 mode is 98%, although the

actual coupling efficiency with the fiber is considered to be

slightly lower due to manufacturing and assembling errors.

Fig. 2 shows a schematic of the experiment. A source

of continuous-wave laser light at 1553.3 nm is a narrow-

linewidth and low-noise seed laser (RIO-OptaSense Inc.,

ORION module). The output of the seed laser is amplified by
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a Erbium-doped fiber amplifier (Keopsys, CEDA-C-PB-HP).

The output of the fiber amplifier is splitted into two

beams and passes through bandpass filters (Alnair Labs,

TFF-15-1-PM-L-100-SS-SA) to reduce noise due to amplified

spontaneous emission from the fiber amplifier. The brighter

output of the beamsplitter pumps a fiber-coupled frequency

doubler (NTT Electronics, WH-0776-000-F-B-C). The

frequency doubled beam passes through a custom-made

fiber-pigtaled variable optical attenuator consisting of a half-

wave plate (Casix, WPZ1210) and a polarizing beamsplitter

(Sigma Koki, PBS-5-7800). This beam is used as the pump

beam of the OPA module. The less intense output of the

beamsplitter passes through a variable attenuator (Thorlabs,

VOA50PM-FC) and used as a local oscillator (LO) for

homodyne detection. The effect of phase noise of the fiber

system is reduced by matching the optical length on the

LO path with that on the path for generating the squeezed

vacuum. As a result, the phase fluctuation is negligible during

the measurement period.

The OPA module has two output ports. One is for 0.78 µm,

and is used for monitoring the intensity of the pump beam.

The intensity is measured by a Si photodetector (Newport

818-SL) and we estimate the incident pump power by dividing

the monitored power by 0.6, which is the transmittance of the

module at 0.78 µm. The other is for 1.5 µm, namely a port

for the squeezed vacuum. The squeezed vacuum interferes

with the LO in a 3 dB coupler (Thorlabs, PN1550R5F2). The

phase of the LO is scanned by a phase modulator (Thorlabs,

LN53-10-P-S-S-BNL). The output ports of the 3 dB coupler

are spliced to anti-relection (AR) coated fibers (Thorlabs,

P1-1550PMAR-2). The fibers are connected to a homemade

fiber-receptacle InGaAs balanced photodetector consisting

of lenses (Thorlabs, TC25FC-1550 and LA1134-C), mirrors

(Sigma Koki, TFVM-25.4C05-1550), photodiodes (Laser

Components, IGHQEX0100-1550-10-1.0-SPAR-TH-40), and

an operational amplifier (Analog devices, AD829) with 18 k�

of transimpedance. The signal from the detector is measured

by a spectrum analyzer (Keysight, N9010A).

The spectrum analyzer is set to a zero-span mode at the

measurement frequency of 10 MHz. The resolution and video

bandwidths are set to 3 MHz and 510 Hz, respectively. The

measurement frequency is the largest frequency without the

deterioration of detector’s performance. The large resolution

bandwidth and small video bandwidth help to obtain clear

signal. Since the bandwidth of a single-pass OPA is on the

order of terahertz, the frequency dependence of squeezing level

is negligible at the order of megahertz.

III. RESULT AND DISCUSSION

Fig. 3 shows the squeezed and anti-squeezed noise with

the shot noise. These noises correspond to the fluctuation

of quadrature amplitudes, and the result shows those of the

generated state are squeezed or anti-squeezed relative to that

of a vacuum state. The measurement frequency is set to be

10 MHz. The intensity of the pump beam is 330 mW. The

transmittance of the module at 0.78 µm is 60%. The intensity

of the LO beam is 3.0 mW. Measured squeezing and the anti-

squeezing levels are −4.0±0.1 dB and 14.1±0.1 dB.

