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1 Introduction

In a variety of experimental studies ranging from conventional agricultural, biological and industrial
experiments to modern biomedical investigations and (multicenter) clinical trials, a sound statistical
planning (design) of the experiment constitutes the first and foremost task.

In a conventional setup it is generally assumed that the response distribution is continuous, and
further that it can be taken as normal whose mean (location parameter) depends linearly on the model
based parameters, while the variance is a constant under varied experimental setups. The linearity of
the model (i.e., the additivity of the effects), homoscedasticity and normality of the errors are the three
basic regularity assumptions underlying the traditional parametric statistical analysis of experimental
outcomes. In biological assays, biomedical and clinical experiments, the response variable is typically
nonnegative and has a positively skewed distribution. For this reason, often, a logarithmic or square
(or cubic) root transformation (belonging to the family of Boz-Coz type transformations ) is advocated
to induce greater degree of symmetry of the distribution of the transformed variate (for which the
normality assumption may be more likely). However, such a nonlinear transformation may generally
affect the linearity of the regression model as well as the homoscedasticity condition. Thus, in general,
there may not be any guarantee that a Box-Cox type transformation may simultaneously improve the
normality of the transformed errors, their homoscedasticity and the additivity of the model. To the

contrary, generally, one of the two postulations : additivity of the model effects and normality of the
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error distribution, has to be compromised at the price for the other. Therefore, there is a genuine need
to looking into the composite picture of linearity of regression, homoscedasticity and normality of errors
from a broader perspective so as to allow plausible departures from each of these postulations. This, in
turn, may dictate the need for more appropriate designs, and consequently, broader statistical analysis
schemes. Nonparametric and robust statistical procedures have their genesis in this robustness and
validity complex. In passing, we may remark that in biological assays, socio-economic and psychometric
studies, often, a response may be quantal (i.e., all or nothing), qualitative (i.e., categorical) or discrete
(viz., relating to count data), while in a majority of practical applications, one may also encounter grouped
data typically arising when observations are recorded in suitable class intervals. Design and statistical
analysis of such nonstandard experiments may call for a somewhat different statistical approach, and we
may briefly mention some of the basic differences in the setups of such nonstandard statistical analyses
contrasted with standard parametric formulations.

Pedagogically, developments in nonparametrics started in the hypotheses testing sector, where un-
der suitable hypotheses of invariance, the sample observations have a joint distribution which remains
invariant under appropriate groups of transformations which map the sample space onto itself. This
characterization of the null hypothesis generates eractly distribution-free (EDF) tests for some simple
hypotheses testing problems. However, in a more complex situation, such as arising in multivariate prob-
lems or in composite hypotheses testing problems, this EDF propoerty may not be generally tenable.
In such a case, often, it may be possible to have some conditionally distribution-free tests, although
this prescrtiption may not always work out well. Moreover, even in simple hypotheses testing problems,
the distribution theory of EDF tests may become prohibitively complicated for any algebraic manipu-
lations as the sample size increases. This unpleasant feature is shared by nonparametric (point as well
as interval) estimators which are based on such EDF statistics. In the later phase of developments on
nonparametrics [viz., Sen (1991) for a review], asymptotic methods have invaded all walks of this field.
Not only such asymptotics provide simpler distribution theory for large sample sizes, but also clearer
motivations for adoptations of nonparametrics instead of their parametric counterparts. Indeed, at the
current state of developments on nonparametrics, such asymptotics play a vital role in all aspects.

A significant amount of research work on design and analysis of experiments relates to the so called
bio-assays. Statistical methodology for bio-assays, even in a parametric setup, has a somewhat different
perspective, and nonparametrics as developed in the past three decades [viz., Sen (1963, 1971b,1972)]
are very relevant too. Bio-assays are the precursors of modern clinical trials, and during the past twenty
five years, statistical perspectives in clinical trials and medical investigations have received due attention
from clinical as well as statistical professionals (and Regulatory Agencies too). This has paved the
way for development of some clinical designs with greater emphasis on hazard models and relative risk
formulation; nonparametrics play a vital role in this context too. Perhaps, our treatise of this field would

remain a bit incomplete without some discussion of such designs and their analysis schemes in the light



of such recently developed nonparametrics. Statistical planning (design) and inference (analysis) remain
pertinent to two other related areas, namely, (i) epidemiological investigations and (i) environmental

studies, and more work remains to be accomplished before they can be systematically reviewed.

2 One-way layout nonparametrics

Let us consider the following linear model related to completely randomized designs :

Y=XB+e; e=(er,...,en), (2.1)

where Y is the n-vector of independent observations (response variables), X is an n x p matrix of
known constants (design variables), 8 = (81, ..., 8,)" is a p-vector of unknown (fixed-effects) parameters,
and the error variables e; are assumed to be independent and identically distributed random variables
(i.i.d.r.v.) with a continuous univariate distribution function (d.f.) F. In a parametric setup, for testing
plausible hypotheses on B (or to construct suitable confidence sets), F' is assumed to be normal with
0 mean and a finite, positive variance o (unknown), but in nonparametrics this normality or even the
finiteness of the error variance is not that crucial. Two basic statistical issues arising in this context
are the following: (i) To choose the design matrix X in such a way that for a given n, the number of
observations, the information on B acquirable from the experiment is maximized (the optimal design
problem), and (ii) for a chosen design, to draw statistical conclusions (on 8) in an optimal manner (the
optimal statistical inference problem). For the linear model in (2.1), when F is normal, the information
on B contained in the experiment is given by o~2(X'X), where X'X is a positive semi-definite (p-s.d.)
matrix. Therefore maximization of information on 3 relates to an optimal choice of the design matrix
X, such that X’'X is maximizied in a meaningful manner. Kiefer’s universal optimality of designs is a
landmark in this context. Two recent monographs by Shah and Sinha (1989) and Pukelsheim (1993)
are excellent sources for detailed coverage of such optimal designs. When the normality of the error
components is not taken for granted, the information criterion is taken as I(f)X'X where I(f) is the
Fisher information for the location parameter for the density f, when the latter belongs to the location-
scale family. Thus, if I(f) is substituted for o~ 2, the situation remains comparable, so that for a given
density having a finite Fisher information I(f), maximization of the information (on 8) through a choice
of the design matrix remains isomorphic to the normal theory case.

The second problem has a somewhat different perspective. Optimal statistical inference may depend
very much on the underlying density. The main point in this context is that for a possibly nonnormal
d.f., having a finite variance o2, the dispersion matrix of the maximum likelihood estimator of 3 is given
by I=1(f)(X'X)~', and the normal theory estimator has the dispersion matrix o?(X'X)~1, where by

the classical Cramér-Rao information-inequality,

o> >{I"H(H} (2.2)



so that the normal theory or linear inference procedures generally entail some loss of efficiency. This
loss is measured by the difference of I(f) and o~2, and for heavy-tailed distributions, this loss can
be quite large. In the extreme case of infinite variance (viz., the Cauchy case), linear/normal theory
inference procedures are inconsistent and totally inefficient too. On the top of that if in (2.1) the very
additivity of the effects (i.e, linearity of the model) does not hold, the entire picture may be drastically
different. Robust and nonparametric methods have mainly been considered to retain general validity as
well as good efficiency properties under such plausible departures from the model based assumptions.
Although such nonparametric procedures were proposed originally for hypotheses testing problems, the
dual estimation problems have also received adequate attention, and we summarize them as follows.

In a completely randomized design, through a transformation on the design matrix X — X* = XA,
for a suitable p.d. A and a conjugate transformation on 3 = 8" = A~!8, (2.1) can be canonically
reduced to a multi-sample location model. In this canonical representation, the homogeneity of the
location parameters constitute the basic null hypothesis, while estimable parameters relate to such
location parameters as well as contrasts among them. Motivated by this canonical reduction, we partition
Y into ¢ (> 2) subvectors Yk, k = 1,...,¢c, where Yi is an ng-vector (Yii,...,Ykn,) such that the
Yi; are i.i.d.r.v.’s with a d.f. Fi(z) = F(z — 6g), for k= 1,...,c. In this formulation, the d.f. F is
assumed to be continuous, and it need not have a finite variance or first moment, and also the symmetry
assumption is not crucial for testing the null hypothesis of equality of the ;. If, on the other hand, we
want to estimate or test for the individual 6, then, the symmetry of the d.f. F is needed, and this will
be discussed later on. Keeping this estimability and testability in mind, we may rewrite (2.1) in the
following form:

Yi=0+p8'ti+e,i=1,...,n, (2.3)

where the t; are vectors of (known) regression constants, not all equal, § is the intercept parameter, and
B = (B1,...,8q) is a vector of unknown regression parameters where ¢ is a positive integer and n > ¢ +1;

the e; are i.i.d.r.v.’s having the d.f. . In this setup, the null and alternative hypotheses of interest are
Ho:B=0 wvs. Hi :8+#0. (2.4)

Note that for the canonical multisample model, (2.4) relates to the homogeneity of the location parame-
ters, and we may also want to estimate the paired differences 6y — 04,k # ¢=1,...,cin arobust manner.
Note that under the null hypothesis in (2.4), the Y; are i.i.d.r.v.’s with a location parameter #, so that
their joint distribution remains invariant under any permutation of the Y; among themselves. For this
reason, the null hypothesis in (2.4) is termed the hypothesis of randomness or permutation-invariance.
In the literature, H in (2.4) is termed the regression alternative. For such alternatives, tests for (2.4) do
not require the symmetry of the d.f. F, and the same regularity assumptions pertain to the estimation
of B. Further, it is possible to draw statistical inference on # under an additional assumption that F is

a symmetric d.f.



Let R,; be the rank of Y¥; among Y1,...,Y,, fori=1,...,nand n > 1. Also, let a,(1),...,an(n) be
a set of scores which depend on the sample size n and some chosen score generating function. Of
particular interest are the following special scores: (i) Wilcozon scores: a,(i) = i/(n+ 1), i =
1,...,n; (i) Normal scores: an(i) = E(Zni), ¢ = 1,...,n, where Z,,3 <--- < Z,.n are the order
statistics of a sample of size n drawn from a standard normal distribution; and (iii) Log-rank scores:
anp (i) = Z;;B(n — 7)1 =1, i=1,...,n. With these notations, we define (a vector of ) linear rank
statistics by letting

n

L, = Z(ti - E'n)an(Rni); (25)

i=1

where the t; are defined as in (2.3) and £, = n=1 3, t;. Also, we define

G, =n"! zn:an(i), A =(n-1)"1 Zn:[a,,(i) - @,)?, (2.6)
i=1 i=1
and .
Qn =) (t: — a)(t: — En)'. (2.7)

i=1
As has been noted earlier, under Hy in (2.4), the Y; are i.i.d., and hence, the vector R, = (Rn1, ..., Rnn)’
takes on each permutation of (1,...,n) with the common probability (n!)~!. If we denote this discrete

uniform probability measure by P,, we obtain immediately that
Ep,(La)=0 and Ep,(L.L,) = A2-Qn. (2.8)
A typical rank order test statistic is quadratic form in Ly, and is given by
Ln = A7*[L,QrLn], (2.9)

where Q, a generalized inververse of Qg, is defined by Q;Q.Q; = Q7. For small values of n,
the exact null hypothesis distribution of £, can be obtained by direct enumeration of all possible (n!)
equally likely realisations of R,,. Although this enumeration process becomes prohibitively laborious as
the sample size becomes large, there are various permutational central limit theorems by which one may
easily approximate this permutation distribution by a (central) chi squared distribution with g degrees of
freedom (DF) when Q, is of full rank (¢). The right hand tail of the null distribution of £, can therefore
be used to find out a critical level I, o corresponding to a given level of significance o : 0 < a < 1), such

that if x:‘;,a stands for the upper a-quantile of the central chi squared d.f. with ¢ DF, then

lna = X2 3 1 —00. (2.10)

Under quite general regularity conditions, when 8 is # 0, Q; 1L, converges to a nonnull vector, so
that n=1L, converges to a positive number, while, by (2.10), n~ 1,4 = 0, as n = oco. Therefore, the

test based on L, is consistent against the entire class of alternatives for which the centering element of



Q; 'L, is different from 0. We may refer to Puri and Sen (1985) for some details. For this reason, local
alternatives are chosen in such a way that under such alternatives, £, has a nondegenerate asymptotic
distribution which may then be incorporated in the study of various asymptotic properties of such rank
order tests.

For a local (Pitman-type) shift alternative of the type
Hy B =By =n""2), for some fixed A € R, (2.11)

for large n,L, has closely a noncentral chi squared d.f. with ¢ DF and noncentrality parameter
A =~2 NQ~1A\/A?% where v is a functional of ¢, F and is formally defined by (2.19),it is assumed
that A2 converges to a finite positive limit A? as n increases, and similarly, n=!Q, converges to a p.d.
Q. Also, it is assumed that the generalized Noether-condition holds for the t;. For the normal scores
rank test, we have asymptotic optimality when the underlying F is itself a normal d.f., and moreover,
this particular test is asymptotically at least as efficient as the classical variance ratio (ANOVA) test for
all F belonging to a general class F; the equality of their asymptotic efficacies holds only for a normal F
which belongs to this class. For a logistic d.f., the test based on the Wilcoxon scores is asymptotically
optimal, while for an erponential d.f., the log-rank test is asymptotically optimal. In general, if the
d.f. F admits an absolutely continuous density f having a finite Fisher information I(f), and if we let
ay(k) = E¢s(Unx), k=1,...,n, where Up;y < --- < Un:p are the order statistics of a sample of size n

from a uniform [0,1] d.f., and the score generating function ¢;(u) is given by
¢1(uw) = —f(F~ 1 (w)/f(F~(w), v€(0,1), (2.12)

then the rank test based on the scores a}, (k) is asymptotically optimal when the underlying d.f. is F;
Hajek and Siddk (1967) is an excellent source for the theoretical motivation for such local optimality
properties of linear rank statistics.. For the specific multisample model, as has been treated earlier, if we

denote the average rank scores of the observations in the kth sample (with respect to the pooled sample

observations) by @, , for k = 1,...,¢, then the rank order test styatistic in (2.9) simplifies to
[
‘Cn = [Z nk(an,k - En)z ]/Az.; (213)
k=1

where @, is defined by (2.6). For this model, ¢ = ¢—1. For the Wicoxon scores, (2.13) reduces to the well
known Kruskal- Wallis test statistic, while the Brown and Mood median test statistic corresponds to the
scores a, (k) = 0 or 1, according as k is < or > (n+ 1)/2. In this multisample setup, L, actually tests
for the homogeneity of the d.f.’s F, ..., F. against alternatives which are more general than the simple
location or shift ones treated earlier. For example, if we let 7.s = P{Y,1 > Y;1},forr#s=1,...,¢,
then the Kruskal-Wallis test is consistent against the broader class of alternatives that the m., are not
all equal to 1/2 , which relate to the so called stochastically larger (smaller) alternatives. Thus, the

linearity of the model is not that crucial in this context. In the multisample model, when the scores are



monotone, £, remains consistent against stochatically larger (smaller) class of alternatives, containing
shift alternatives as a particular subclass of such a broader class of alternatives. This explains the
robustness of such nonparametric tests. In this context, we may note that the ranks R,; are invariant
under any strictly monotone transformation g(.) on the ¥;, so that if the g(¥;) = Y;* follow a linear
model for some g(-), a rank statistic based on the Y; and Y;* being the same will pertain to such a
generalized linear model setup. This invariance eliminates the need for Boz-Cor type transformations on
the Y; and thereby adds further to the robustness of such rank tests against plausible departures from
the model based assumptions. The situation is a little less satisfactory for testing subhypotheses or for
multiple comparisons, and we shall discuss them later on.

