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Abstract— Recognizing human activities from common color
image sequences faces many challenges, such as complex back-
grounds, camera motion, and illumination changes. In this pa-
per, we propose a new 4-dimensional (4D) local spatio-temporal
feature that combines both intensity and depth information. The
feature detector applies separate filters along the 3D spatial
dimensions and the 1D temporal dimension to detect a feature
point. The feature descriptor then computes and concatenates
the intensity and depth gradients within a 4D hyper cuboid,
which is centered at the detected feature point, as a feature.
For recognizing human activities, Latent Dirichlet Allocation
with Gibbs sampling is used as the classifier. Experiments are
performed on a newly created database that contains six human
activities, each with 33 samples with complex variations. Exper-
imental results demonstrate the promising performance of the
proposed features for the task of human activity recognition.

I. INTRODUCTION

Human activity recognition has played an important role in
applications such as security, surveillance, smart homes and
human-machine interface. Especially in robotics, the ability
of a robot to understand the activity of its human peers is
critical for the robot to collaborate effectively and efficiently
with humans in a peer-to-peer human-robot team. However,
recognizing human activities from sequences of color images
is a very challenging problem due to complex backgrounds,
illumination changes, camera motion, variations of human
appearance and diversity of human activities.

In our work, we focus on developing 4-dimensional local
spatio-temporal features, and applying these features to iden-
tify human activities from a sequence of RGB-D images, i.e.,
color images with depth information. Our work is motivated
by the recent success of “bag of features” representation for
recognizing objects and human activities [1] from a sequence
of images. Based on the plausible assumption that a global
human activity can be characterized by the local motions and
therefore by spatio-temporal features, the “bag of features”
representation models an activity as a distribution of the
spatio-temporal features that are computed from the color
image sequences.

A robust human activity recognition system can use not
only intensity information, but also depth information. This
provides a reliable way to separate humans from the envi-
ronment, providing possibilities for overcoming the problems
caused by complex backgrounds and camera motion. Thanks
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Fig. 1: Installation of Kinect sensor on a Pioneer 3DX robot.

to the emergence of Kinect, an affordable color-depth camera
developed by Microsoft, it is faster and easier to obtain color
and depth information. In our application, a Kinect sensor
is installed on top of a Pioneer 3DX robot, as shown in
Figure 1. Kinect consists of an RGB camera to obtain color
information and a depth camera to obtain depth information.
For the depth camera, the IR emitter projects an irregular
pattern of infrared dots with varying intensities, and the
depth sensor reconstructs a depth image by recognizing the
distortion in this pattern.

In this paper, we propose a new 4D local spatio-temporal
feature that combines both intensity and depth information,
and apply this feature to identify not only repetitive but also
sequential activities and activities with small motions. To
our knowledge, no 4D local spatio-temporal features have
been developed to address the problem of recognizing human
activities using a RGB-D camera.

The rest of the paper is organized as follows. Section II
gives a concise review of the existing work on feature ex-
traction from a sequence of images. Section III describes the
proposed 4D local spatio-temporal features that are extracted
from intensity and depth videos. Section IV introduces the
classifier used for activity recognition. Section V presents
the test results on a newly created database. Finally, Section
VI concludes the paper and indicates future work.

II. RELATED WORK

A RGB-D camera or multiple cameras are often employed
for 3D visual data acquisition, such as a sequence of realtime
RGB-D images or recorded multi-view videos. A major step
involved in an activity recognition system is the extraction
of low-level features from 3D visual data, which always
consist of massive amounts of raw information in the form of



spatio-temporal pixel variations. But most of the information,
like background clusters and colors of human clothes, is not
directly relevant for identifying the activities in the visual
data. Thus, feature extraction from raw 3D visual data is
of great necessity and importance to get useful information.
Although most previous work on feature extraction focused
on using 2D videos [2], several approaches to extract features
from 3D videos have been proposed in the past few years.