Fig. 3. Raw data of noise power as a function of the phase of the LO beam
(scanned by a 1-Hz triangle wave). The symmetric structure around 0.56 s is
due to the reversal of the direction of scanning by the triangular wave. The
intensity of a incident pump beam is 330 mW. Center frequency is set to
10 MHz. Resolution bandwidth is set to 3 MHz and video bandwidth is set
to 510 Hz. (a) Noise of a squeezed vacuum. (b) Shot noise. Squeezed and
anti-squeezed noise levels are indicated by dotted lines.

Fig. 4. Pump power dependency of the intensity of squeezed noise and
anti-squeezed noise normalized by the intensity of shot noise. Note that the
incident pump intensity is calculated by dividing the transmitted pump power
measured at the output port of the module by 0.6, which is the transmittance
of the module at 0.78 µm. Circles are measured values and curved line is a
theoretical fitting.

Fig. 4 shows the pump power dependence of the squeezing

and anti-squeezing levels. The squeezing and anti-squeezing

levels R± with total detection loss L are described as [20]:

R± = L + (1 − L) exp(±2
√

ap). (1)

Here, a is the efficiency of second harmonic generation.

L and a are fitted to be 38.6%, 1034% W−1, respectively.

To get the breakdown of the total detection loss L, trans-

mittance of each element on the path of a squeezed vacuum is

measured. The transmittance of the OPA module is measured

to be 56%, and that of the 3 dB coupler including a fiber joint

loss is measured to be 45%. Since the squeezed vacuum is

generated inside the OPA module, assuming that a squeezed

vacuum is generated in the middle of the waveguide, the effec-

tive loss can be considered to be 1−
√

0.56, namely 25%. For

the 3 dB coupler, since the transmittance of a lossless coupler

is 50%, the effective loss is the excess loss of 1 − 0.45/0.50,

namely 10%. The responsivity of the fiber-receptacle detector
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is measured to be 1.16 A/W, and it can be regarded as an

effective loss of 7%. The equivalent loss of the electric noise

is 2 %. Thus, total detection loss is calculated to be 38 %,

which is well-matched with the fitted value.

The coefficient a represents the nonlinear efficiency of a

waveguide. The fitted value is consistent with that of a similar

waveguide, 1160 % W−1 [24].

Excluding the drop due to the detection efficiency, the orig-

inal squeezing and anti-squeezing levels at the output port

of the module can be estimated to be −5.7±0.1 dB and

14.9±0.1 dB, respectively, which are consistent with those

of a similar waveguide measured in a free-space setup [24].

The loss of a squeezed vacuum in the module is estimated

as low as 25%, which is considered to be mainly due to the

propagation loss in the waveguide and the coupling mismatch

with the output fiber. The propagation loss could be improved

by modifying dry etching method [25] or performing wet

etching after dry etching [26].

IV. CONCLUSION

Measurement of a squeezed vacuum from a newly devel-

oped fiber-coupled single-pass OPA module was demonstrated

in a fiber-optical setup. The PPLN ridge waveguide was

fabricated with dry etching, which allowed to fabricate a

highly durable waveguide and create a tapered structure at the

ends of the waveguide to improve the coupling efficiency. The

measured squeezing level is −4.0±0.1 dB, which is, to our

knowledge, the best squeezing with fiber-coupled single-pass

OPA to date. The module has input and output fibers for both

fundamental and second harmonic. The good separation by

dichroic beamsplitters and the high durability of the waveguide

enable to inject an over-300-mW intense pump beam without

any trouble in the optical path for fundamental. We performed

homodyne measurement with a fiber-optic beamsplitter and a

fiber-receptacle balanced detector, looking toward fiber-optic

applications. It is estimated that the original squeezing level

at the output port of the module is −5.7±0.1 dB excluding

the detection loss, which is consistent with that of a similar

waveguide measured in a free-space setup [24]. A modularized

alignment-free fiber-coupled squeezer with high-level noise

reduction would play a important role in implementing quan-

tum information processing with light in the near future.
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