We present R-estimators which are based on such rank tests. Although for one and two-sample
location problems, such estimates were considered by Hodges and Lehmann (1963) and Sen (1963), for
general linear models, the developments took place a few years later. Adichie (1967), Sen (1968d) and
Jureckova (1971), among others, considered the simple regression model. For the linear model in (2.3),
let Y;(b) = Y; —=b't;, i=1,...,n, where b € RY, and let R.:(b) be the rank of Y;(b) among the
Y,(b), r=1,...,n,b € RI. In (2.5), replacing the Rn; by R,i(b), we define the linear rank statistics
L.(b), b € R%. As in Jaeckel (1972), we introduce a measure of rank dispersion :

N
Dp(b) = {an(Rni(b)) — @}Yi(b), b€ RY, (2.14)
i=1
where we confine ourselves to monotone scores, so that a,(1) < --- < an(n), for every n > 1. An

R-estimator of 8 is a solution to the minimization of Dy (b) with respect to b € R?, so that we write

B, = arg. min{D,(b) :b € RI}. (2.15)

It can be shown [viz., Jureckovd and Sen (1995, Ch. 6)] that Dn(b) is a nonnegative, continuous,
piecewise linear and convez function of b € R. Note that Dy, (b) is differentiable in b almost everywhere

and

(0/0b)Dn(b)lp. = —La(b°), (2.16)

whenever b is a point of differentiability of D, (). At any other point, one may work with the subgradient
VD,(b°). Thus, essentially, the task reduces to solving for the following estimating equations with
respect tob € R7 :

L.(b) = 0, (2.17)

where to eliminate multiple solutions, adopt some convention. These R-estimators are generally obtained
by iterative procedures (as in the case of maximum likelihood estimators for a density not belonging to the
exponential family), and, often, a one or two-step procedure starting with a consistent and asymptotically
normal (CAN) initial estimator serves the purpose very well; for some theoretical developments along

with an extended bibliuography, we refer to Jureckovd and Sen (1995). It follows from their general



methodology that under essentially the same regularity conditions as pertaining to the hypothesis testing
problem (treated before), the following first order asymptotic distributional representation (FOADR)
result holds:

B —B) =7""_ dnid(F(e:)) + 0p(n~/?), (2.18)
i=1
where dn; = Q;'(ti — t,), for i = 1,...,n, ¢(-) is the score generating function for the rank scores,
1
V= / é(u)gs(u)du, (2.19)
0

and the Fisher information score generating function ¢;(-) is defined by (2.12). Note that under a
generalized Noether Condition on the dy;, the classical (multivariate) central limit theorem holds for the
principal term on the right hand side of (2.18), so that on defining Q}, by Q;;Q;'Q;, = I, we obtain
from (2.18) and (2.19) that for large sample sizes,

./ D _

Qn(ﬂn - ﬂ) — N( 0)7 ZAZI )7 (220)
where A? is the variance of the score function ¢. For the normal theory model, the classical mazimum
likelihood estimator (MLE) agrees with the usual least squares estimator (LSE), and for this (2.20) hold
with v~2A? being replaced by o2, the error variance. As such, the asymptotic relative efficiency (ARE)

of the R-estimator, based on the score function ¢, with respect to the classical LSE is given by
e(R; LS) = v*0? /A%, (2.21)

which does not depend on the design matrix Q. In particular, if we use the normal scores for the derived
R-estimators, then (2.21) is bounded from below by 1, where the lower bound is attained only when
the underlying distribution is normal. This explains the robustness as well as asymptotic efficiency of
the normal scores R-estimators in such completely randomized designs. From robustness considerations,
often, it may be better to use the Wilcoxon scores estimators. Although for this particular choice of the
score generating function, (2.21) is not bounded from below by 1, it is quite close to 1 for near normal
distributions and may be high for heavy tailed ones. If the error density f(-) is of known functional form,
one may use the MLE for that pdf, and in that case, in (2.20), we need to replace y~2A? by {I(f)}~!,
where I(f) is the Fisher information for location of the density f. Thus, in this case, the ARE is given
by

e(RsML) = 7 /{I(f)A%}, (2:22)

which by the classical Cramér-Rao inequality is always bounded from above by 1. Nevertheless, it
follows from the general results in Huskova and Sen (1985) that if the score generating function is
chosen adaptively , then the corresponding adaptive R-estimator is asymptotically efficient in the sense

-that in (2.22) the ARE is equal to 1. The same conclusion holds for adaptive rank tests for 3 as well.



As has been mentioned earlier, the ranks Ry,;(b) are translation-invariant so that they provide no
information on the intercept parameter #. Thus, for testing any plausible null hypothesis on 6 or
to estimate the same parameter, linear rank statistics are not of much use. This problem has been

eliminated to a greater extent by the use of signed rank statistics, which is typically defined as

Sp = Z sign(Y;)an(RY), (2.23)

i=1

where the rank scores an(k) are defined as in before and R;; is the rank of |Y;| among the [Y;],
r=1,...,n. Under the null hypothesis of symmetry of the d.f. F about 0, the vector of the |Ry;|
and the vector of the sign(Y;) are stochastically independent, so that the set of 2" equally likely sign-
inversions generates the exact null distribution of S,. This may also be used to derive the related
R-estimator of . Such a test and estimator share all the properties of the corresponding test and es-
timator for the regression parameter. But, iﬁ the current context, there is a basic problem. The test
for B based on L,, being translation-invariant, does not depend on the intercept parameter (which
is taken as a nuisance one). On the other hand, for testing a null hypothesis on 6 or estimating the
same, the parameter 3 is treated as a nuisance one, and the signed ranks are not regression-invariant.
Thus, the ezact distribution-freeness (EDF) property may have to be sacrifice in favor of asymptotically
distribution-free (ADF) ones. An exception is the case when one wants to test simulataneously for § = 0
and 8 =0.

We denote a suitable R-estimator of 3 by ,Bn, and incorporate the same to obtain the residuals:
Vai=Y; —BLti, i=1,....n. (2.24)

For every real d,let B},(d) be the rank of [V,; — d| among the [Yur —d|, r=1,...,n,fori=1,...,n
Also let n
Sn(d) = sign(Yni — d)an(R}i(d)), deR. (2.25)
i=1

If the scores a,(k) are monotone (in k, for each n), then, it is easy to show that S.(d) is monotone
in d € R, and hence, we may equate S, (d) to 0 (with respect to d € R ) and the solution, say, b,, is
then taken as a tranlation-equivariant estimator of §. In the particular case of the sign statistic, 6, can
be expressed as the median of the residuals Y,.:, and for the case of the Wilcoxon signed-rank statistic,
it is given by the median of the midranges of these residuals. In general, for other score functions, an
iterative procedure is needed to solve for 6,., and in such a case, one may as well start with the Wilcoxon
scores estimator as the preliminary one, and in a few steps converge to the desired one. There is a basic
difference between this model and the simple location model where 8 is null: In the latter case, the
signed rank statistics based on the true value d = 6 are EDF, while in this case they are only ADF. To
verify that they are ADF, one convenient way is to appeal to some asymptotic uniform linearity results

on general signed rank statistics (in the location and regression parameters), and such results have been



presented in a unified manner in Chapter 6 of Jureékova and Sen (1995), where pertinent references are
also cited in detail.

Let us discuss briefly the subhypothesis testing problem for this simple disign. A prticular subhy-
pothesis testing problem relates to the null hypothesis that § = 0 against § # 0, treating B as a nuisance
parameter (vector). We have already observed that the basic hypothesis of sign- (or permutation) in-
variance does not hold when the above null hypothesis holds, and hence, EDF tests may not generally
exist. However, ADF test can be considered by incorporating the residuals Y, instead of the Y; in the
formulation of suitable signed rank statistics. Such tests were termed aligned rank tests by Hodges and
Lehmann (1962) who considered the simplest ANOVA model. Here alignment is made by substituting
the estimates of the nuisance parameters as is also done in the classical normal theory linear models.
A very similar picture holds for a plausible subhypothesis testing problem on the regression parameter

vector. To pose such a problem in a simple manner, we partition the parameter vector 8 as
B = (B1,B3), (2.26)
where 3; is a p;-vector, p; > 1, for j = 1,2, and p = p1 + p2- Suppose now that we want to test for
Ho:8,=0 vs. Hy:B,+#0, treating 3, as a nuisance parameter. (2.27)

Here also, under Hy in (2.27), the hypothesis of permutational invariance may not be generally true, and
hence, an EDF rank test may not generally exist. But, ADF rank tests based on aligned rank statistics
can be constructed as follows. Note that if in (2.3), we partition the t; as (t};, ti,)’, involving p; and p»

coordinates, then under Hy in (2.27), we obtain that
Yi = 6 +B%io+e,i=1,..,n (2.28)
Based on the model in (2.28), we denote the R-estimator of 3, by B,.5, and we form the residuals
Vai=Y: = BLotiz, fori=1...,n (2.29)

As in after (2.4), we define the aligned ranks R,; wherein we replace the Y; by the residuals Y,i. The
vector of linear rank statistics L, is then defined as in (2.5) with the ranks R,; being replaced by Rni.
Also, we partition this p-vector as (L., L%,)’, and our test is then based on the first component of this

aligned rank statistics vector. This is given by
Lny = Agz{f‘:u ;11.2I~'n1}a (2.30)

where A2 is defined as in (2.6), and defining Q, as in (2.7) and partitioning it into four submatrices ,

we have

Qni12 = Qnii — Qn12Q;2,Qna1- (2.31)

It follows from the general results in Sen and Puri (1977), further streamlined and discussed in detail

in Section 7.3 of Puri and Sen (1985) that under the null hypothesis in (2.27), Ln1 has asymptotically
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chi-squared distribution with p; DF, so that an ADF test for Ho in (2.27) can be based on the critical
level given by xf,ha, the upper a-percentile of this distribuion. For local alternatives, the noncentral
distribution theory runs parallel to the case of the null hypothesis of 8 = 0, with the DF p being replaced
by p1 and an appropriate change in the noncentrality parameter as well. The regularity conditions
governing these asymptotic distributional results have been unified and relaxed to a certain extent in
Chapter 6 of Jureékova and Sen (1995).

Another important area where nonparametrics have played a vital role in such completely randomized
designs is the so called mized effects models. In this setup, we extend (2.3) as follows. Let Yi,...,Y, be
independent random variables, such that associated with the ¥; there are (i) given design (nonstochastic)
(g-)vectors t; and (ii) observable stochastic concomitant (p-)vectors Zi,i = 1,...,n. Then conditionally

on Z; = z, we have
Fi(ylz) = P{Yi<ylZi=2}=F(y—a-B'ti-7'z), i=1,...n (2.32)

where 8 and ~ are respectively the regression parameter vector of Y on the design and concomitant
variates, and « is the intercept parameter. In this linear model setup, in a nonparametric formulation,
the d.f. F is allowed to be arbitrary (but, continuous), so that the finiteness of its second moment is not
that crucial. In a parametric as well as nonparametric formulation a basic assumption on the concomitant
variates is that they are not affected by the design variates, so that the Z; are i.i.d.r.v.’s. Here also,
in a nonparametric formulation, the joint distribution of Z; is taken to be an arbitrary continuous one
(defined on R?). The Chatterjee-Sen (1964) multivariate rank permautation principle plays a basic role
in this nonparametric analysis of covariance (ANOCOVA) problem. Basically, for the (p + 1)-variate
observable stochastic vectors (Y;, Z})’, with respect to the g-variate design vectors t;, one can construct

a ¢ x (p+ 1) linear rank statistics vector with the elements
Lnjk, forj=0,1,...,p, k=1,...,q, (2.33)

where Lno = (Lno1," -, Lnog)’ stands for the linear rank statistics vector for the primary variate (Y)
and is defined as in (2.5) [ with the Rn; being relabeled as Ry | , while for the jth coordinate of the
concomitant vectors, adopting the same ranking method as in before (2.5) and denoting these ranks by
Rpijyi = 1,...,n), we define the linear rank statistics vector Lp; = (Lnj1,- -+, Lnjq)’ as in (2.5), for
j =1,...,p. Note that ranking is done separately for each coordinate of the concomitant vector and
the primary variate, so that we have a (p + 1) x n rank collection matrix Rn. The Chatterjee-Sen rank
permutation principle applies to the n! column permutations of R, (which are conditionally equally
likely), and this generates conditionally distribution-free (CDF) tests based on the linear rank statistics
in (2.33). We may allow the scores [defined before (2.5)] to be possibly different for the primary and
concomitant variates, so for the jth coordinate, these scores are taken as anj(k), ¥ =1,...,n; j =
0,1,...,p, and further, without any loss of generality, we may standardize these scores in such a way that

adopting the definitions in (2.6), the @,; are all equal to 0 and the A;';j are all equal toone, j =0.1,....p.
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Consider then a (p+ 1) x (p + 1) matrix V,, whose diagonal elements are all equal to one, and whose

elements are given by .
Unji = Zanj(Rnij)anl(Rnil)a L =0,1,..,p (2.34)
i=1
We denote the cofactor of vneo in Vi, by Vo, Vno = (Unot, - . ., Unop)’, and denote by
w, = V;olov,w, (2.35)
Unoo = Unoo — v;wV;olovno, (2.36)
and
L}, =Lno— (Ln1,...,Lnp)wn. (2.37)

Let us define Q, as in (2.7) and consider the quadratic form

Lro = {(L7)' Q7 (7o)} vroo: (2.38)

which may be used as a test statistic for testing the null hypothesis Hg : 8 = 0 against alternatives
that 8 # 0 , treating § and <y as nuisance parameters. Asymptotic nonnull ditribution theory, power
properties and optmality of such aligned rank order tests (for local alternatives), studied first by Sen
and Puri {(1977), can most conveniently be unified by an appeal to the uniform asymptotic linearity of
aligned rank statistics, and the results presented in Section 7.3 of Puri and Sen (1985) pertain to this
scheme; again, the linearity results in their most general form have been presented in a unified manner
in Chapter 6 of Jureckova and Sen (1995). This latter reference also contains a good account of the
recent developments on regression rank scores procedures which may have some advantages (in terms of
computational simplicity) over the aligned rank tests.

In the above formulation of a mixed-effect model, the linearity of the regression of the primary
response variate on the design and concomitant variates has been taken for granted, while the normality
of the errors has been waived to a certain extent by less stringent assumptions. While this can, often,
be done with appropriate transformations on primary and concomitant variates, there are certain cases
where it may be more reasonable to allow the regression on the concomitant variate part to be rather of
some arbitrary (unknown) functional form. That is, the regression on the design variates is taken to be
of a parametric (viz., linear) form, while the regression on the covariates is taken as of a nonparametric

form. In this formulation, for the conditional d.f.’s in {2.32), we take
Filylz)=F(y—-B8't:—0(z), i=1,...,n, (2.39) .

where the d.f. F(.), B etc. are all defined as in before, while 6(z) is a translation-equivariant (location-
regression) functional, depicting the regression of the errors Y; — 8't; on the concomitant vector Z;. The
basic difference between (2.32) and (2.39) is that in the former case, the linear regression function ¥’z

involves a finite dimensional parameter v, while in the latter case, the nonparametric regression function
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f(z) may not be finite-dimensional, nor to speak of a linear one. Thus, here we need to treat f(z) as
a functional defined on the domain Z of the concomitant variate Z. This formulation may generally
entail extra regularity (smoothness) conditions on this nonpartametric functional, and because of that,
the estimation of 6(z), z € Z, may entail a comparatively slower rate of convergence. Nevertheless, as
regards the estimation of the fixed-effects parameters (i.e., 3), the conventional +/n-rate of convergence
still holds, although these conventional estimators may not be fully efficient, even asymptotically. A
complete coverage of nonparametric methods in this type of mixed-effects models is beyond the scope

of this treatise; we may refer to Sen (1995a,c) where a detailed treatment is included.

3 Two-way layouts nonparametrics

The simplest kind of designs for two-way layouts are the so called randomized block or complete block
designs. Sequal number of times in each block, and the treatment combinations may Consider a ran-
domized block design comprising n(> 2) blocks of p(> 2) plots each, such that p different treatments
are applied to the p plots in each block. The allocation of the treatments into the plots in each block
is made through randomization. Let Y;; be the response of the plot in the ith block receiving the jth

treatment, for i =1,...,n,j = 1,...,p. In the normal theory model, it is assumed that
Y;]=#+ﬁ1+‘r]+el‘77 Zzlianajzlvap' (31)

where yu is the mean effect, §; is the ith block effect, 7; is the jth treatment effect, and the e;; are
the error components which are assumed to be independent and identically distributed according to a
normal distribution with zero mean and a finite, positive variance 2. The block and treatment effects
may either be fixed or random, rersulting in the heirarchy of fixed-, mixed- and random-effects models.
As in the case of one-way layouts, a departure from such model assumptions can take place along
the routes of nonlinearity of the model, possible heteroscedasticity, dependence or nonnormality of the
errors. It is quite interesting to note that the method of m-ranking, one of the earliest nonparametric
procedures, has a basic feature that it does not need many of these regularity assumptions, and yet
works out in a very simple manner. Suppose that we desire to test the null hypothesis of no treatment
effect, treating the block effects as nuisance parameters. Under this hypothesis, in (3.1), the 7; drop out,
so that the observations within a block are i.i.d.r.v. We may even allow the errors to be exchangeable
(instead of i.i.d.), and this implies that under the above hypothesis, the observations within a block are
ezchangeable or interchangeable r.v.’s. Therefore, if we denote by r;; the rank of Y;; among Yi1,- .., Yip,
for j = 1,...,p, then, for each i(= 1,...,n), under the hypothesis of no treatment effect, the ranks
Ti1, ..., Tip are interchangeable r.v.’s. Moreover, for different blocks, such intra-block rank-vectors are
stochastically independent of each other. Therefore, the problem of testing the null hypothesis of no
treatment effect in a randomized block design can be reduced to that of testing the interchangeability

"of the within block rankings. On the other hand, this hypothesis can also be stated in terms of the
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exchangeability of the within block response variables, and in that setup, the linearity of the block and
treatment effects are not that crucial. This scenario leaves us to adopting either of the two routes for
nonparametrics in two-way layouts: (i) Incorporate such intra-block rankings with the major emphasis
on robustness against possible nonnormality of the errors as well as nonlinearity of the effects, and (ii)
Deemphasize the normality of errors, but with due respect to the linearity of the model, incorporate
inter-block comparisons in a more visible manner to develope appropriate rank procedures which are
robust to possible nonnormality of errors. Aligned rank procedures are quite appropriate in this context,
and we shall discuss them later on. For intra-block ranking procedures, we consider a set of scores
{a(1),...,a(p)} which may depend on p and some underlying score generating function (but not on the
number of blocks). In general these are different from the ones introduced in Section 2 (for one-way
layouts). For optimal scores for specific types of local alternatives, we may refer to Sen (1968a). Then,

we may define

Tnjr—'Za(r,—j), i=1L1...,p. (3.2)
i=1
Moreovere let ’ »
Ezp—lza(j), IZ [a(j) —a]? (3.3)
i=1 j=1
Then, a suitable test statistic for testing the hypothesis of no treatment effect is the following:
P
Ln=(nA)"1Y (T : (3.4)
j=1

In particular, if we let a(j) = j,j = 1,...,p, the Ty; reduce to the rank sums, @ = (p + 1)/2 and
A? = p(p+ 1)/12, so that (3.4) reduces to the classical Friedman (1937) x? test statistic:

P n

X:= p+1 Z ZTU P+1)/2) (3.5)

j=1 i=
Similarly, letting a(j) = 0 or 1 according as j is < (p + 1)/2 or not, we obtain the well known Brown
and Mood (1951) median test statistic. In either case, and in general, for (3.4), the exact distribution
(under the null hypothesis) can be obtained by complete enumeration of all possible equally likely
(p!)™ permutations of the intra-block rank vectors, each over (1,...,p). This process may become quite
cumbersome as p and/or n increase. Fortunately, the central limit theorems are adoptable for the
intra-block rank vectors which are independent of each other, and hence, it follows that under the null
hypothesis, £, has closely the central chi squared distribution with p — 1 DF when n is large. The
main advantage of using an intra-block rank test, such as £ in (3.4), is that it eliminates the need for
assuming additive block effects, and also, the treatment effects may not be additive too. As in the case
of the Kruskal-Wallis test, introduced for one-way layouts in the last section, stochastic ordering of the
treatment responses (within each block) suffices for the consistency of the test based on such intra-block

ranks. Thus, such tests are very robust. The Brown-Mood median test is asymptotically optimal for
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local shift alternatives when the underlying d.f. F is Laplace, while for a logistic F, the Friedman x? is
locally optimal. We may refer to Sen (1968a) for a detailed discussion of the choice of locally optimal
intra-block rank tests in some specific models. The main drawback of such intra-block rank tests is that
they may not adequately incorporate the inter-block information as is generally provided by comparisons
of observations from different blocks. For example, if the block effects are additive then a contrast in the
ith block observations has the same distribution as in any other block, and hence, some comparisons of
such contrasts may provide additional information and may lead to more efficient tests.There are various
ways of inducing such inter-block comparisons in rank tests, and among them the two popular ones are
the following: (i)Ranking after alignment, and (ii) weighted ranking.