A simple technique is to apply a 3D centroid trajectory
as features to identify human activities in 3D visual data, in
which a human is represented as a point that indicates the
3D location of the human in the visual data [3]. In general,
the feature of centroid trajectory is suitable for representing
a human that occupies a small region in an image. Another
method to extract features in 3D visual data relies on human
shape information, such as a history of 3D human silhouette
[4]. A third type of technique to detect features for human
activity recognition is on the basis of 3D human models,
such as a 3D human skeleton model [5] or a 3D articulated
body-part model [6]. The robustness of the features on the
basis of 3D human shape and body models relies heavily
on the performance of foreground human segmentation and
body part tracking, which are hard-to-solve problems due to
dynamic background and occlusions.

The precursors to the 4D features proposed in this paper
are the local spatio-temporal features extracted from 2D
visual data [7], which have recently become a popular
activity representation and have shown promising perfor-
mance for the task of human activity recognition. A spatio-
temporal feature represents some local texture and motion
variations regardless of the global human appearance and
activity. A global activity is presented as a bag of local
spatio-temporal features. Dollar et al. [8] extracted such
features using separable filters in the spatial and temporal
dimensions. Laptev et al. [9] detected the features on the
basis of a generalized Harris corner detector with a set of
the spatio-temporal Gaussian derivative filters. Other spatio-
temporal features are also proposed based on the extended
Hessian saliency measure [10], a salient region detector
[11], or global information [12]. A detailed evaluation of
several spatio-temporal features in [7] indicates their similar
performances for the task of human activity recognition.

III. PROPOSED 4D SPATIO-TEMPORAL FEATURES

In this work, we propose the 4D local spatio-temporal
feature as a representation of human activities, which com-
bine both intensity and depth information obtained from the
Kinect sensor. Our work is inspired by the local features
developed by Dollar [8].

A. Preprocessing

Both the color camera and the depth camera in the Kinect
sensor are first calibrated to obtain their intrinsic parameters
and accurately map between depth pixels and color pixels.
Then, a first order approximation is applied for converting
the raw 11-bit disparity value to an 8-bit depth value to
form a depth image. To reduce computational complexity,

the color and depth images are resized to a resolution of 320
by 240. The color image is then converted to an intensity
image, and histogram equalization is employed to reduce the
influence of illumination variation. For depth images that are
very noisy, erosion and dilation are used to remove noise and
small structures, and then hole filling is performed.

B. Feature Detection

To extract feature points from the preprocessed sequences
of intensity and depth images, a response function is com-
puted at each pixel using both intensity and depth informa-
tion within a hyper 4D cuboid that is illustrated in Figure
2. A feature point is also detected, which corresponds to a
local maximum of the response function. The location of a
feature is determined on both the intensity image sequence
I(x, t) and the depth image sequence D(x, t). To exploit
spatial correlation, spatial filters are applied on all intensity
and depth images:

Is(xo, t) =
(
I(x, t) ◦ f(x, t|δ)

)
∗ p(x|σ)

∣∣
x=xo

(1)

Ds(xo, t) =
(
D(x, t) ◦ f(x, t|δ)

)
∗ p(x|σ)

∣∣
x=xo

(2)

where ‘∗’ denotes convolution, ‘◦’ denotes Hadamard prod-
uct (entry-wise matrix multiplication), x = {x, y} is a pixel,
xo is the current pixel, and f(x, t|δ) is an indicator function
parameterized by δ. The parameter δ controls the spatial scale
along the depth dimension:

f(x, t) = 1(
∣∣D(x, t)−D(xo, t)

∣∣ 6 δ) (3)

and p(x|σ) is a 2D Gaussian filter applied along the spatial
dimensions x and y. The parameter σ of the Gaussian filter
controls the spatial scale along x and y dimensions:

p(x|σ) = 1

2πσ2
e−

‖x‖2

2σ2 . (4)

A temporal filter is also applied along dimension t on the
spatial-filtered sequences:

Ist(xo, t) = Is(xo, t) ∗ g(t|τ, ω)
∣∣
t=to

(5)

Dst(xo, t) = Ds(xo, t) ∗ g(t|τ, ω)
∣∣
t=to

(6)

where g(t|τ, ω) is a 1D complex-value Gabor filter given by:

g(t|τ, ω) = 1√
2πτ
· e−

t2

2τ2 · ei(2πωt) (7)

where τ controls the temporal scale of the detector, and in
all cases we use ω = 3/τ .