In a weighted ranking method, instead of having the sum statistics >, a(rij), the intra-block
ranings or rank scores are weighed to reflect possible inter-block variation, and such weights are typically
inversely proportional to some measure of the within block dispersion of the observations (such as the
range or standard deviation or even some rank measures of dispersion). Thus, we may use the statistics
Son i wnia(rij),j =1,..., p, where the wy; are nonnegative weights, and are typically random elements.
The analysis can then be carried out in the same manner as in before. Note that such a measure of intra-
block dispersion is typically independent of the ranks r;;, so that given these weights, a very similar test
statistic can be worked out by reference to the (p!)” permutations of the intra-block rankings. However,'
such a law is conditional on the given set of weights, so that we end up with conditionally distribution-
free tests instead of EDF tests based on £,. One way of achieving the EDF property of such weighted
ranking procedures is to replace the wy; by their ranks and allowing these ranks to have all possible (n!)
realizations. Since these have been pursued in some other chapters of this volume (and also presented
in detail in Chapter 10 of HBS, Vol.4 ), we shall not go into further details. The main drawback of
such weighted ranking procedures is that the choice of the weights (typically stochastic) retains some
arbitrariness and thereby introduces some extra variability, which in turn may generally lead to some
loss of efficiency when in particular t.he block effects are additive. This feature is shared by the other type
of weighing where the ranks of the wy; are used instead of their ordinary values. However, if the block
efects are not additive and the intra-block error components have the same distribution with possibly
different scale parameters, weighing by some measure of dispersion alone may not be fully rational, and
hence, from that perspective, such weighing procedures are also subjected to criticism.

Ranking after alignment has a natural appeal for the conventional linear model even when the errors
are not normally distributed. The basic idea is due to Hodges and Lehmann (1962) who considered a
very simple setup, and it has been shown by Mehra and Sarangi (1967) and in a more general setup
by Sen (1968b) that such procedures are quite robust under plausible departures from model based
assumptions (including homoscedasticity, normality and independence of the errors). As such, we may
like to provide more practical aspects of this methodology. To motivate the alignment procedure, we go

back to the conventional linear model in (3.1) [sans the normality of the error components]. Suppose
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further that the block-effects are either random variables (which may be taken as i.i.d.) or they are fixed,
and the errors in the same block are interchangeable or exchangeable random variables. In this way, we
are able to include both fixed- and mixed-effects models in our formulations. Let Y; be a translation-
equivariant function of (Y;1,...,Y;,), such that it is symmetric in its p arguments. Typically, we choose
a robust estimator of the ith block mean response, and in order to preserve robustness, instead of the
block average, median, trimmed mean or other measures of central tendency can be adopted. Define

then the aligned observations as
Y=Y;-Y,j=1,...,pi=1,...,n. (3.6)

By (3.1) and (3.6), we may write

)71‘_7‘ =7T; — T+ &;j; €; = e€;; — &, (3.7)
forj=1,...,p;i=1,...,n, where 7 and &; are defined by the same functional form as the Y;. Note that
for each i(= 1,...,n), the joint distribution of (&;1, ..., &) is symmetric in its p arguments, and moreover

these vectors have the same joint distribution for all blocks. Therefore, it seems very logical to adopt
an overall ranking of all the N = np aligned observations (Y11,...,Ysp) and base a rank test statistic
on such aligned ranks. The only negative feature is that the overall ranking procedure distorts the
independence of the rank vectors from block to block; nevertheless they retain their permutability, and
this provides the access to developing conditionally distribution-free tests for testing the null hypothesis
of no treatment effect.

Let Y’m, AU }N’,-:p be the order statistics corresponding to the aligned observations }7;1, o f’i,, in the
ith block, for i = 1,...,n. Then under the null hypothesis of interchangeability of the Y;;,j = 1,...p,
for each i(= 1, ...,n), the 3751- has the (discrete) uniform distribution over the p! possible permutations of
the coordinates of ()7,-;1, .. .,)7,-:,,), and this permutation law is independent for different blocks. Thus, we
obtain a group of (p!)” of permutations generated by the within block permutations of the aligned order
statistics, and by reference to this (conditional) law, we can construct conditionally distribution-free
tests for the hypothesis of interchangeability of the treatments. Under block-additivity, the vector of
intra-block (aligned) order statistics are interchangeable, and hence, rakning after alignment (ignoring
the blocks) remains rational. For the aligned observations, we define the ranks R;; as in the preceding
section, so that these R;; take on the values 1,..., N, when ties among them are neglected, a case that

may be done under very mild continuity assumptions on the error distributions. For the pooled sample

size N, we introduce a set of scores an(k),k = 1,..., N, as in Section 2, and consider the aligned rank
statistics : "
Tn; =n"'> an(Ri), i=1,....p. (3.8)
i=1
Also, define
P
ENizp'IZaN(Rij), 1=1,...,n; (39)
Jj=1

16



Vv = {n(p— 1} D {an(Ry) —ani}*. (3.10)

i=1 j=1
Then an aligned rank test statistic for testing the hypothesis of no treatment effect can be formulated

& =n{d_[Tn; —an *}/Vw, (3.11)

=1

For small values of n (and p), the permutational (conditional) distribution of L3 can be incorporated to
construct a conditionally distribution-free test for the above hypothesis, while, it follows from Sen (1968b)
that for large sample sizes, under the null hypothesis, £, has closely chi squared distribution with p—1
DF. Various robustness properties of such aligned rank tests have been studied in detail by Sen (1968c).
It has been observed there that it may not be necessary that the aligned errors €;; have the common
distribution for all ¢ (i.e., blocks). In particular, for the heteroscedastic model, allowing the scale
parameters to vary from block to block, it was observed that an aligned rank test may have greater ARE
with respect to the classical ANOVA test than in the homoscedastic case. Some of these details are also
reported in Chapter 7 of Puri and Sen (1971). Also, the alignment procedure remains applicable in the
mixed-effects model too, where the block effects being stochastic or not drop out due to alignment, and
hence, better robustness properties percolate. We shall discuss this aspect later on. More important is
the fact that the ARE of aligned rank tests relative to the intra-block rank tests based on conjugate
scores is generally greater than 1, particularly when p is not so large. For example, for the Wilcoxon
score rank statistics, the ARE of the aligned rank test with respect to the Friedman x2 test is > (p+1)/p
, so that for small values of p, there may be considerable gain in using an aligned rank test, albeit in
terms of model robustness, the intra-block rank tests fare better.

In the above development, it has been assumed that each treatment is applied to one plot in each
block. We may consider a more general case where the jth treatment is applied to m;(> 1) plots in
each block, for j = 1,...,p. Welet M = stp mj and N’ = nM. Thus, the aligned ranks span
over the set {1,...,N'}, and the average of the nm; rank scores for the jth treatment is denoted by
Twn+j,j = 1,...,p. The defdinition of Vy is modified accordingly. Then, as a direct extension of (3.11),
we may consider the following aligned rank test statistic:

P
% = [n/ VNI my[Twe s — an]®. (3.12)
j=1
This test is also conditionally distribution-free and under the null hypothesis, it has asymptotically
central chi squared distribution with p — 1 DF. It enjoys all the robustness and asymptotic efficiency
properties as in the particular case of all the m; being equal to 1.

Next, as in the case of one-way layouts treated in Section 2, we consider the problem of simultaneous
testing for all paired treatment differences. We may note here that there are some variations in the
formulation of such tests. Treatments vs. control tests compare simultaneously all the treatments

with a control, so that there is some asymmetry in this setup. A simultaneous test for all possible
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(g) treatment differences preserves the symmetry to a greater extent. It is also possible to formulate
such simultaneous tests based on intra-block rank statistics, but they may not incorporate inter-block
information, and hence, may be a little less efficient than the ones based on aligned rank statistics. The

basic results are due to Sen (1970a). We define the T, j and V as in before and let
_ 1/2 ) 1/2 | .
Wy =max{n'"*|Tn; — Tn|/VN' " :1<j#1<p} (3.13)

and let Rp o be the upper 100a% point of the distribution of the sample range of a sample of size p
drawn from a standard normal distribution. Then the simultaneous (aligned) rank test is based on the

decision rule that rejects all pairs (j,!) of treatments as significantly different for which

R\ Ty j = Tni| > Rpo Va2 (3.14)

This simultaneous test is also conditionally distribution-free, and asymptotically it has the level of
significance a.

In many situations the treatments represent an increasing sequence of doses, and it may therefore
be of natural interest to test for the null hypothesis of equality of treatment effects against an ordered
alternative Hy : 7 < --- < 7, (with at least one strict inequality). Tests for such ordered alternatives
may also be based on intra-block rank statistics, but they may be comparatively less efficient for the same
reason (of not incorporating inter-block information that effectively). Hence, aligned rank tests are often
advocated. We define the aligned rank statistics Ty j, j = 1,...,p, as in before, and let a = (a1, ..., ap)’
be a vector of real coefficients satisfying the conditions : (i) 3°7_; a; = 0, (i) 25, ¢} = 1 and (iii)
a; < az <...< ap with at least one strict inequality. Then a test statistic may be defined conveniently

as

p
Qn = n[Z aj{TN,j — EN}]/VAI/Z. (3.15)

j=1
The choice of a may be made on some heuristic considerations, and in this context, Bayesian solutions
have also been incorporated. Among such possibilities, the following one [viz., Sen (1968b)] provides a

simple interpretation from linear trend point of view. We let
a; =V12{j - (p+1)/2}/{p(P* - D}'/%, j=1,....p. (3.16)

The resulting test statistic

14
Q5 = V12n{d_(j - (p+1)/2)Tn ;}/{p(p* — 1)V }'/? (3.17)

i=1
is conditionally distribution-free (under Hyp) and asymptotically normal. It provides a robust and efficient
test for ordered alternatives. Some other nonparametric tests for ordered alternatives in randomized
blocks are discussed in detail in Chapter 7 of Puri and Sen (1971).

As in Section 2, we will consider here R-estimators of the treatment effects 7i,..., 7, treating the

block effects as nuisance parameters (or possibly random variables, in a mixed-effects setup). In this
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context, the aligned rank statistics introduced earlier play a vital role. For each pair (j,1), consider the
paired differences Y; j; = Yi; — Yy, fori = 1,...,n. We write Aj; = 7; — 7 and e; ;1 = eij — e, for
i=1,...,n;1 < j <!l <p Then the e;j have a df. symmetric about 0, so that we may use an
aligned signed rank statistic S, ji(d) as in (2.25) and equating this to 0 (with respect to d), we obtain
an R-estimator (A, ;i) of Aj. In this process, we obtain the set of (5) estimators Ani,1<j<I<p.
We let Aj; = 0 and note that by construction, An,lj = —-An,j,, for all j,{ = 1,...,p. In the case
of least squares estimation theory, the estimators are linear, so that an estimator of a contrast in the
7; can be expressed in terms of such paired difference estimators in an arbitrary manner. But, the
R-estimators may not be strictly linear, and hence, for small number of blocks at least, there remains
some arbitrariness in combining such paired difference estimators to yield an estimator of an arbitrary
contrast. Lehmann (1963a,b, 1964) suggested a simple modification to yield compatible R-estimators of

contrasts in randomized block designs. For this define

P
An:j‘: —IZAn,ﬂ:jzl’-'-ap; (318)
=1

AgijzA":j'_Aanjal: L....,p (319)

Like R-estimators in Section 2, the compatible estimators are translation-equivariant, and tey are robust,
consistent and asymptotically normally distributed. However, the way (3.19) has been formulated,
expressions for the asymptotic dispersion matrix of the compatible estimators are slightly different from
the ones in Section 2 [cf. (2.20)]. Towards this we introduce the following parameters. Let G(.) be
the common marginal d.f. of the paired difference e, j;, and let G*(.) be the bivariate d.f. of a pair
(ei ji,€ijir), where I # I'. Note that the process of alignment distorts the independence of the errors
even when the original e;; were stochastically independent. Also, let ¢(-) be the score generating function

for the rank statistics. Then we define A% = fol ¢?(u)du and

+(6,G) = /R (d/d2)$(G(x))dG(z), (3.20)

and

26 = [ Z / Z 6(C(2))$(C())dG" (. 1). (3.21)

The score generating function is taken to be skew-symmetric about u =1 /2, so that ¢ = 0. Moreover, by
definition in (3.19), the Afw-l are expressible as paired differences of the p statistics An,j.,j =1,...,p.
Hence, to study the joint distribution of all these (g) estimators, it suffices to consider only the p —1
vector n'/2(Ag 1, — Aup, -+ -, A o1, — Ap-1p)- This vector has asymptotically a p — 1 variate normal
distribution with null mean vector and dispersion matrix o2 [Ip_1 +1,-11,_,], where 1,1 = (1, .., 1y,

and
o2 = [(p - 1)/pl{A% + (p — 2)As(G)}/7*($, G)- (3.22)
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If we compare the dispersion matrix of the compatible R-estimators with that of the raw R-estimators
derived earlier, we obtain that the ARE of the compatible estimators relative to the raw ones is given
by

e(A% A) = pA%/{2[A* + (p - 2)2s(G)]}, (3.23)

and using the easily verifiable inequality that A4(G) < (1/2)A2, it readily follows that (3.23) is bounded
from below by 1 ( albeit, this is usually quite close to 1). This shows that such compatible R-estimators

are also preferable on the ground of their asymptotic efficiency properties. For details, we may refer to

Puri and Sen (1971,Ch.T7).

4 Nonparametric MANOVA

In a general multivarite setup, the response Y is a p-vector, for some p > 1, and as in Sections 2
and 3, these responses may be related to various factors {fixed-, random- or mixed-effects models). In
the conventional case, one assumes that a linear model as in (2.1) or (3.1) holds where the e; or e;;
are distributed according to a multinormal distribution with null mean vector and a positive definite
(unknown) dispersion matrix X. The scope for departures from this assumed model is even more in the
multivariate case, as normality is even less likely to hold in the multivariate than univgriate cases. In
design aspects, of course, the situation is quite similar to that in the univariate case, but in statistical
analysis, the situation is more complex in multivariate models. In nonparametrics, there are additional
impasses in the multivariate case. In the conventional linear model, affine transformations are often
used to simplify the distribution theory of appropriate test stastistics which are invariant under affine
transformations or of estimators which are affine-equivariant. In ranking procedures, usually ranking is
made for each of the p coordinates separately. Thus, in one hand, such procedures are invariant for a
larger group of (not necessarily linear) strictly monotone transformation for each coordinate, while, on
the other hand, they are not affine-invariant. Therefore, in nonparametrics for multivariate analysis of
variance (MANOVA), affine-invariance is not generally true. This does not, of course, pose a serious
problem, as in many cases, the coordinate responses may not be quite conformable in a sense that an
arbitrary linear compound will have a meaningful interpretation. In such a case, coordinatewise ranking
with due emphasis on their dependence may serve the purpose much better. The other serious problem
with nonparametrics in MANOVA is the lack of EDF property in a general setup. For example, in Section
2 we have posed the permutational invariance property which yields n! equally likely permutations of
{1,...,n} for the rank vector. In the multivariate case, we have the rank matrix of order p x n, so
that the total number of possible realizations of these matrices is equal to {n!)?, and the distribution
of. the rank matrix over this set depends, in general, on the underlying (multivariate) distribution.
Thus, a test based on the coordinatewise ranking, in general, may not be genuinely distribution-free.

A very similar situation arises in two-way layouts when one uses the method of ranking separately
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for each coordinate. This drawback of multivariate nonparametrics has been eliminated largely by the
rank permutation principle due to Chatterjee and Sen (1964). This rank permutation priciple has been
exploited in various directions , and up-to-date accounts of these developments are given by Puri and
Sen (1971,1985). We present here only a brief synopsis of the main highlights of these developments
with due emphasis on the design aspects.

First, consider the multivariate analogue of (2.3) where the Y; are p-vectors, so that 6 and the e;
are p-vectors too, while 3 is a p x ¢ matrix. Then e; is assumed to have a p-variate (continuous) d.f. F,
which need not have independence structure. The hypotheses in (2.4) remain the same. Let us denote
the rank of ¥;; among the ¥;;,r =1,...,n by Rpjj, fori=1,....,n;5=1,...,p. As in {2.5), for the jth
coordinate, we denote the vector of linear rank statistics by Ly, for j = 1,...,p, where, we may even
take the scores an(.) possibly different for different j(= 1,...,p); we may add an additional subscript j to
an(.) to do so, but for notational simplicity, this refinement is suppressed. We also define a p x p matrix
V, as in (2.34), and the rank collection matrix R, is defined as in after (2.33). The permutational
(conditional) probability law is then generated by the n! (conditionally) equally likely permutations of
the columns of the rank collection matrix. We define Q, as in (2.7), and if we denote the p x ¢ matrix

of the Lpj; by Ly, as in (2.8), we will have here Ep,(Lyn) = 0 and
Ep_[vec Lyvec LI ] = A? - V,8Qa, (4.1)

where vec L,, is the pg-vector obtained from Ly, by stacking the columns over each other and ® stands
for the Kronecker product of the two matrices. Then, as an extension of (2.9) to the multivariate case,
we have the test statistic

Ly, = A %[vec L,,(Va®Qn)~ vec Ly]. (4.2)
For small values of n, the exact (conditional) permutational distribution of £,, can be obtained by direct
enumeration of all possible n! column permutations of the rank collection matrix. This process becomes
cumbersome as n increases, but, for large n, this permutation distribution aas well as the unconditional
null hypothesis distribution of £, can be approximated by the central chi squared distribution with
pg DF. Thus, we may proceed as in (2.10) with g replaced by pg, and also, we may consider, in the
same vein, local Pitman-type alternatives as in (2.11) and consider asymptotic power properties of such
multivariate rank tests. There are some difficulties concerning the characterization of asymptotically
optimal rank tests (compare with (2.12)), and further regularity conditions are needed to establish such
properties in a general multivariate setup. We may refer to Puri and Sen (1985, Chs.5-7). For the
specific multisample multivariate case, treated in the univariate case in Section 2, the expression for £,

in (4.2) simplifies to the following:
Ln=) nk(@nk —8) V;(3nk — a,)/A2, (4.3)
k=1

where the 3@, x and &, are defined as in (2.13), but for the vector case. The discussion following (2.13)

pertaining to the specific choice of scores also applies here.
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Let us consider the R-estimation problem for the parameter matrix 8. As a natural generalization
of (2.14), we may consider here a measure of rank dispersion D,(B) defined for B € R?9, wherein we
replace the any(Rni(b)) by a,(Rni(B)), @, by @, and Y;(b) by Y;(B) = Y; — B(t; — t,,); also we need to
introduce a matrix to depict the scale factors and possible dependence of the coordinates of the vector Y.
Because the rankings are made separately for each coordinate and affine invariance may not generally
hold for such R-estimators, we find it convenient to adopt a coordinatewise R-estimation procedure.
Based on the aligned scores and aligned observations on the jth coordinate, we define a measure of rank
dispersion as in {2.14), for j = 1,..., p. Then proceeding virtually as in (2.14) through (2.17), we arrive
at the following:

Lnj(b;) =0, j=1,...,p, (4.4)
where each b; is a g-vector. If we express 8’ = (B},...,/3,), then the jth estimating equation in (4.4)
yields the R-estimator an of B;, for j = 1,...,p. Each of these estimators (vectors) satisfies a FOADR
result given in (2.18) where we need to attach a subscript j to each Bn,ﬂ, v, ¢, F and e; to indicate their
dependence on the jth coordinate, for j = 1,...,p. We denote the dispersion matrix of the p-vector
(7 e (Fylein)), - - -, 75 '¢(Fip)(eip))) by ¥, and then as a direct extension of (2.20) in the multivariate

case, we arrive at the following: As n — oo,
(B, — B)Q; > N(0,#8), (45)

where Q7 is defined as in (2.20). In this matrix case, the definition of the ARE in (2.21) needs some
modification, and the usual A-, D- and E-optimality (efficiency) criteria can be incorporated to suit
the purpose. Again, we may refer to Puri and Sen (1985, Ch.6) for some of these details.

Let us consider next the MANOVA nonparametrics for the two-way layouts. As in Section 3, here also,
we may consider the intra-block ranking and ranking after alignment cases separately, and compare their
merits and demerits. The intra-block ranking method was considered by Gerig (1969) who developed a
multivariate extension of the Friedman x? test statistic and used the same intra-block permutation groups
to develop a permutationally (conditionally) distribution-free test for the null hypothesis of no treatment
differences accross the ¢ variates. Let us go back to (3.5) and denote by r( ) the rank on the kth variate
for the jth treatment in the ith block, when ranking is made separately for each variate and within each
block. Thus, we will have n rank matrices R;,¢ = 1,...,n, where each R,- is a ¢ x p matrix with the

elements r( )

We define a ¢ x p matrix of rank statistics 7 r =n"137 ,J ,j =1,...,pk=1,...,q,
express this into a pg-vector (as in earlier this section), a.nd also define a ¢ x ¢ matrix V, = ((vrt)) by

letting

vn ki = [n(p— 1)) ZZ{r (p+1)/2Hrl) — (p+1)/2}, ki=1,...,q. (4.6)

i=1 j=1

Then, the multivariate analogue of (3.5) is given by

Lo=nd S5k 7 ) — o+ 1)/217) - (0 + 1)/2)], (4.7)

j=lk=1Il=1
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where the vA! stand for the elements of the matrix V;!. The permutational (conditional) distribution of
L,, over the set of (p!)" intra-block column permutations of the rank matrics can be approximated well
by the chi squared distribution with g(p — 1) DF when n is large, and asymptotic power properties have
been studied by Gerig (1969) and others. Gerig (1975) has also extended this test for the multivariate
analysis of covariance (MANOCOVA) problem, and has studied its robustness properties too. The
modifications follow along the lines of (2.35) through (2.39), and hence, we omit the details. As in the
univariate case, such intra-block rank tests are generally not fully informative (as they may not recover
the inter-block information to a satisfactory extent), and for this reason, aligned rank procedures in
MANOVA and MANOCOVA are often preferred. The prospect for weighted rankings is somewhat less
apparent here as the weight would depend on the intra-block dispersion matrices, and hence, more
delicate considerations are needed in a rational formulation. Most of the developments on aligned rank
procedures in MANOVA/MANOCOVA are due to Sen (1969b, 1984a), and presented succinctly here.
We start with the conventional linear model in (3.1), as extended to the multivariate case, and we
drop the assumption of normality of errors. Thus, the response vector for the jth treatment in the
ith block is a g-vector Y;;, and as such, in (3.1), we change the elemnents on the right hand side by
appropriate g-vectors. For each coordinate (k = 1...,q), we cosider a suitable translation-equivariant
intra-block measure of central tendency, and denote these by Y;,i=1,...,n. Then, the aligned response
vectors are defined as in (3.7) as Y~',-J- =Y - ?;,j =1,...,p;i=1,...,n. Foreach k(=1,....q), we
introduce the aligned ranks RE;),j =1,...,p;i=1,...,n, as in before (3.8), and we define the set of
aligned rank statistics T,EI;),j =1,...,p;;k=1,...,q, as in (3.8) [where we may even allow the score
function a,(.) to vary from one coordinate to another, but for notational simplicity this is dropped]. As

a natural extension of (3.10) to the multivariate case, we define then Vv = ((vn k1)), by letting for each

k’q: ]','"iqi

N = ZZ{a (RY) —al)Haw(RY) -3V}, (4.8)
i=17=1
where the intrablock average rank score vectors have the elements denoted by ag\,),, fork=1,...,q;1=
1,...,n. Then, a multivariate version of the general aligned rank statistic in (3.11) is given by
Ny (]) _ 26y i) _ 2 0)
= TLZZZU%{TN,J' —ay' HTy; —ax h (4.9)
J=lk=1li=1

where the vf\,’ are the elements of V;,l. Here also, a conditionally (permutationally) distribution-free
test based on L% can be obtained by reference to the set of (p")V intrablock column permutations of the
aligned observation matrices, and for large n, this conditional distribution as well as the unconditional
null hypothesis distribution can be well approximated by the central chi squared distribution with ¢(p—1)
DF. Various asymptotic (power and efficiency) properties of this nonparametric MANOVA procedure
are studied by Sen (1969b). MANOCOVA nonparametrics also follow the same line of attack as in

(2.35) through (2.38). Multivariate extensions of simultaneous (aligned) rank tests for all possible pairs
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of treatments and all possible coordinates follow by using the Roy (1953) largest root criterion.

5 Nonparametrics for Incomplete Block Designs

In this section, we deal with a general subclass of two-way layouts where possibly due to a large number
of treatments, blocks of smaller size are used, so that not all treatments are applied to all blocks. In the
literature, these are referred to as incomplete block designs (IBD). Consider n replications of an IBD
consisting of b blocks of constant size k(> 2) to which r(> k) treatments are applied in such a way that
(i) no treatment occurs more than once in any block, (ii) the jth treatment occurs in r;(< b) blocks,
and (iii) the (7, j')th treatments occur together in r;;:(> 0) blocks, for j # j* = 1,...,v. Let then S;
stand for the set of treatments occurring in the ith block, : = 1,...,b. In the sth replicate (s = 1, ..., n),
the response of the plot in the ith block and receiving the jth treatment is a stochastic p-vector X,;;,
for j € Si;2 = 1,...,b. In the univariate case (i.e., p = 1), intra-block rank tests for IBD’s are due
to Durbin (1951), Benard and Elteren (1953) and Bhapkar (1961a), among others. For some special
IBD’s, the studies made by Elteren and Noether (1959) and Bhapkar (1961a) reveal the low {Pitman-)
efficiency of such tests, particularly when k is small. For this reason and motivated by the results in
the preceding two sections, we shall mainly consider here suitable aligned rank tests for IBD’s. We shall
only summarize the results and for details, we may refer to Sen (1971a).
We consider the model

Xsij = By + B, + 75+ €545, ] €S, (5.1)
fori=1,...,b;s=1,...,n, where the u_ stand for the replicate effects, B,; for the block effects (nuisance
parameters in fixed-effects models or spurious random vectors in mixed-effects models), 71,..., 7, are
the treatment effects (parameters of interest) and the £,;; are the error vectors. We may set without
any loss of generality Z;=1 7; = 0. Instead of the specific multinormality assumption on the errors, it is
assumed that for each (s, 1), {&,ij,j € Si} have jointly a continuous cumulative d.f. G(xy,...,xx) which
is symmetric in its k argument vectors. This includes the conventional assumption of independence and
identity of distributions of all the N (= nbk) error vectors as a special case. As in Section 3 or 4, we
define the aligned observations by

Ysij =xsij —k_l szila .7 e'siv t= 1)"'7bv s = 11“'7"7 (52)
l€S,
and let Rgfj) be the rank of Ys(i’;.) among the N aligned observations on the kth response variate, for

JES,i=1,...,b,s=1,...,n;k=1,...,q. Also, for each i(=1,...,b), let

Tii=Ti— kTN Y T, ej=e -kl e, (5.3)

JES; leS:

forj€S8;,i=1,...,b;s=1,...,n. Then, we have

Y“-j.:‘rj’i-{—ei,j, ].ESi’ ISISb. 158371. (54)
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We want to test the null hypothesis of no treatment effect, i.e.,
Ho:mi=---=7,=0, (5.5)

against the set of alternatives that at least one of the 7; is different from 0. Note that for each (s,17),
the e;;;, j € S; are exchangeable random vectors, so that under the null hypothesis, by (5.4), the aligned
vectors within each block (in each replicate) are also exchangeable. This provides the same permutational
invariance structure as in the case of complete blocks, and hence, similar conditionally (permutationally)

distribution-free aligned rank tests can be constructed. Let us denote by
Pi={ile[LLt):jesS}, j=1,...,v (5.6)

Then, for each k(= 1,...,q), we introduce scrores ayk(a),a@ = 1,..., N as in Section 3 (or 4), and

denote the block averages of these scores by ag\,zz , replicate averages by a( )

Eg\l,c). Let then

~and the grand average by

=n_IZZaNk(RS;)),j:l,...,v;k:l,...,q. (5.7)

s=14i€P;
Recall that the r; may not be all equal, and so may not be the r;;. This calls for some adjustments
for the permutational covariance matrix. We define two matrices ng) = ((vN)kk,)) [ =1,2.. where for

kkE=1,...q,

n b
- (k) k k' —(k")
Wik = (bR) S0 S S {amn (R - a6l Hamn (RS -3 ); (5.8)
s=11i=1 j€S;
and ,
UE\’ kk' = n'b - Z 555“ 6(1\11‘3][6(1\,;33 - _dg\l;s)] (59)
s=1:=1

Also, define two (design) matrices Al) = ((a lJ )),1 = 1,2, by letting

ag, = [krjdjy —rizl/(k = 1),0a §§)’ = [brj;» —r;R]/(b = 1), (5-10)
for j, 7/ =1,...,v, where d;; is the usual Kronecker delta, and r;; = r;. Further, let
Wy = ALV + A@gVY. (5.11)
Finally, let
1
Ty = (T Toy T T, (5.12)
and
= @D, ) 8D, T)). (5.13)

Then, as in Sen (1971a), we may consider the following aligned rank order test statistic:
Ly = (Tn —n)Wx(Tn - n), (5.14)
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where W stands for a generalized inverse of Wy . Keeping in mind the class of balanced, partially

balanced and group divisible IBD’s, as in Sen (1971), we may assume that
Rank of A() = y—1, (5.15)

and

A® and AW — (- 1)A®  are positive semi-definite. (5.16)

For small n, the exact permutation distribution of L}, can be obtained by direct enumeration, but the
task becomes prohibitively laborious as n increases. However, as in Sen (1971a), we claim that under
the null hypothesis, the permutational (conditional) distribution of £} as well as the unconditional
distribution can be approximated by the central chi squared distribution with ¢(v — 1) DF. For studies
of asymptotic power and relative efficiency properties of such aligned rank tests in IBD’s, we may refer
to Sen (1971a). In the univariate case (i.e., for ¢ = 1), for balanced incomplete block designs, the ARE
results for intra-block rank tests were studied by Elteren and Noether (1959). In general, aligned rank
tests fare better for IBD’s, particularly when k& is small. It has been observed in this context that aligned
rank tests are also robust to possible heteroscedasticity of the joint error distributions from replicate
to replicate, a case that may often arise in practice when the replicates are not so homogeneous in
a statistical sense. In the nonparametric case, so long as the linearity of the model can be assumed
(but the errors need not be normally distributed), the same block totals can be put into an alignment
scheme for generating aligned rank tests which provides additional information on the hypothesis testing
problem. These details can be sketched as in Sen (1971a), although it would be more advantageous for
us to report on this nonparametric recovery of interblock information in a comparatively more general
setup in clinical trials in a later section. As such, we omit the details here. We conclude this section
with a note that robust R-estimation of treatment effects (contrasts) in IBD’s can be formulated very
much in the sameway as in Section 3 [viz., {(3.18) through (3.23)]. In an univariate setup, this was done
by Greenberg (1966) and Puri and Sen (1967), while by virtue of the comments on R-estimation in the
multivariate case made in Section 4, these findings extend readily to the general model treated in this

section. Therefore, we omit these details.

6 Nonparametrics in Factorial Designs

Nonparametric ANOVA, MANOVA and (M)ANOCOVA models presented in the preceding sections
relate mostly to the case where treatmentwise there is a one-way layout, although incorporating blockwise
variations, it may be a two-factor model. There are many situations where the treatments represent the
combinations {at two or more levels) of two or more factors, so that we may not only be interested in
their main effects but also in their possible interactions. In a normal theory model, such interaction

effects and main effects all can be handled by suitable (linear) transformations on the original response
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variables, and similar test statistics can be used to test for plausible null hypothesis of no interaction or
no main effects. The situation is more complex in the nonparametric case. The primary impasse stems
out of the fact that whereas the least squares methodology addresses well the invariance under affine
transformations on the response vectors, their (coordinatewise) ranks are not affine-invariant. Moreover,
for testing the null hypothesis of no interaction, it may be more reasonable to assume that the main
effects of the various factors may not have insignificant differences, so that they should be treated as
nuisance parameters. Although some people have tried the rank transformation approach, referred to in
Section 3, to mimic the usual ANOVA tests based on such transformed vectors, there are some serious
theoretical deficiencies of such procedures in a general multi-factor experiment. The formulation of
null and alternative hypotheses requires a much more restricted setup for such rank transformed data
sets (hinging on strictly monotone but arbitrary nonlinear transformations), and, often, there is a big
compromise on the underlying robustness aspects (which were the original motivations for favoring a
nonparametric approach). For these reasons, we shall not emphasize on such rank transformations in
factorial designs, and we continue exploring aligned rank procedures in such designs. We shall mainly
follow the approach of Mehra and Sen (1969).

We consider the case of replicated two-factor experiments with one observations per cell. Let Yij
be the response variate for the cell (j, k) in the ith replicate, and assume that the following fixed-effects
factorial model holds:

Yijk = pi +v5 + T + Yik + Wik, {6.1)

fori=1,...,n;5=1,...,p;k=1,...,q, with n > 2,p > 2,q > 2. Here the p; relate to the replicate
effects, v; and 7% to the main effects for the two factors, v« for the interaction effects of the two factors,

and wi;x are the residual error components. We may set without any loss of generality

n 14 q
Zu;:O,Zuj=0,ZTk=0, (6.2)
i=1 i=1 k=1

and q
¥o=q Y vk =0,i=1,...,p (6.3)
k=1
P
Y.k =p—12'yjk=0,k=1,...,q. (6.4)
3=l
It is further assumed that for each ¢, (w;11, . . .,wipq) have a joint d.f. G which is a symmetric function of

its pg arguments, and these n (pg-)vectors are independent. This includes the conventional assumption
of i.i.d. structure of the w;jx as a particular case, and more generally, it allows each replicate error vector
to have interchangeable components which may still be dependent, a case that may arise if we allow the
replicate effects to be possibly stochastic, so that we would have then a mixed effects factorial model.
The null hypothesis of interest is

Ho: T = ((4j)) = 0, (6.5)
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against alternatives that I'" is non-null. We would like to formulate suitable aligned rank tests for this
hypothesis testing problem.