Finally, the response strength of pixel xo at time to can
be computed by the response function:

R(xo) = α · ‖Ist(xo)‖2 + (1− α) · ‖Dst(xo)‖2 (8)

where α is a mixture weight.
Any region undergoing an observable motion can induce

response. Each local maximum in the response function is
detected as a feature point where significant motion occurs.
Instances of response images that are computed with the
response function are shown in Figure 3. Notice that a feature
point is not detected in a complete 4D space, because the



Fig. 2: An illustration of the 4D spatio-temporal hyper cuboids for feature detection and description. In the spatial dimensions,
a 3D cuboid, depicted with the cube, is placed at each pixel for feature detector and at each detected feature point for feature
descriptor. Then, a 1D temporal filter, depicted with a dotted arrow, is used to connect all the 3D spatial cuboids at the same
pixel into a 4D hyper cuboid. This procedure makes the hyper cuboid contain both space and time information.

Fig. 3: Response images that are computed with the response function using the color and depth information in Figure 2.

Fig. 4: Actual spatio-temporal cuboids that are extracted from the intensity and depth information in Figure 2. Each cuboid
is projected to the 2D foreground intensity images for an easier display.

depth value is actually a function of x and y; not all 3D
points {x, y, z} have an intensity value. But the depth D(x)
still provides useful information along the z dimension.

C. Feature Description

For the feature descriptor, a hyper 4D cuboid is centered at
each feature point {x, y, z, t}. The size of the hyper cuboid
is {2sσ, 2sσ, 2sδ, sτ}, where s is the side-length ratio of
the descriptor and detector cuboid. Instances of the extracted
cuboids are depicted in Figure 4. To get a descriptor for each
4D hyper cuboid, the intensity and depth gradients along x,
y, and t dimensions are computed. The computed gradients
from both intensity and depth pixels are concatenated to form
a feature vector. The size of the feature vector equals the
number of pixels in the cuboid times the value of the time
scalar times the number of the gradients directions times
2 (for intensity and depth values). A feature vector often
contains over 105 double elements. Therefore, in general,

the features are intractable.

To solve this problem, the principal component analysis
(PCA) is applied. PCA is a dimensionality reduction method,
which projects each feature vector to a lower dimensional
space. To obtain a more compact representation of the feature
vector, a k-means algorithm with Euclidean distance is used
to cluster a large number of feature vectors computed from
the training data. A spatio-temporal codeword is then defined
to be the center of a cluster, and the codebook is defined to be
the set that contains all the codewords. Thus, each extracted
feature vector can be assigned to a codeword, and each video
sequence can be represented as a bag of codewords from the
codebook. It has been noted in [1] that clustering is useful to
handle the feature that contains the patterns of scale change
and camera motion, as long as the feature is not extremely
different from the features used to form the codebook.



Fig. 5: Graphical representation of LDA model. The boxes
are plates, representing replicates.

IV. GRAPHICAL MODEL FOR ACTIVITY RECOGNITION

In this work, we use Latent Dirichlet Allocation (LDA) to
categorize human activities, which is first introduced by Blei
[13] for text classification. LDA is a generative probabilistic
model, which includes priors in a Bayesian manner to com-
bine domain knowledge and avoid overfitting, and provides
an unsupervised learning framework to perform meaningful
reasoning1. LDA models each activity as a distribution over
codewords and each video as a distribution over activities,
which allows a video to be explained by the latent activities.
The graphical representation of LDA is shown in Figure 5.
Suppose we have a set of M videos that record K activities,
and the size of the codebook is V . The generative process of
LDA is illustrated in Figure 6, where α, β are the Dirichlet
parameters.