For an m(> 1), let 1,, = (1,...,1)’, and consider the following intra-block transformations which
eliminates the replicate and main effects. Let Y; = ((Yijx))pxq, £2i be the corresponding matrix of the

error components, and let
Zi = (I, - p ' 1,1,)Yi(I, — ¢7'1,10),i=1,...,n; (6.6)
Ei= (I, —p '1,1)02:(I; ~ ¢7'1,1}).i=1,...,n. (6.7)
Then from (6.4), (6.6) and (6.7), we have
Z;, =T 4+ E;,i=1,...,n (6.8)

So that on this transformed model, the nuisance parameters are all eliminated. Note that the assumed
interchangeability condition on the intra-block error components implies that for each i(= 1,...,n),
the components of E; remain interchangeable too. This provides the access to using permutationally
distribution-free procedures based on the stochastic matrices Z;,7i = 1,...,n. On the other hand, the E;
satisfy the same restrains as in (6.3) and (6.4), so that there are effectively only (p — 1)(¢ — 1) linearly
independent components among the pg ones (for each ).

It follows from (6.7) and the assumed interchangeability of the elements of §2; that the joint distri-
bution of E; remains invariant under any of the possible p! permutations of its columns , and also under
any of the possible ¢! permutations of its rows. Thus, there is a finite group G of (pl¢!) permutations
which maps the sample space of E; onto itself and leaves the joint distribution invariant, so that working
with the n independent aligned error matrices, we arrive at a group G, of transformations having (plg!)"
elements, and this provides the access to the exact permutation distribution of sutable test statistics
based on these aligned observations. We may proceed as in Section 3 with intra-block rankings of these
aligned observations and get a robust test, although it may not generally compare favorably in terms of
power with aligned rank tests based on overall rankings, justifiable on the ground that the Z; do not
contain any block effect.

Let Ri;x be the rank of Z;;x among the N = npg aligned observations Zsu,,s = 1,...,n;u =
1,...,p;v=1,...,q, and define the scores ay(r),r = 1,..., N as in Section 3. For notational simplicity,

we let nije = an(Rijk),t=1,...,n;5=1,...,p;k=1,...,¢g and let

g
M5 =1 Mgk J= 1,0 (6.9)
k=1
P
nik=pt Y Mk k=1,...,q (6.10)
Jj=1
P g
m. = (pg)~! ZZU;‘jk, (6.11)
j=1k=1
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fori=1,...,n,and let . = n-! Z?=1 n;... Define the aligned rank statistics as

Lyjk =n"'Y migk; Ly = ((Lwj))- (6.12)

i=1

Then the rank-adjusted statistics are defined by
Ly = (Ip “‘P_llpl;)LN(Iq - q‘llqlé) = ((thk))asay- (6.13)

Let us also define the rank measure of dispersion:

g P

Vo =[n(p-1)(g— 1] ZZ > gk — mi — mik +mi)? (6.14)

i=1j=1l k=1

Then, as in Mehra and Sen (1969), we consider the following test statistic:

P 4q
Li =[n/VN] DD AL} (6.15)

j=1k=1

which is analogous to the classical parametric test statistic based on the variance ratio criterion. It may
be appropriate here to mention that as in the case of two-way layouts, if we have a mixed-effects model,
where the treatment effects and their interactions are fixed effects, while the block effects are stochastic,
the alignment process eliminates the block-effects (fixed or not), and hence, aligned rank tests are usable
for such mixed-effects models too. At this stage, it may be appropriate to point out the basic difference
between the current alignment procedure and an alternative one, the rank transformation procedure. In
the latter case, one simply replaces the original Y;;x by their ranks (within the overall set) and performs
the usual ANOVA test for interactions based on such rank matrices. Basically, rank transformations
relate to the sample counterpart of the classical probability integral transformation. For a contnuous d.f.
F, the latter is continuous, but still the former is a step function. Moreover, the latter is a bounded and
typically nonlinear (monotone) function, so that the original linear model fitted to the Y;;x may not fit
to their transformed counterparts F(Y;jx), when F is highly nonlinear. Thus, even if the block effects
are eliminated by intra-block transformations, such nonlinearity effects are present in the foundation
of rank transformations, and this makes them generally much less adoptable in factorial designs. In
particular, if the main effects are not null, their latent effects in the rank transformation procedure may
cause serious problems with respect to the validity and efficiency criteria. The aligned ranking procedure
sketched here is free from this drawback as long as the basic linearity of the model in (6.1) is tenable.

For small values of n, p and ¢, the exact (conditional) permutational distribution of L} can be
obtained by considering the (p!g!)" (conditionally) equally likely row and column permutations of the
matrices H; = ((nij4)),i = 1,...,7n, and as this process becomes unpracticable for large n, we appeal
to the following large sample result: As n increases, the permutational (conditional) as well as the
unconditional null distribution of £} can be approximated by the central chi squared distribution with

(p—1)(¢—1) DF. For various asymptotic properties we may refer to Mehra and Sen (1969). The procedure
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extends readily to more than two-factor designs, and all we have to do is to define the aligned observations
first to eliminate the nuisance parameters, and on such aligned observations we need to incorporate
appropriate groups of transformations preserving invariance of their joint distributions, and with respect
to such a group, we can obtain the permutational (rank) measure of dispersion. This provides the access
to constructing variance-ratio type statistics based on such aligned rank statistics. This prescription is
of sufficient general form so as to include the general class of IBD’s treated in Section 5. Moreover, the
results discussed here for univariate response variates percolate through general incomplete multiresponse
designs (IMD) pertaining to clinical trials and medical studies [viz., Sen (1994a)]. At this stage we may
refer to rank transformations as have been advocated by a host of researchers. However, one has to keep
in mind that the scope of such procedures for blocked designs may be considerably less than the aligned
ones presented here.

In practice, replicated m(> 2)-factor experimental designs crop up in a variety of ways, and in this
setup, often, each of these factors is adapted at two levels, say 1 and 2. This way, we are led to a class of
n replcated 2™ factorial experiments. For such designs, a similar ranking after alignment procedure, due
to Sen (1970b), works out well. Let j = (ji,...,jm) represent the combination of the levels jy, ..., jm of
m factors (A1, ..., Am), where jy = 1,2,for k = 1,...,m. We denote by J the set of all (2™) realizations
of j. For the ith replicate, the response of the plot receiving the treatment combination j is denoted byA

Xij’ and we consider the usual linear model (sans the normality of the errors):

X5=B+[) ()9 m)/2 +ej, jeT, i=1,...n, (6.16)

reR
where < a,b >= a’b, the 8; represent the block effects, the e;j are the error components, r =
(r1,...,rm)" with each r; either 0 or 1, R is the set of all possible (2™) realizations of r, and the

treatment effects 7y are defined as follows.
™= Tpnianm, T #0; 190=0, (6.17)

where for each j(=1,...,m), A? = 0. Thus, T4, = T1,0,...,0,---» TAm = 70,...,0,1 Fepresent the main effects,
Ta,,A, = Ty, 0 etc. represent a two-factor interaction, and so on; 7r Is a k-factor interaction effect if
<r,1> ==k, fork=1,...,m. Asin earlier sections, we assume here that for each i(= 1,...,n), the
set {eij, j € J} consists of interchangeable r.v.’s, and the block-effects need not be fixed; they may as
well be stochasic. Let now P be a subset of R, and suppose that we want to test the null hypothesis

Hyp:{mrreP}=0, (6.18)

against the set of alternatives that these effects are not all equal to 0.
Since (6.16) involves the block effects as nuisance parameters (or spurious r.v.’s), by means of the

following intra-block transformations, we obtain the aligned observations. These aligned observations
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provide both the least squares and R-estimators of the 7r. Let

tp =270 37 (-)9T X reR, i=1,...,n (6.19)
JebfJ

Then we may write {;r = 7r + gir, for every r € R, where the g; r are the corresponding aligned
error components. It is easy to verify that these g; r remain exchangeable r.v.’s too, within each block.
Moreover, it has been shown by Sen (1970b) by simple arguments that univariate d.f.’s for these aligned
errors are all symmetric about zero, and all their bivariate d.f.’s are diagonally symmetric about 0.
Actually, the joint distribution of these aligned errors (within each block) is also diagonally symmetric
about 0. Thus, for the R-estimation of the rr, we may use the (marigal) set ¢; r,i=1,...,n, and as in
Section 2 [see (2.25)], incorporate a general signed rank statistic to yield the desired estimator. These

are based on i.i.d.r.v.’s, and hence, no residuals are needed to reconstruct the estimators. As regards

rank tests for the null hypothesis in (6.18), we may consider the n i.i.d.r. vectors
(tir,r€P), i=1,...,n, (6.20)

and use multivariate signed-rank test statistics, displayed in detail in Chapter 4 of Puri and Sen (1971).
Asymptotic properties of such tests, studied in detail there, remain in tact for such aligned rank tests
in 2™ factorial experiments. Extensions to confounded or partially confounded designs have also been

covered in Sen (1970b).

7 Paired Comparisons Designs: Nonparametrics

In order to compare a number (say, (> 2)) of objects which are presented in pairs to a set of (say,
n(> 2)) judges who verdict (independently) a relative preference of one over the other within each pair,
the method of paired comparisons (PC), developed mostly by the psychologists, allows one to draw
statistical conclusions on the relative positions of all the objects. Paired comparisons designs (PCD}) are
thus incomplete block designs with blocks of size two and a dichotomous response on the ordering of the
intra-block plot yields. There are several detours from this simple description of PCD. For example, it
may be possible to have observable responses (continuous variates) for each pair of objects: This will
relate to the classical IMD with two plots in each block, so that, the results developed in earlier sections
would be appliocable here. Hence, we skip these details. Another route relates to patred characteristics
so that ordering of the two objects within each pair may have four possible outcomes (instead of the
two in the case of a single characteristic). Nonparametrics for such paired comparisons for paired
characteristics were developed by Sen and David (1968) and Davidson and Bradley (1969,1970),among
others. A general account of such PCD methodology is given in David (1988) where other references are
also cited. A general characteristics of such paired comparisons procedures is that circular triads may

* arise in a natural way, and this may lead to intransitiveness of statistical inference tools when viewed from
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a decision theoretics point; the problem becomes even more complex in a multivariate setup. However,
following David (1988) we may say that it is a valuable feature of the method of paired comparisons that
it allows such contradictions to show themselves..., and hence, the methodology developed addresses this
"isuue in a sound statistical manner. As in earlier sections, it is also possible to work out the (M)ANOVA
and (MJANOCOVA models side by side, and following Sen (1995b), we summarize the main results
along the same vein.
Paired comparisons procedures in a multivariate setup rest on suitable representations of probability

laws for multiple dichotomous attributes. Let us consider p(> 1) dichotomous attributes, and let 1 =

(71,...,1p)', where each i; can take only two values 0 and 1, for j = 1, ..., p. The totality of all such 2P
realizations of 1 is denoted by the set I, and consider a stochastic p-vector X = (X1,..., X;)’, such that
P{X=1}=m(i), i€eZ. (7.1)

This probability law is defined on a 2P-simplex IT = {x(i) > 0, Vi € Z; ;. 7(i) = 1}, so that there
are 27 — 1 linearly independent elements in II. Since there ate ¢ objects (forming (;) pairs ), the total
number of linearly independent parameters is equal to {27 — 1} (5), and this is generally large when ¢
and /or p is not small. We consider the following modification of the Bahadur (1961) representation for

multiple dichotomous attributes. Let
7 = P{X;=i}, i=0,1;1<j<p. (7.2)

We denote by 6; = 71'((,];),]' =1,...,p. Also, forevery l : 2 <1< p;1 < < -- < i <p, define an {th
order association parameter

0,y = 6i, -+ -4 (ID), (7.3)

where there are (’,’) such parameters, for [ = 2,..., p. Taking into account the set of §’s, marginal and

association parameters, we exhaust the totality of 2P — 1 linearly independent parameters. We denote

this set by ©@ = {6;,...;,,1 <i; < ...< § < p;1 <! < p}, and arrive at the following.

p 2 14
: —_ (4) ij, 44,0, . . s
m(i) = H T T Z (=1)"71 74285, H 0, H Miox (7.4)
Jj=1 1<51<52<p r=1 s=1,#51,j2
3 4
i, i+, L . . 3
+ Z (_1) i1 T2 1301112]3 H [/ R H LE
1<71<52<53<p r=1 s=1,%#71.52.53

P
4+ -+ (—1)“+“'+1”91~-p H 6,.
r=1

The PCD models are atuned to such representations. By reference to the PCD model under con-
sideration, for the pair (4, j), we denote the response vector by X;; = (X,-(J-l), . ',Xg)) (each coordinate
being a dichotomous variable), and the probability law of X;; over the 2P-simplex is denoted by II;;,and

its transformation to © is denoted by ©;;, for 1 < i < j < t. Basically, PC methodology relates to
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comparing these (;) probability laws inducing a reduction of the parameter space to a subset of the ©;;

by an appeal to the Bahadur representation in (7.4). Thus, the basic null hypothesis of interest is
H, :©;; = ©°(unknown),V1<i< j<{¢, (7.5)

against the set of alternatives that the ©;; are not all the same. To motivate suitable nonparametric
testing procedures, we make an appeal to the classical Bradley-Terry (1952) model in the univariate case,
which has also been extended to the multivariate case by Davidson and Bradley (1969,1970) and others.
In the univariate case, dropping the superscript (j) in (7.2), we denote the corresponding probabilities
for the (%) pairs by m;,1 < ¢ < j <'t. Then, conceive of a set {ay,:--,a:} of positive numbers, such
that E;=1 a; = 1, and write

Qg

a; +a;

Tij = ,1§i<jst. (76)

Thus, the set of (;) unknown (probabilities) parameters is expressed in terms of ¢ — 1 unknown a’s, and
the null hypothesis can equivalently be expressed as H®:ay = .- = a; = t~!. With this formulation,
the (nonparametric) MLE of the a can be obtained from a given data set and can then be incorporated in
the usual (likelihood ratio-)type tests for the null hypothesis of homogeneity of the . In the multivariate
case, for each of the p coordinates, we would have such a-parameters (in all p(t — 1) in number), and
homogeneity of these (p-)vectors a;,i = 1,...,1 constitutes the null hypothesis of interest. In this
formulation of the hypotheses, the association parameters (i.e., the ©;;) are to be treated as nuisance
parameters, and usually they are assumed to be homogeneous. Davidson and Bradley (1969) in their
formulation assumed that any thrid or higher order association parameter is null, and incorporated
the classical likelihood ratio principle to formulate some large sample PC tests in a multivariate setup.
Sen (1995b) has shown that part of this assumption may not be that crucial, and also the results
extend directly to the MANOCOVA model. As in the case of multivariate nonparametric procedures,
treated earlier, such tests may no longer be genuinely distribution-free, and hence, suitable permutational
invariance structures are to be exploited to render them as permutationally (conditionally) distribution-
free; such procedures have been considered by Sen and David (1968) and Sen (1995b), among others.
We therefore summarize here these results in a general setup, and indicate the simplifications for simpler
models.

In a MANOCOVA setup, we partition the p responses into two subsets: primary responses, pi{(>1)
in number, and concomitant responses, pa(> 1) in number; p = p1 + p2. Consider then the component
null hypotheses: Hor 01 = - - = arp = t~1, forr = 1,...,p. The intersection of the p, null hypotheses
H,e,r = 1,...,p; is denoted by H};, and similarly, H}, denotes the intersection of the p; component
null hypotheses for the concomitant responses. Then the MANOCOVAPC null hypothesis can be stated

as

H; =H, | H,. (7.7)

For every pair (j.1) : 1 < j <! < t, we denote the observed cell frequencies by nj (i), where 1 ranges
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over the set I, and the total number of observations for this pair is nj. The marginal frequencies
are denoted by nj (i), for ¢ = 0,1;7 = 1,...,p, and the bivariate marginals by nji (i, ,), for
ip = 0,1,2, = 0,1;7# s = 1,...,p. Then as in Sen and David (1968), we may obtain some partial

maximum likelihood estimator (PMLE) of the association parameters as follows.

én:,._, =n! Z (njl‘,.s(OO) + Tl.j[,,-_,(ll) —nj1rs(01) — nj[,”(IO)), (7.8)
1<5<iLt
forr #s=1,...,p. Conventionally, we let bpp =1,forr=1,.. ., p, and consider the following matrix,

partitioned appropriately:

O, = ((bnrs)) = ((én,ﬂ))]_,[:lyz, (7.9)

where the partitioned matrices are of the order p; x p;, for j,{ = 1,2. Let us also introduce the statistics

Thjr = Z nj_ll/z[njz,r(O) - njl,r(l)], j=1,...,t; r=1,...,p, (7.10)
1=1,%j

and write

Tn’j = (Tn,jl, .. .,Tn,jp)/, i=1,...,t (7.11)

For the MANOVA test, as in Sen and David (1968) and Sen (1995 ), we consider the following test

statistic:

t
Lo =t T, ;6, Ta. (7.12)
j=1

In the univariate case (i.e., for p = 1), £, is exactly distribution-free under the null hypothesis; for p > 1,
this EDF property may not generally hold, but permutational (conditional) distribution-freeness holds.
Thus, for small sample sizes, a finite group of 2" possible sign-inversions can be incorporated to generate
the permutational distribution of £,. This procedure has been elaborated in Sen and David (1968) in
the bivariate case, and a very similar picture holds for general multivariate paired comparisons models.
For large sample sizes, the null hypothesis distribution of £, can be well approximated by the central
chi squared distribution with ¢ — 1 DF. For local alternatives, noncentral chi-square approximations also
hold.

Let us consider the MANOCOVAPC model in the same setup as explained before. We confine
ourselves only to the set of (p2) concomitant traits, and based on these responses, we construct a
MANOVAPC test statistic in the same manner as in (7.12). Let us denote this test statistic by Lna.
Under Hpg, Lno is permutationally (conditionally) distribution-free, and asymptotically, it has the chi
squared distribution with (¢ — 1)p2 DF. Then for testing the null hypothesis Ho; -assuming that Hgo
holds, we consider the test statistic

Loy = Lo — Lna. (7.13)

It may be noted that £}, may also be expressed in terms of concomitant variate adjusted T,; and a

“similarly adjusted covariance matrix; for some details, we may refer to Sen (1995 ). It follows from
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the above discussion that under the MANOCOVA model null hypothesis, £},; is also permutationally
(conditionally) distribution-free. Moreover, under the same null hypothesis, it has asymptotically the
central chi squared distribution with (¢ — 1)p; DF. Asymptotic nonnull distribution theory (for local
alternatives) for such MANOCOVAPC tests has been studied in detail by Sen (1995b), and it has been
shown that the ARE of this MANOCOVA test with respect to the corresponding MANOVA test (ignoring
the p; concomitant traits), in a general multivariate setup, is bounded from below by 1. Thus, at least
asymptotically, the MANOCOVAPC tests are better alternatives than the corresponding MANOVA PC
tests. A similar picture holds for the ARE of the MANOCOVAPC test with respect to the MANOVAPC
test based on all the p traits (when, in fact, there are p; concomitant traits). The intuitive reason for this
better ARE picture is that the concomitant traits do not contribute to the growth of the noncentrality
of the MANOVAPC test (based on the entire set), so that a larger DF with a common noncentrality

parameter leads to a decrease in the (asymptotic) power function.

8 Nonparametrics for Crossover Designs

In the context of clinical trials and/or biomedical studies, each experimental unit (or subject) receives
several treatments at different time-periods, so that there is a repeated measurement design (RMD)
flavor in the statistical modeling and analysis schemes pertaining to such experimental plans. The
simplest situation relates to a two-period design where for some subjects two treatments are administered
exclusively in these two periods in a specific order, while for others, it is done in the reverse order. For
this reason, it is also called a changeover or crossover design. A basic feature of such RMD’s is that
residual effects or carryover effects are likely to be a vital part of the response pattern, and hence, in
the modeling, such effects are to be incorporated in an appropriate manner. The more generality one
may want to achieve in this formulation, the more complex may be the actual statistical modeling and
analysis schemes, and hence, often, it is assumed that such residual effects are additive and have some
structural form. While most of such technicalities are discussed in some other chapters of this volume,
we may like to introduce only some specific crossover designs, and examine in that context how far
nonparamterics can be accepted as an alternative to standard normal theory parametrics.

Let us consider a p(> 2) period model wherein n experimental units are used, in such a way that for
the jth unit, in the ith period, treatment d(z, j) is used, where the d(7, j) belong to an index set relating
to the treatments administered in the experiment. We denote the response of the jth unit at the ith
period by Y;;, and consider the conventional linear model incorporating the first order carryover effects
pld(i — 1,5)):

Yi; =p+ta;+06; + Ta(,5) t Pd(i-1,5) + €5, (8.1)

fori=1,...,p;j =1,...,n, where u is the mean effect, a; are the period effects, 3; are the unit effects,

T4(i,j) are the treatment effects, p(d(0, j)) = 0, and the errors ¢;; are assumed to be i.i.d.r.v.’s with zero
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mean and a finite positive variance o

. In the normal theory model, again their error distribution is
assumed to be normal. This is the so called fired effects model with first order residual effects and it
corresponds to the familiar completely randomized design in the conventional case. Motivated by the
two-way layouts discussed earlier, we may also extend the model to randomized block designs where the
experimental units may be blocked into relatively homogeneous groups, and for each group, we have a
model as in above. Thus, there is a need to introduce block effects as well as interaction parameters
with respect to block vs. carryover parameters. In this context, it may be remarked that in clinical
trials or biological assays and other biomedical experiments, the very mechanism by which the blocks
are formulated, these block effects may be random, and, in turn, the carryoverxblock interactions may
also be random. Therefore, one may encounter a so called mized effects model, which may be presented
as:

Yijk = p+ i + B + &k + Tagi j k) + Pdi-1,5.k) T Eijks (8.2)

where i stand for the experimental unit, j for the period, and & for the block, with the parameters
defined accordingly. A simplified version of this mixed-effects model was considered by Grizzle (1965).
In the above formualtion when we treat the £;x as random, it is quite likely that the residual or carryover
effects pa(i_1,; ) are also to be treated as stochastic. In the normal theory model, all these stochastic
elements are assumed to be independent and normally distributed with zero means and appropriate
(unknown, positive) variances, so that the model can be interpreted in the light of conventional variance
components models. Although such an independence assumption may not be that unrealistic in a prac-
tical application, the assumption of normality may, however, not be tenable in a variety of situations.
Sans this normality assumption, the classical parametric procedures may lose their appeal on theoretical
(viz., optimality) as well as practical robustness) grounds, and hence, there is a general feeling that
nonparametric and robust statistical procedures are to be advocated in this context. The basic idea 1s to
incorporate the alignment principle as far as possible, so as to reduce the number of estimable parame-
ters and error components, so that classical multivariate nonparametric and robust methods discussed in
earlier sections can be implemented successfully. This alignment principle is isomorphic to the one in the
classical normal theory models. From more elementary practical considerations, Koch (1972) initiated
the use of some nonparametric methods in the statistical analysis of two-period-change-over design with
emphasis on applications, and Tudor and Koch (1994) have a recent review of applied works in this
field, which cast additional light on related applicational developments. As such, instead of providing a
general but abstract formulaion, we shall try to motivate the basic ideas with specific simplifications.
Let there be a complete block design with p periods (indexed as i = 1,...,p), b blocks (indexed
as j = 1,...,b), and m units in each block (indexed as k = 1,...,m). Consider a contrast in the p

measurements on the kth unit in the jth block :

14
= LYk, forj=1,...,b, k=1,...,m, (8.3)

=1
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where Y°%_, I; = 0. Then, by (8.2) and (8.3), we obtain that

P P
T = le‘{ai + Tagi k) + Pa(i-1,5.k)} + Zlifz'jk = Ok + €}k, say. (8.4)

i=1 i=1
In this formulation, sans normality of the errors ¢;;«, the aligned €7 may have distributions dependent
on the chosen [;, and this may cause some problems. To eliminate this drawback, we proceed as in the
case of aligned rank procedures treated earlier, and define the set of aligned observations as
P
Yo =Yie —p 1Y Yigk, i=1,...,p, (8.5)
i=1
forevery j =1,...,b; k=1,...,m. In the case of complete balanced (B)RMD’s, le{a,- + Tagi k) +
Pd(i—l,j,k)} = 0, for every j = 1,...,b; k = 1,...,m, so that if we consider the set of intra-block
intra-unit aligned observations:
P
Yo =Yu—p'Y Yok, k=1,...m; j=1,..bi=1,..p, (8.6)
i=1
then for the jth block, we have a set of m independent p-vectors Y2, = (Y, ..., Ypy) fork=1,...,m,
and for different blocks too, these aligned vectors are stochastically independent. We denote the collection
of m vectors Y7, k=1,...,min the jth block by Y? and the combined collection by Y°. In a similar
manner, we define the aligned error vectors e;?k, fork=1,...,m;j =1,...,b. Further, for each j, k,

we let @jk = (Gljk, . .,Hpjk)’, where eijk = ai + Ta(i,j,k) T Pd(i-1,5.k)> fori=1,...,p; j=1,....b; k=

1,...,m. Let n = km and N = kpm. Then we consider the aligned observation matrix Y° of order
p x n, expressed as (Y{;,...,YZ,), and a similar representation is made for e° and @°. As such, we
write

Y’ = @° + e°. (8.7)

This representation enables us to incorporate the general theory and methodology of multivariate non-
parametrics, discussed in Section 4. In this context, we may remark that for each j, k, whenever the
€ijk, 1 < i < p are interchangeable r.v.’s (a condition implied by the usual assumption that they are
i.i.d.), the eijk, 1 < i < p are also interchangeable, and for different j, k, these stochastic vectors are
independent. Thus, for these aligned error vectors, we have the same exchangeability assumption as in
the classical nonparametric (M-)ANOVA model. This intuitively suggests that aligned rank procedures
for the MANOVA model, considered in Section 4, can be incorporated in the current context too. There
is an additional simplification in this setup. The marginal d.f. of each e, 1is the same, so that while
ranking these aligned observations, we do not have to rank the elements separately for each of the p rows
in the matrix Y?; rather, we consider the overall ranking of all the N aligned observations. In order
to achieve this simplification, we need, however, to check a basic condition that estimable parameters
among the sets of period-effects, treatment-effects and carryover-effects can be expressed in terms of
@°-contrasts. This can easily be verified in the case of balanced RMD’s, while for general unbalanced

RMD’s, we may set appropriate design restraints which would ensure the same.
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The aligned observation matrix Y? plays also a vital role in robust estimation and testing procedures
for RMD’s. In the normal theory model, if we confine ourselves to the fixed-effects case in (8.1), then
the classical weighted least squares estimation (WLSE) methodology can be incorporated to characterize
the optimality of estimators and tests based on this aligned observation matrix. For the mixed-effects
model in (8.2), the situation is somewhat more complex due to the random block and interaction effects,
and the assumption of independence as well as normality of these components seems to be even more
vulnerable in actual practical applications. On the other hand, a characterization of the optimality
of the WLSE is, of course, limited to the basic assumption that all the stochastic elements in model
(8.2) are normally distributed and their independence-homoscedasticity condition holds. Any departure
from such model-assumptions can not only take away the optimality properties but also may signal
lack of validitty. As such, robust methods for drawing statistical conclusions are quite appealing in this
context. While the aligned rank based estimates and tests are generally globally robust, they may not
be (even asymptotically) fully efficient when the form of the underlying error distribution is not known.
In a local robustness perspective, if only small departures from the assumed model are contemplated, it
may be more appropriate to use M-estimators and related M-tests based on appropriate score functions.
Generally, such score functions are smooth but non-linear, and based on consideration of robustness,
they are usually bounded and monotone. For some detail discussion of such robust procedures for general

linear models, we may refer to Hampel et al. (1986) and Jureckovd and Sen (1995), among others. o

9 Clinical Trials and Survival Analysis

In clinical trials and life testing problems, although the setups are related to classical statistical designs,
general objectives and operational constraints, often, call for different types of designs and appropriate
statistical analysis schemes. Semi-parametrics and nonpametrics are more appealing than standard
parametrics in such designs. We illustrate this with a very simple life-testing model, which may as well
be adapted to a clinical trial setup. Suppose that we want to study the impact of smoking on longivity of
human beings. Usually, before a clinical trial is initiated on a specific human sector, it is planned to have
an animal study to study safe dosage, side effects and other causal effects, so that the actual clinical trial
can be administered with less restraints from medical ethics and other humanatarian points. Suppose
that two groups of monkeys are chosen, one for the placebo (no smoking) and the other for the treatment
(smoking) group. After a period of study, say eighteen months, these monkeys are sacrificed, and their
arterial cross-section at some specified location is examined for the constriction of the arterial channel.
Thus, for this arteriosclerosts problem, the response variable is the ratio of the open space to the entire
cross-section. It is hypothesized that smoking tends to make this ratio stochastically smaller, so that
essentially we have a two sample model for testing homogeneity against a one-sided alternative. But,

there are some basic differences between this life testing and the classical two-sample model. First, some
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animals may die before the study period is over, resulting in censoring. Such censoring may also arise
due to dropouts or withdrawals of the subjects due to causes other than early failures. Secondly, the
duration of the study period has to be decided on the basis of extraneous information on the associated
inhalation toxicity problem, and the outcome response variable may depend in a rather complex manner
on this study period, in the sense that a linear or log-linear regression may not be reasonable. Thirdly,
in an agricultural experiment, the treatment can be applied in a reasonably controlled manner, whereas,
in such life testing models, such a controlled experimental setup is not that expected. Finally, it may
not be very reasonable to assume that the response variable is exponentially or normally or lognormally
distributed, so that standard parametric procedures may not be very appealing in such a context. We
may refer to Sen (1984a,b) for some discussion of these aspects of multivariate nonparametrics relating
to medical studies. If the study has to cover human subjects, occupational factors, sex, diet, physical
exercise, age and many other concomitant variates may make the model far more complex for adoption of
parametric statistical analysis schemes. Robustness and validity are therefore of important considerations
in this respect.

In designing such clinical trials and/or life testing models, it may therefore be necessary to incorporate
various auxiliary and concomitant variates in the model, plan judiciously on the duration of the study,
identify the follow-up nature of the study, and check the appropriateness of repeated significance tests
and/or interim analysis for such experimental data sets. These factors have a great bearing on the
formulation of appropriate statistical analysis schemes.

Consider a simple (say, placebo vs. treatment) clinical trial or life testing model which we put
in a slightly more general regression model setup. Note that in survival analysis or life testing prob-
lemns, the failure times are nonnegative random variables typically with skewed distribution, and hence,
log-transformations are used to induce more symmetry (if not normality) on the distribution of the
transformed response variable (termed, the response metameter. Similarly, on the dosage, often such a
transformation is used to induce more linearity of the response-dosage regression, and such a transormed
dose is referred to as a dose metameter. With such transformations, we may have greater confidence
on the linearity of regression as well as symmetry of the response distribution, although it may not be
entirely satisfactory to assume normality or logistic form for such a distribution, as is typically done
in parametric analysis. Thus, from robustness and validity points of view, we shall allow the response
distribution to be arbitrary to a greater extent. Let there be n sujects under study, and let their (trans-
formed) responses be denoted by X1, ..., X, respectively. We assume that the X; are independent with
continuous distribution functions Fj(z), ..., Fa(z),z € R respectively. These d.f.’s may depend on the
dose levels to which the subjects are subjected, and we conceive of (nonstochastic) constants (regressors)

ty,...,tn (not all equal) which can be used to formulate a semi-parametric model :
Fi(z) = Fo(z - Bt;),z €R,i=1,...,n, (9.1)

where 3 stands for the regression parameter (unknown) and the d.f. F, is assumed to be continuous but
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otherwise of arbitrary form. As in Section 2, we may also consider a more general linear model [viz.,
(2.3)] where the t; are known vectors of regression constants and 3 is a vector of regression parameters.
The classical placebo vs. treatment setup is thus a special case of (9.1) where the t; are binary. While
this model is isomorphic to the classical linear regression model treated in Section 2, there is a basic
difference between the two setups. There, all the X; were assumed to be observable at the same time,
while here we have follow-up scheme. Let us denote the order statistics corresponding to X;,..., X, by
Xn:1 < -+ < Xnwn, where by virtue of the assumed continuity of F,, ties among these observations may

be neglected with probability 1. Let us also denote the anti-ranks by S, ...,S,, so that
Xs, = Xni, for i=1,...,n, (9.2)

and (S1,...,S,) is a (random) permutation of (1,...,n). At a time point t within the study period,
the observable random elements are the failures occurring before that time and the corresponding cs,
values; although the entire set of ¢;,..., ¢, is known at the beginning of the study. Thus, as we move

along the study, we gather an accumulating data set
{Xnj, ¢s;;5 <}, fori=1,...,n, (9.3)

where it may be possible only to have a subset of these elements due to censoring as well as with-
drawals/dropouts. For example, during the study period a (random) subset of failures may occur, while
the other subjects have failure times larger than the set endpoint of the study; this is referred to as right
truncation. Alternatively, the study may be so planned that it would be conducted until a prespecified
number (m < n) of failures take place, resulting in a stochastic duration of the study; this is referred to
as right censoring. In either case, there is some incompleteness in the observed data set due to possible
immature termination of the study. Actually, in biomedical studies, including clinical trials and epidemi-
ological or environmental investigations, cens;)ring may be much more complex than the ones referred
to above; we may refer to Sen (1995d) for some details of the interface of statistical censoring in practice
and the controversies arising in such a context. In the current context, we stick to some simple censoring
patterns as have been described before. In the above setup, from medical ethics point of view, it may
be reasonable to set an underlying condition that if there is a significant difference in the placebo vs.
treatment group responses (in our setup, 8 # 0), then we should terminate the study as early as possible
and switch all the subjects to the better group for better health prospects. For this reason, instead of
waiting until the study period is over, it may be desirable to look into the accumulating data set at
regular time intervals, resulting in the so called interim analysis schemes, and at each such prechosen
time-point, to perform a test of significance {on §) for possible stopping of the trial, resulting in the
so called repeated significance testing (RST) schemes. Such statistical analysis schemes in a broader
setup are also referred to as time-sequential procedures (Sen (1981b)), and monitoring on a continual
basis (i.e., at every failure point) is referred to as progressively censored schemes (PCS) (Chatterjee and

Sen (1973)).
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We start with the setup of (2.3)-(2.5). Let us examine the picture at the kth failure point X,.x. We
have the knowledge of the previous failure points as well as the corresponding anti-ranks Si, . . ., Sk; also,

we know that the remaining observations are right-cenrored. Thus, it seems very natural to project the

linear rank statistic Ly, defined in (2.5), onto the subspace generated by the anti-ranks Si,. .., Sk. For
this let us define n
a, ={n-k)! z an{j), fork=0,...,n -1, (9.4)
Jj=k+1
and conventionally, we let a},, = 0. Note that the ranks for the & observed failures are 1, ..., k respec-

tively, while each of the remaining (n — k) censored observation is given the average rank score ar, so

that at the kth failure point, the censored linear rank statistic is given by

Lok = 3 (ts, —En)an(i) +aje Y (ts; — tn) (9.5)
i<k i>k
= Z(tsl —tn)[an(?) — @), for k=1,...,n,
i<k

and conventionally, we let L,o = 0. We define Q, as in (2.7), and in the case of scalar t;, we denote

this by Q2. Let us also define @, and A2 as in (2.6), and for every k : 0 < k < n, we let
A= A~ (n =17 (n = )z, — 3" (9.6)
so that it follows by some simple arguments that
0= A%< A2, < < A%, = AL 97