For the task of human activity recognition using LDA, the
major problem is to estimate and infer the parameter θm,
i.e., the distribution of activities for video m. However, exact
parameter estimation and inference is intractable. To address
this issue, several approximate methods have been proposed
such as variational methods [13], Gibbs sampling [14], and
expectation-propagation [15]. Gibbs sampling is a Markov
chain Monte Carlo (MCMC) method, which often yields a
relatively efficient algorithm for approximate estimation and
inference in high-dimensional models such as LDA [16].
Therefore, we use Gibbs sampling to approximately estimate
and infer the parameters of LDA in our work. One can refer
to these papers for a better understanding of Gibbs sampling.
Here we only show the most important formula. Let w and z
be the vectors of all codewords and their activity assignments
in the entire set of videos. Then, the activity assignment of
a particular codeword t is sampled from the multinomial
distribution using Gibbs sampling:

p(zi = k|z¬i,w) =
n
(t)
k,¬i + βt

[
∑V
v=1 n

(v)
k + βv]− 1

·
n
(k)
m,¬i + αk

[
∑K
j=1 n

(j)
m + αj ]− 1

(9)

1Although LDA is used as a classifier in our work, in general, the 4D
local spatio-temporal feature does not rely on any specific classifier.

• ACTIVITY PLATE
for each activity k ∈ [1,K] do

Choose the per-activity codeword proportions:
ϕk ∼ Dirichlet(β)

end for
• VIDEO PLATE
for each video m ∈ [1,M ] do

1) Choose the number of codewords:
Nm ∼ Poisson(ξ)

2) Choose the per-video activity proportions:
θm ∼ Dirichlet(α)

• CODEWORD PLATE
for each codeword n ∈ [1, Nm] in video m do

1) Choose the per-word activity assignment:
zm,n ∼ Multinomial(θ);

2) Choose the spatio-temporal codeword:
wm,n ∼ Multinomial(ϕzm,n);

end for
end for

Fig. 6: Generative process for LDA

where n(t)k,¬i is the times the codeword t is assigned to activity
k except the current assignment, and n(k)m,¬i is the number of
codewords in video m that are assigned to activity k except
the current assignment. After Gibbs sampling is complete,
each element in the parameters θm can be estimated as:

θm,k =
n
(k)
m + αk∑K

j=1 n
(j)
m + αj

. (10)

V. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed 4D local
spatio-temporal features for the task of activity recognition,
we establish a database whose data are collected with a
Kinect that is installed on a Pioneer mobile robot, as shown
in Figure 1. During the data collection, the tilt of the Kinect
sensor is adjusted approximately 10 degrees upward to avoid
recording the floor. We also considered illumination change,
dynamic background and variations in human motions when
recording the data to make them more challenging and more
interesting. The database currently contains six types of
human activities, including two sequential activities (“lifting”
and “removing”), three repetitive activities (“pushing”, “wav-
ing”, and “walking”), and one activity with small motion
(“signaling”). Each activity has 33 samples, with each sample
lasting 2 to 5 seconds. Each sample consists of two parts: a
color video and a calibrated depth video. The instances of
the activities are illustrated in Figure 7. The color and depth
frames are depicted by the first and second rows respectively,
and the third row gives an intuitive 3D view of the activities.
To our knowledge, no such database exists before our work.

We divide the database into three groups. Each group
contains all activities with each activity having 11 samples.
We detect the feature point and describe the corresponding



(a) Lifting (b) Removing (c) Waving (d) Pushing (e) Walking (f) Signaling

Fig. 7: Example image sequences from videos in our database. The database contains 6 types of human activities: lifting,
removing, pushing, waving, walking and signaling. The database contains 33 samples for each activity, which are collected
from the Kinect sensor on a Pioneer robot in the environments with complex variations.

(a) Intensity&Depth (Average accuracy=91.50%) (b) Depth (Average accuracy = 85.50%) (c) Intensity (Average accuracy = 77.67%)

Fig. 8: Confusion matrices with different information using LDA model with a codebook of size 600. Rows represent actual
classes, and columns represent predicted classes.

4D spatio-temporal cuboid with the procedure described in
Section III. The parameters of the feature detector are set
to σ = 5, δ = 255, τ = 3, and α = 0.5. Each 4D spatio-
temporal cuboid is then described with a feature descriptor
of its intensity and depth gradients. The feature descriptor
is then projected to a lower-dimensional feature vector with
60 elements using PCA. In order to build the codebook that
is used for LDA, all feature vectors from the training data
are clustered into 600 clusters using k-means. Each cluster
is then indexed by a codeword.