Consider now an experimental scheme wherein the study is planned to be curtailed at the rth failure
point, for some prefixed positive integer r(< n) (so that we have a Type II censoring scheme). In the

case of scalar t;, we consider the test statistic

an = {Lnr}/{QnAnr}- (98)

If the null hypothesis (Ho) relates to the homogeneity of the F; (or, equivalelently, B = 0), following the
line of attack of Chatterjee and Sen (1973), we can claim that under Hy Z,, is EDF, and for large n,
Z.» has normal distribution with 0 mean and unit variance. Thus, an appropriate (one or two-sided)

test can be based Z,r. In the case of vector t;, parallel to (2.9), we define
Lnr = Ar:rz{L;er;LﬂT}‘ (9.9)

Here also, under the null hypothesis of homogeneity of the d.f.’s F;, Ln i1s EDF, and proceeding as in
after (2.9), we may argue that under the null hypothesis, L.r has asymptotically central chi squared
distribution with ¢ DF when Q is of rank g. Therefore an appropriate test for the null hypothesis
Ho : B = 0 can be based on the test statistic £,,. Let us now consider the Type I censoring or

truncation case. Here, for some prefixed time-point T,, the experiment is planned for the prefixed
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duration (0, T,]. Let r(T,) be the number of failures occurring in the study period (0, T,]. In this setup,
r(To) is a nonnegative integer valued random variable. It may be tempting to use the statistics Z,,(r,)
or Lar(1,) as appropriate test statistics. This is indeed possible. But, it may be kept in mind that
such statistics are not generally EDF, even under the hypothesis of homogeneity of the underlying d.f.’s.
However, as in Chatterjee and Sen (1973), we may argue that conditionally on r(7,) = r, Lp.(7,) OF
Znr(T,) is distribution-free under Ho, and they enjoy the same properties as in the case of Type II
censoring. In clinical trials, often, an interim analysis scheme is adopted wherein one plans to review
the accumulating dataset either at regular time intervals or after regular failure intervals. In that way,
one has an extension of Type I or II censoring schemes. For such schemes, RST procedures are generally
adopted to guard against an inflation of Type I error for the overall significance testing procedures. In
an extreme case, one may also like to monitor the study more or less on a continual basis, and in that
setup, a progressive censoring scheme (PCS) is more appropriate. With this motivation, we first consider
some PCS schemes, mainly adapted from Chatterjee and Sen (1973) and Sen (1981b).

Consider the (double-)sequence of PCS linear rank statistics {Lnx;0 < k < n}, defined by (9.9), and
let Bk be the sigma-field generated by {S;;j < k}, for k = 0,...,n. Then, it follows from Chatterjee
and Sen (1973) and Majumdar and Sen (1978) that under the null hypothesis of homogeneity of the d.f.’s
Fyi, ..., Fy, for every n, {Lnk,Bni;0 < k < n} is a null mean (vector) martingale (array). Moreover,
under the null hypothesis, these L, are (jointly) distribution-free, so that a test based on this collection
is also distribution-free under the null hypothesis. With the possibility of early termination in mind, we
may consider the following Kolmogorov-Smirnov type test statistics. First, consider the case of scalar

t;, so that the L, are scalar too. Let then
K} =max{Q; A Lnk : 0 < k < n}; (9.10)
K, =max{Q;'A; |Lak] : 0 < k < n}. (9.11)
It may be remarked that (9.10) is designed for testing agaianst one-sided alternatives 8 > 0, while
{9.11) is for the two-sided ones 8 # 0. The exact null hypothesis distribution of either of these statistics
can be obtained by enumeration of all possible n! realizations of S;,...,S, over the permutations of
1,...,n. This task becomes prohibitively laborious as n increases, and hence, for large values of n,

suitable distributional approximations are generally used. Towards these limit lawé, we may construct

suitable stochastic processes W, = {W,(t),0 <t < 1},n > 1, by letting
Wn(t) = QT:IAT_LILnku(t)a t S [07 1]7 (912)

where

ka(t) = max{k : A2, <tA2}, t€[0,1], (9.13)

and the A2, are all defined as in (9.6). Note that by definition,

K} = sup{W,(t):t€[0,1]} (9.14)
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K, = sup{|W.(@)|:t€]0,1]}. (9.15)

Incorporating the martingale property described earlier, it was shown by Chatterjee and Sen (1973) that
under the null hypothesis,

W, converges in law to W, as n — oo, (9.16)

where W = {W(t),t € [0,1]} is a standard Brownian motion on the unit interval [0,1]. This weak

convergence result in turn leads us to the following: Under the null hypothesis of homogeneity of the

d.f’s Fy,..., Fy, for every A > 0, as n increases,
P{K} > A Ho} — 2[1 — ®()\)], (9.17)
P{K, > A|Ho} — 2[1 - ®())] - 22(—1)"[¢((2k + 1)A) = ®((2k — 1)A)], (9.18)
k>1

where ®(-) is the standard normal d.f. Therefore, the asymptotic critical levels for K} and K, can be
obtained from the above two expressions. Let us denote the actual a-level critical values for Kf and K,
by K,’{ o and K, , respectively. Then, we have the following time-sequential testing procedures: (i) To
test the null hypothesis Hy against the one-sided alternatives Hi, at the kth failure point X, .k, compute
the statistic Wor = Q;IA;IL,,k, for k > 0. As long as these Wy« lie below the level K, o, continue in
having more accumulating data; if for the first time, at some k=M, say, Wypr is > K,‘fya, stop at this
Mth failure point and reject the null hypothesis. If no such M exists, stop at the last failure point and
accept the null hypothesis. (ii) For the two-sided alternatives, work with the |W,x| and have a similar
procedure where the critical level is taken as Kn o-

Several modifications of this procedure are quite easy to workout. First, consider the case where the
experiment is preplanned to a maximum of r out of n failures, so that a time-sequential procedure has

a maximal duration X,.-. To this end, one may simply define the statistics
Wnk;er;IAr_”-anka k=0,1,...,m (919)

and define the sup-norm statistics as in before (with k < r). Thus, effectively, we shrink the range of
k and rescale by the truncated variance function. In that way, the EDF character of the tests (under
the null hypothesis) remains in tact, and the same limiting distributions hold. Secondly, often, this
maximum duration of a time-sequential procedure is set in terms of a given time point. Borrowing the
analogy with the Type I censoring scheme, we may again derive some conditionally distribution-free
time sequential tests, for which in the above setup, we are to restrict ourselves to values of k < R, the
number of failures within that set time period. Thirdly, instead of the unweighted sup-norm statistics,
we could have used some weighted version wherein the W, (t) are to multiplied by a nongegative scalar
factor ¢(t), such that fol g%(t)dt < co. The choice of this weight function ¢(-) = {g(t);¢ € (0, 1)} may be
made on the basis of the importance of early stopping (from clinical point of view). This will relate to

the weak convergence to a general Gaussian process and would therefore rely on the boundary crossing

43



probabilities for such a process. In some simple cases, such probabilites are known [viz., Chapter 2 of
Sen (1981b)], and these can then be incorporated in the simplification of asymptotic critical levels for
the test statistics. But, in general, for an arbitrary square integrable ¢(-), such algebraic expressions
may not be available, and hence, numerical or simulation methodology may have to be used. We may
refer to Sinha and Sen (1982) for some related results. Fourthly, instead of a more or less continuously
monitoring, as is the case with PCS, it may be desirable to have a prefixed number of looks into the
accumulating data set either on a calender time basis or on the response outcome one; indeed this is usual
for conventional interim analyses schemes. In this finite dimensional version, even for the asymptotic
case, one needs to look into multivariate normal distributional probability (multiple) integrals, and exact
evaluation seems to be rather impracticable. There are some simplifications when the number of looks is
" as small as 2 or 3, although they are to be obtained by numerical quadrature formulae, and we may refer
to Flemming and Harrington (1991) for some related studies. Lan and DeMets (1983) introduced a novel
concept of spending function in this context, and that can be used with some advantages, particularly
when the interim time points are based on the response outcome. In passing, we may remark that if the
number of looks exceeds 10 and these points are not too concentrated in any particular patch of the unit
interval, then a solution obtained from the contonuous process provides a close (upper) bound to the
one from the finite discrete version. In long range, multi-center clinical trials, generally such an interim
analysis involves a moderately large number of looks into the accumulating data set on a fairly regular
basis, and hence, such weak convergence based approximations work out fairly well.
We consider next the general case of vector t;, and as in (9.9) define the statistics £L,,,7 =0,1,...,n.
Let then
Lo = {A2/A2}Lor, T < . (9.20)

In this case, as a test statistic, we consider the following:

K; = max{ L}, : k<n}. (9.21)

n

In order to express this statistic in terms of a suitable stochastic process, we adopt the same definition

of kn(t),t € [0, 1], as in (9.13). Also, let B2 = {B2(t);t € [0, 1]} be defined by

Bi(t) = Lok ey, t€[0,1). (9.22)

Then, we may write equivalently
K. = sup{BZ(t):t€[0,1]} (9.23)
Let Wi,..., W, be independent copies of a standardized Brownian motion W. Let us define then

B% = {B%(t),t € [0,1]} by letting

B*(t)

Il
.MQ

[
1
-

W2(t), t € [0,1]. (9.24)



In the literature these are known as the Bessel (squared) processes, and boundary crossing probabilities
for them have been extensively studied by DeLong (1981) and others. It follows from Majumdar and
Sen (1978) that under the null hypothesis of homogeneity of the d.f.’s Fy,..., Fn, as n increases, B2
converges weakly to B?, so that K, converges in law to a Bessel squared process functional K™ =
sup{B2(t) : t € [0,1]}. This enables us to use the extensive tables provided by DeLong (1981) for
asymptotic approximations for the exact null hypothesis distribution of K. In this respect we may
note that this test is essentially against a multi-sided alternative, and hence, one-sided versions are not
that suitable in this setup. Secondly, as in the case of K or Ky, here also, we may work with suiably
weighted versions of K. Thirdly, modifications for a Type II censoring scheme in connection with PCS
can be made by replacing A2 by the correponding value at the target number r*, and a conditionally
distribution-free version may similarly be considered for the trucation PCS scheme.

In the discussion made above, we have mainly confined ourselves to identification of EDF structures
and simplifications of the null hypothesis distributions of suitable rank based procedures. The study
of their non-null distributions entails even more mathematical complexities where often the regular-
ity assumptions may not match the reality of practical applications. However, under the usual local
alternatives, such asymptotic distributions, albeit being more complex than in the conventional situ-
ations, have been studied in a unified manner, and a general account of these asymptotics is given in
Sen (1981b,Ch.11). In clinical trials or survival analysis, it is not uncommon to encounter noncompliance
due to dropouts or withdrawals. One common approach to accomodating noncompliance in an objective
perspective is to introduce the concept of random censoring wherein it is assumed that a censoring

variable C; is associated with the primary variate (Y;), such that the observable r.v.’s are
Ti = min{Y;,C;} and ; = I{(T; = Y3),i > 1, (9.25)

and there may be, in general, other concomitant variates too. In this setup, it is assumed that the C; are
stochastically independent of the ¥; (a condition that may not generally hold in practice), and further the
distribution of C; is not affected by the treatments to which the subjects are subjected in the study; this
latter condition is known as noninformative censoring, and again, this may not meet the light of reality
in all applications. In a nonparametric formulation, such a random censoring scheme may introduce
complications beyond a simple amendment range, and may therefore require more structural assumptions
on the survival functions of the associated variables. In this respect, a fundamental contribution is due
to D.R. Cox (1972,1975) who incorporated the novel idea of partial likelihood functions along with the
basic assumption of proportional hazards (PH) for the survival functions for various treatment groups.
In the simplest case of a palcebo vs. treatment study, if Fo and F; stand for the respective d.f.’s, we
denote the corresponding survival functions by Fp and Fy, and let f; and h; be the density and hazard
functions corresponding to Fj, for j = 0,1. Thus, h;(z) = fj(z)/Fj(z), for z € (0,00) and j = 0,1. It is
then assumed that

hi(z) = ¢ - ho(z), for all z € (0, 0), (9.26)
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where ¢ is a positive constant. In terms of the survival functions, this PH assumption leads to the
following formulation:

Fi(z) = [Fo(z)]¢, for all z € (0, oo)_. (9.27)

In this formulation, one can allow the d.f. Fj to be arbitrary (but absolutely continuous), so that the haz-
ard function hg(z) is treated as an arbitrary function on (0, 00). If both Fy and F; are exponential d.f.’s,
then this PH condition is automatically true, and the above formulation extends this characterization to
a wider class. Motivated by this simple formulation, let us consider aset of nd.f.’s F;,i = 1,...,n, denote
the corresponding survival and hazard functions by F;,i =1,...,n and hi(z),i = 1,...,n respectively,

and consider a PH formulation incorporating a regression function 3’t; as follows:
hi(z) = hi(z|t;) = ho(z) - ezp{B't:}, z € (0,00),i=1,...,m, (9.28)

where the t; are given design variates, and kh,(z), the base line hazard function, is treated as arbitrary.
In this formulation, we may even include (stochastic) concomitant variates in the t;, so that we may
term the h; as conditional hazard function, and in terms of the log-hazard functions, we have then a
linear regression model. Since the regression part of the model is of parametric form while the base
line hazard function is nonparametric in character, this model is also referred to as a semi-parametric
model. The ingenuity of the Cox formulation lies in incorporation of the partial likelihood formulation
for drawing valid and efficient statistical conclusions on the regression parameter (vector) 3, treating the
baseline hazard as a nusance parameter (functional). A complete treatment of this novel methodology is
beyond the scope of this article, although some other chapters in this Volume are likeiy to deal with this
in some details. In passing, we may refer to the recent monograph of Andersen et al. (1993) where this
semi-parametric approach has been dealt with in a much more general and sound theoretical basis. Use
of rank based procedures for this PH model is naturally appealing on the ground of invariance under
strictly monotone transformations on the primary variate, and it is not surprising to see that the classical
log-rank procedure described in Section 2 has a close affinity to this model as well. PCS modeling for such
PH models has also been worked out along the same line as in before, and we may refer to Sen (1981b) for
some details. There are a few points to ponder in this respect. First, the PH assumption itself may not
hold in general in all applications ; we may refer to Sen (1994 b) for some exposition of the nonrobustness
aspects of the classical PH models in survival analysis and clinical trials. Secondly, staggered entry or
batch arrival models are usually encountered in practice, where the entry pattern may be quite arbirary
and stochastic in nature. In such a case, the partial likelihood approach may not lead to the usual log-rank
procedures, and may call for more complex statistical analysis schemes; we refer to Sen (1985) for some
details. Thirdly, if the study involves some concomitant variates (and usually they abound in practical
applications), often, we have some of them as time-dependent. In such a case, the Cox formulation of
the PH model may require more sophisticated statistical solutions, and much of the simplicities may be

. lost in this quest; we refer to Murphy and Sen (1991) for some accounts of such developments. Finally,
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we may remark that censoring in statistical theory and practice may not be very complementary to each
other or coherent in a natural sense. Part of this difficulty [viz., Sen (1995d)] stems from the fact that
the basic regularity assumptions, as are generally needed in biomedical studies (including clinical trials,
and epidemiological and environmental investigations), may not provide an easy access to incorporating
the simple censoring schemes referred to before; the more complex is the nature of such censoring the
greater is the price one has to pay for implementation of suitable statistical designs and for developing
suitable statiastical parametric or nonparametric analysis schemes to accomodate such complexities. We
complete this section with some discussion on the staggered entry plans which are common in medical
studies and clinical trials. Recruitment of subjects for such investigations often require extensive search
for valid subjects, and as these are generally people having some medical problems requiring some
treatments, they may arrive at the clinics either in batches or sometimes sporadically over time. This
may result in a differential exposure time if the study is planned for a fixed duration of time, and
hence, the basic formulation of Type I, II or random censoring schemes may not be very appealing in
such a case. To handle such a relatively more complex censoring pattern, one may need to look into
the composite picture from a multiple time-parameter point of view. Sinha and Sen (1982) considered
such a scheme based on the usual empirical distributions adjusted for staggered entries and formulated
suitable nonparametric testing procedures. A more general treatment with rank statistics in a staggering
entry plan is due to Sen (1985). Weak convergence to multi-dimensional Gaussian processes provides

the desired statistical tools to implement such methodology in practical applications.

10 Nonparametrics in Incomplete Multiresponse Clinical De-
signs

In clinical trials, from epidemiological perspectives, often, information is gathered on more than one
response variable, and, in addition, on relevant concomitant variables too. Nevertheless, from clinical
or medical perspectives, it is not uncommon to single out one of the response variates as the primary
endpoint and the others as auxiliary ones. In some cases, characterizing a primary endpoint in this
conventional manner may entail stringent cost constraints primarily related to its precise measurement,
and some surrogate endpoints are advocated to cast vital information at relatively lower levels of
cost or time consumptions. The multitude of such response variates through their mutual statistical
dependence can cast light on the primary endpoint and hence their simultaneous measurements generally
lead to comparatively more precise statistical conclusions. On the other hand, based on other practical
considerations, such as relative cost, ease and/or precision of measurement, it may not be very convenient
to include the entire battery of simultaneous measurements on all the response as well as concomitant
variates for all the subjects (units). For this reason, often, an incomplete multiresponse design (IMD) or

a hierarchical design (HD) is adopted. In the latter design, there is a hierarchy on the response variates

47



in the sense that there is a (partial) ordering with respect to the number of experimental units on which
their measurements are recorded; for this reason, they are also termed nested designs (ND). To illustrate
this point, suppose that there are p(> 1) response variates, denoted by Yi,...,Y; respectively. On a
smallest set, sat S, of experimental units, all these p responses are measured simultaneously; for a larger
set S, containing S; as a subset, Y3,...,Y, (but not Y;) are recorded on the subset Sz \ &1, and so
on. For the largest set S, containing S,—; as a subset, Y, alone is recorded on the subset S, \ Sp-1.
Such a multiresponse design, determined by the inherent nesting Sy C S2 C --- C Sp is termed a
hierarchical design [viz., Roy et al. (1971, Ch.8)]. It may not always be desirable or even practicable
to impose this basic hierarchy condition. For example, the (random pattern) missing observations in
multiresponse designs may distort this hierarchy condition to a certain extent. Nevertheless, it may be
feasible to incorporate some IMD’s wherein the set Y = {Y7,...,Y,} can be partitioned into various
subsets {Y;,,...,Y;.},1 <r <p,1<i <...,<i < p,such that these subsets are not necessarily
nested and they are adoptable for possibly different number of experimental units. For example, for
p = 2, we have three possible subsets {Y;}, {Y2} and {Y1, Y2},-and possibly different designs (say, D;, D2
and D;2) may be chosen for these subsets. In this context it may be recalled that in clinical trials, often,
the primary emphasis is on a comparative study of a placebo and one or more treatments, so that these
designs are to be chosen in a conventional sense with due emphasis on these treatments.

In clinical trials, a primary endpoint, in spite of being the most relevant one, may encounter some
basic problems regarding its precise measurement (due to possibly excessive cost or some other practical
limitations); therefore, it is not uncommon to make use of a very closely related but presumably, relatively
less expensive variate, termed a surroage endpoint. Generally, surrogate endpoints may not contain as
much information as contained in the primary endpoint, and such a substitution may have serious effects
on valid and efficient statistical modeling and analysis, unless the surrogate variate has some statistical
concordance with the primary one. The situation may particularly be very bleak when this statistical
interface of surrogate and primary endpoints is not that clearly known, and this case arises typically when
no specific data are available on simultaneous measurement of both these variables. Nevertheless, the use
of such surrogate endpoints in clinical trials and medical investigations has generally been accepted by the
allied medical community and has caught the attention of statisticians as well. A nice statistical account
of such uses, and abuses too, is given in a set of articles published in Statistics in Medicine, Volume
8, No.2 (1989). More technical exposition of this field are due to Pepe (1992) and Sen (1994a), among
others. Not all auxiliary variables qualify for surrogates, and for qualified ones, it seems very reasonable
(if not essential) to design a study in such a way that for a majority of the experimental units, termed the
surrogate sample, valid surrogate endpoints and concomitant variates are recorded, while for a smaller
subset of experimental units, termed the validation sample, simultaneous recording of the primay and
surrogate endpoints throws light on their statistical relation which enables us to combine the evidence

from both the subsets of data and draw better statistical conclusions. If statistical conclusions are to be
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drawn only from the surrogate sample observations, some stronger regularity assumptions are generally
needed to justify the conclusions, while the use of a validation sample may enhance the scope of the
study considerably. We may refer to Prentice (1989) and Pepe (1992) for some useful accounts of these
pros and cons of surrogate endpoints in clinical trials. The Prentice-Pepe setups can be characterized
as both a hierarchical and incomplete multiresponse model with p = 2. Many clinical trials encounter a
more complex setup involving multiple endpoints resulting in multiresponse primary variates. We may
refer to Wei et al. (1989) and Prentice and Cai (1992) for some statistical treatments for such designs.
A more comprehensive IMD/HD approach in a nonparametric setup is due to Sen (1994a), and we
summarize these results here.

There may be in general more than one primary endpoints, and we denote this by Y = (Y1,...,Yp),
where p(> 1) and there may be a partial ordering of the importance of these primary endpoints, which
may also be taken into account in the design and statistical analysis of the study. Similarly, the surrogate
endpoint may also be represented by a g-vector Y,, where ¢ is a positive integer. Thus, in general, we
have a set of p + ¢ responses, some of which may be costly to record. In order to extract information
on the statistical relations between Y and Y,, and to incorporate the same in drawing statistical con-
clusions, it may be desirable to use IMD’s or HD’s. In this respect in a conventional approach, one
adopts multivariate general linear models (MGLM) for statistical modeling and analysis; however, the
basic regularity assumptions are even more unlikely to be tenable in this multivariate situation. Thus,
the appropriateness of MGLM’s in clinical trials is questionable. Use of generalized linear models (GLM)
is also subject to similar limitations, and on model robustness grounds they are even more vulnerable
to plausible departures from the assumed regularity assumptions. The Cox (1972) PHM based partial
likelihood approach is also subject to serious nonrobustness constraints, and hence, sans sufficient confi-
dence on such a parametric or semi-parametric model, such procedures should not be advocated in real
applications. Some aspects of nonrobustness of the Cox PHM approach are discussed in Sen (1994a),
and these remarks pertain to general IMD’s as well. Nonparametrics, on the other hand, possess good
robustness properties, and are better competitors to these alternative ones. This has been the main
motivation of Sen (1994a) in pursuing general nonparametrics for such IMD’s with adequate emphasis
on the related asymptotics.

The basic rank procedures described in the earlier sections, particularly, for randomized blocks,
incomplete block designs, factorial experiments and multivariate models, provide the necessary access
for this development, and we shall unify these in a convenient mold. Aligned rank procedures are
particularly useful in this context. It may be recalled that a surrogate endpoint is a qualified substitute
for the primary endpoint only if it reflects a picture with reference to the treatment difference concordant
with the primary endpoint; in the literature this condition is also referred to as the validity criterion for
a surrogate. Such a condition can be tested if one has a validation sample where both the primary and

surrogate endpoints are recorded. But, generally, such a validation sample has a smaller size compared
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to the surrogate sample. Hence, the general nonparametric approach is based on the following scheme:
(1)For testing a plausible hypothesis relating to treatment differences construct a suitable nonparametric
test statistic based on the surrogate sample observations and adjusted for covariates, if any. (ii) For
the validation sample, construct a similar nonparametric statistic for both the primary and surrogate
endpoints {using the multivariate approach treated in Section 4), also adjusted for concomitant variates,
if any. (iii) Test for the concordance of the primary and surrogate endpoints with respect to treatment
differences based on the statistics in Step (ii). Again, nonparametric tests can be used here. (iv) Regress
the primary endpoint statistics on the surrogate endpoint ones (in the validation sample in Step (ii)),
and obtain the aligned statistics for the primary endpoint as residuals from this fitted regression. (v)
Combine the statistics in Step (i) and (iv) by the usual weighted least squares principle and use the same
in the formulation of the actual test statistic to be used for testing a hypothesis on treatment differences.

In this context the joint (asymptotic) normality of multivariate rank statistics provides the theoretical
justifications for the various steps sketched above, and also provides the foundation of general asymptotics
relevant to this topics. These details are provided in Sen (1994a).

For linear models in the parametric case, IMD’s entail a secondary task: Recovery of interblock
information from the block totals. In the nonparametric case, although the basic linearity of the model
may not be fully appreciated, such recovery of interblock information is possible. The basic motivation
is the same, although a somewhat different alignment process is needed to incorporate this recovery
in nonparametric analysis. This alignment procedure is very similar to the classical parametric case:
Block averages or some other measure of central tendency are used for construction of interblock aligned
rank statistics, while the residuals within each block are pooled together for all blocks and replicates
to construct aligned rank statistics for intra-block analysis. These two sets of rank statistics are then
combined [as in Step (v) above] in a convenient way to construct suitable test statistics which have greater
power than the one based solely on the intra-block residuals. For clinical trials involving (a treatment-
wise) IMD and a surrogate endpoint, recovery of interblock information in nonparametric analysis of
covariance models has recently been treated in a unified manner by El-Moalem and Sen (1995). The
idea is quite simple. In addition to using the aligned rank statistics (for the primary and surrogate
endpoints as well as the concomitant variates), in a replicated IMD, it is also possible to use the within
replicate block totals, align them with a view to eminiating the replicate effects, and then to use aligned
rank statistics on such aligned block totals to extract further information on the treatment effects. Use
of such aligned rank statistics eliminates the cruciality of the linearity of the model to a certain extent
and makes it possible to use the usual weighted least squares methodology to construct suitable pooled
aligned rank statistics which may be incorporated in the construction of a plausible test statistic having,
at least asymptotically, better power properties. In this context it is not necessary to assume that the
treatments are replicated equal number of times within each replicate or any pair of them are done so,

and the treatise covers a general class of IMD’s.
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11 Concluding Remarks

The current state of art with the developments on nonparametrics in design and analysis of various types
of experiments really calls for a far more thorough treatise of the subject matter than presented in this
writeup. For lack of space, it has not been possible to include the entire battery of topics in design and
analysis of experiments where nonparametrics are relevant.

As regards the basic nonparametrics presented in the first eight sections of this writeup, the treat-
ment here is fairly thorough. However, the last two sections are presented with more motivations from
applications point of view but from methodological point of view somewhat less technical details are
provided than they deserve. The nonparametric task remains as much more challenging, although some
work has already been in progress in this direction. On the top of this there is another important
consideration underlying practical adoption of statistical designs and analysis packages in clinical trials
and medical studies in general. Missing observations may be a part of such experimental data, and
statistical analysis should address this issue adequately with due considerations to practical adoptions.
In clinical trials, such a missing pattern may be due to censoring of various types discussed in earlier
sections, while in a general setup, it may be due to other factors as well. In epidemiological studies,
it is not uncommon to encounter multiple causes of failures, and hence, a competing risk setup is often
judged as appropriate. Again design and statistical analysis (parametrics as well as nonparametrics)
for such studies follow somewhat different tracks, and it may be desirable to pay due attention to the
developments of nonparametrics for competing risks models in as much generality as possible. Random
missing patterns are often introduced as a part of the basic assumptions to deal with messy data sets
arising in such studies. In a nonparametric MANOVA setup, for some developments on such random
missing patterns, we may refer to Servy and Sen (1987), where other pertinent references are also cited.
There remains much more to be accomplished in this direction. Competing risks models in a general
multiresponse (or multiple endpoint) clinical trial poses even more complex statistical designing and
analysis tasks. Only in some simplest situations, some relevant nonparametrics have been developed;
we may refer to DeMasi (1994) where other references are cited in detail. Since more complex censoring
patterns may arise in this context, statistical modeling (underlying either parametric or robust proce-
dures) needs to address the infrastructure in an adequate manner; this not only increases the number of
parameters associated with the model, but also may raise some identifiability issues which call for more
delicate treatments. These need to be addressed in a more general and integrated manner than done
here.

Throughout this presentation the major emphasis has been on nonparametrics based on rank statistics
and allied estimators. Although such rank procedures can mostly be justified from a global robustness
point of view (with very little emphasis on the form of the underlying error distributions), there are
some other situations where it may be wiser to take recourse to local robustness properties wherein

only small departures from an assumed model are contemplated, so that high efficiency mingled with
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low sensitiveness to such local departures dominate the scenario. In this setup, as viable competitors
to such nonparametrics, robust procedures based on suitable L- and M-statistics are often advocated.
Regression quantiles have their genesis in this complex, but in the recent past, they have paved the way
for the related regression rank scores estimators and test statistics which compare very favorably with
nonparametric procedures based on R-estimators. Recently, Jureckovd and Sen (1993) have established
certain asymptotic equivalence results on the classical R-estimators and regression rank scores estimators
in a linear model based on a common score generating function, and as such, taking into account the
relative computational complexities of these two approaches, in some cases, we may advocate the use of
such regression rank scores procedures as well. For some general accounts of these findings we may refer
to Jureckova and Sen (1995, Ch.6), where mostly fixed-effects models are considered, and to Sen (1995a)
where some mixed-effects models have also been treated.

In the clinical and epidemiological sectors, due to medical ethics standards and current policies of
some of the regulatory agencies in USA or other industrized nations, a multi-phase design approach
for human usage is generally adopted. In Phase I, primary emphasis is on exploration of biochemi-
cal/biomedical effects, toxicity etc, while in Phase II, some therapeutic factors are taken into account. In
this setup, it is quite common to have first some animal studies, and the conclusions as may be gathered
from such studies are then to be incorporated in the design and general formulation of the main study:
Phase II1 clinical trials. The emerging sub-discipline: clinical epidemiology has been geared to address
more complex issues arising in this interdisciplinary field. Because of apparently conflicting attitudes
of statisticians and epidemiologists to some of these clinical problems, in clinical epidemiology, there
is, often, a blending of ecology and etiology for which the design as well as analysis aspects may differ
drastically even in some simple parametric setups [see for example, Sen (1994c)]. Nonparametrics play a
fundamental role in this setup too. For example, extrapolating the statistical findings from experiments
conducted on subhuman primates to human beings raises the question of their validity and scope. In
the statistical lieterature, such methodologies are categorized under the topic: Accelerated Life Testing
(ATL) procedures. In parametric setups, the basic regularity assumptions appear to be quite stringent,
and hence, nonparametrics are generally advocated for greater scope and reliability. However, in this
context too, validity and reliability of statistical regularity assumptions need to be assessed properly.
Biological assays are the main statistical assessment tools in this venture. Designs for such bio-assays
may often be somewhat different, and we may refer to the classical text of Finney (1964) for a detailed
account of such developments. His treatise has mainly been on a conventional parametric walk, wherein
due emphasis has been laid down on transformations on the response and dose variables (termed the
response metameter and dosage or dose metameter respectively ) under which suitable parametric mod-
els can be justified. Nevertheless, in practice, suéh transformations may not simultaneously achieve
the basic linearity of the model and normality (or logistic or some other simple form) of the tolerance

distribution. As such, there is good scope for nonparametrics. Some developments in this sector took
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place during the sixties [viz., Sen (1963)] and early seventies, and a systematic review of this work is
reported in Sen (1984a), where pertinent references are also cited.

A new area of statistical awareness relates to our endangered environment and the statistical en-
deavors to cope with such problems; these have led to the developments of another frontier of statistical
sciences: the Envirnometrics. The tasks are truely challenging and statistical considerations are over-
whelming in this venture. Unlike the case of conventional agricultural experiments, animal studies or
even the clinical trials, environmental problems are generally characterized by the lack of control in the
conduct of a scientific study to a much greater extent. Also, a large number of factors contributes to
unaccountable variations in the response patterns. Moreover, the response variables are often impre-
cisely defined and may also encounter serious measurement problems. For example, to assess the air
pollution standard of various urban, suburban and rural areas in USA, the basic task may be to define
precisely the response variables, identify their probable causes or factor variables (viz., auto-exhaution,
envirnonmental smoking, industrial emissions, etc.,), variation with the whether conditions, day-to-night
variation, and many other factors which may not be properly. defined and may hardly be controllable to
a satisfactory extent. Some of these variables may even be binary or polychotomous in nature. On the
top of that even when a variable is quantitative, it may usually be recorded in class intervals leading
to the so called interval censoring schemes. Thus, measurement errors and to a certain extent misclas-
sifications are usually encountered as a vital part of such response as well as dose variables. Even in
the simplest case of two or several sample problems, for such grouped data ties among the observations
may not be negligible, and there may not be a unique way to handle such ties; we may refer to Hajek
and Sidak (1967, Ch. 3) for some treatment of ties for the exat null hypothesis ditributions of rank
statistics, and to Sen (1967) for asymptotic optimality of rank tests for grouped data in a simple regres-
sion model. These results extend directly to general linear models. However, linear models are hardly
appropriate in this complex setup when the response-dose regression, subject to possible measurement
errors/misclassifications, may be quite nonlinear in nature, and suitable transformations on the factor
as well as response variables are generally used to induce more linearity in the models; their impacts
on the distributional assumptions are needed to be assessed carefully. Assumptions of independence,
homoscedasticity and even the symmetry of the error components are to be examined critically in the
particular contexts, and for these reasons, statistical designs and analysis schemes are to be developed
in more practically adoptable settings. Such environmental problems are not totally out of the reach of
clinical trials and biomedical studies. The emerging field of environmental health sciences deals with the
impact of the environment on human health and prospects for long-range healthy living. Environmental
health effects have been identified to be far more outreaching than in a simple chemical or biochemical
setting, and Genotoricity has also been identified as an important ingredient in this phenomenon. In
this quest, biological assays involving biological markers are vital tools for assessments on subhuman

primates, and suitable design of (mutagenetic) experiments are generally advocated for extrapolation of
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the findings from animals to human beings. Because of the fundamental roles of Molecular Biology and
Human Genetics in these complex experimental schemes, such designs are generally quite different from
the conventional ones considered in this volume. The appropriateness of an interdisciplinary approach
is crucial in this context. Inhalation toricology, water contamination, air pollution and scores of other
serious environmental threats are affecting the Quality of Life (QOL) and in many ways, endangering our
lives too, and, in this respect, an interdisciplinary approach is very much needed to provide scientifically
sound and operationally manageable solutions. We may refer to Sen and Margolin (1995) for some of
the basic statistical issues in some environmental studies with major emphasis on inhalation toxicology,
and conclude that statistical planning and analysis schemes are most vital in this venture. Parametrics
or semi-parametrics are less likely to be appropriate in this emerging research field, and nonparametrics

are indispensible in this context to a far greater extent.
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