We compare our 4D local spatio-temporal features ex-
tracted using both intensity and depth information to the
features using either intensity or depth information that is
introduced by Dollar [8]. Because of the limited amount of
data, we use the leave-one-out testing paradigm to obtain
a performance estimation of our methods for the task of
activity recognition; i.e., for each run, one group is selected

as the training set, and the remaining groups are used as
the testing sets. Because Gibbs sampling for approximate
parameter estimation and inference of LDA has some ran-
dom components, the experiment results are reported as the
average over 20 runs.

Under these settings, we learn and recognize human
activities using the LDA model with the Gibbs sampling
technique. The confusion matrix using the proposed 4D
local spatio-temporal features is given in Figure 8a. Each
column of the confusion matrix corresponds to the predicted
category, and each row corresponds to the ground truth class.
Using the 4D spatio-temporal features, an average accuracy
of 91.50% is achieved. The confusion matrix shows that
the largest confusion lies between “lifting” and “removing”
within the category of sequential activities. This is consistent
with the “bag-of-codewords” representation that assumes
each codeword is independent of others. Thereby, this rep-



resentation loses the information of the relative positions
of the codewords in a frame. On the other hand, it should
be noted that the proposed feature has captured some time
information, which enables the classifier that has no ability
to model time series, such as the LDA model, to recognize
different sequential activities correctly in most cases.

The confusion matrices of activity recognition using the
LDA model with features that are extracted from either depth
information or intensity information are illustrated in Figure
8b and Figure 8c, respectively. The LDA model gets an
accuracy of 85.50% with local features extracted from depth
video and an accuracy of 77.67% with features from intensity
video, which indicates that the depth information is more
important than the intensity information for our database. A
possible explanation is that the color videos recorded in the
home environment suffer significant illumination variations
that are caused by weather changes, as illustrated in Figure
7d, 7e and 7f. In the office environment, the computer
monitors lead to a dynamic background, which also distract
the feature detector from detecting useful human motions.
But the depth sensor is not sensitive to either the illumination
variations or the dynamic background, as long as the target
human is far enough from the background.

In general, for the task of human activity recognition using
the LDA model with the Gibbs sampling technique, the
proposed 4D local spatio-temporal features outperforms the
features using only intensity or depth information. On the
other hand, these features also exhibit some similar patterns,
which can be observed from their confusion matrices. First,
all three features can model time series to some extent.
But the locality of these features causes them to lose the
position information between features, leading to a moderate
accuracy of identifying sequential activities. Furthermore, the
activities such as “pushing” and “walking”, in which the
human crosses the entire horizontal field of view of the
sensor, are often confused by several other activities. For
instance, the activity “pushing” is confused by “lifting” and
“removing”, and the activity “walking” is often confused by
all the other activities. This phenomenon can be explained
partially that “pushing” and “walking” contain some basic
motions in the task of box-pushing, such as holding a box
and moving the body, which will lead to some similar
features exhibited by other activities. Finally, “waving” and
“signaling” are in general only confused by each other due
to their similarity that only human arms move as a human
performs these activities.

VI. CONCLUSION

In this paper, a new 4D local spatio-temporal feature is
proposed using both intensity and depth information, and the
relative feature detector and descriptor are analyzed. Then,
the features are used for the task of activity recognition with
the LDA model as a classifier. To estimate the performance of
the proposed features, a new database is created for the task
of human activity recognition. Each sample in the database
consists of a color video and a calibrated depth video, which
are collected from Kinect installed on a Pioneer robot.

The experimental results on the database show that the
proposed 4D local spatio-temporal features extracted from
the intensity and depth videos outperform the local features
extracted using only intensity or depth video. The experi-
mental results also indicate that in the case of significant
illumination variations and dynamic background, the depth
information is more important than the intensity information
for detecting more relevant features.

Future work includes developing more sophisticated de-
scriptors with the ability to adjust the size of the 4D hyper
cuboid adaptively to deal with the scale variations. We also
plan to combine our feature detector with some human
detecting techniques to extract more relevant features and
ignore the features from the background environment. Other
aspects of our future work include improving the classifiers
based on the bag-of-features representation and enlarging
the database with more activities and more samples. In the
long term, we plan to let a moving robot gain the ability to
recognize human activities.
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