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Abstract

Image fusion is commonly described as the task of enhancing the perception of a
scene by combining information captured by different modality sensors. The pyramid

decomposition and the Dual-Tree Wavelet Transform have been employed as analysis
and synthesis tools for image fusion by the fusion community. Using various fusion
rules, one can combine the important features of the input images in the transform
domain to compose an enhanced image. In this study, the authors demonstrate
the efficiency of a transform constructed using Independent Component Analysis

(ICA) and Topographic Independent Component Analysis bases for image fusion.
The bases are trained offline using images of similar context to the observed scene.
The images are fused in the transform domain using novel pixel-based or region-based

rules. An unsupervised adaptation ICA-based fusion scheme is also introduced. The
proposed schemes feature improved performance compared to approaches based on
the wavelet transform and slightly increased computational complexity.

Key words: Image Fusion, Independent Component Analysis, Topographic ICA.
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1 Introduction

The need for data fusion in current image processing systems is increasing
mainly due to the increase of image acquisition techniques [1]. Current tech-
nology in imaging sensors offers a wide variety of different information that
can be extracted from an observed scene. This information is jointly combined
to provide an enhanced representation in many cases of experimental sciences.
The automated procedure of conveying all the meaningful information from
the input sensors to a composite image is the topic of this article. Fusion
systems appear to be an essential preprocessing stage for a number of applica-
tions, such as aerial and satellite imaging, medical imaging, robot vision and
vehicle or robot guidance [1].
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Let I1(x, y), I2(x, y), . . . , IT (x, y) represent T images of size M1 × M2 cap-
turing the same scene. Each image has been acquired using different instru-
ment modalities or capture techniques. Consequently, each image has different
characteristics, such as degradation, thermal and visual characteristics. These
images need not be perfect, otherwise fusion would not be necessary. This im-
perfection can appear in the form of imprecision, ambiguity or incompleteness.
However, the source images should offer complementary and redundant infor-
mation about the observed scene [1]. In addition, each of these images should
contain information that might be useful for the composite image and is not
provided by the other input images. In other words, there is no potential in
fusing an image that has mainly degraded information compared to the other
input images. Although the fusion system will most probably be able to reject
the misleading information, it is not conceptually valid to present the system
with no beneficial information, as the performance might be degraded and the
computational complexity increased.

In this scenario, we usually employ multiple sensors that are placed relatively
close and are observing the same scene. The images acquired by these sensors,
although they should be similar, are bound to have some translational errors,
i.e. miscorrespondence between several points of the observed scene. Image
registration is the process of establishing point-by-point correspondence be-
tween a number of images, describing the same scene [7]. In the opposite case
that the sensors are arbitrarily placed, all input images need to be registered.
In this study, the input images Ii(x, y) are assumed to have negligible registra-
tion problems, which implies that the objects in all images are geometrically
aligned.

The process of combining the important features from these T images to form
a single enhanced image If (x, y) is usually referred to as image fusion. Fusion
techniques are commonly divided into spatial domain and transform domain
techniques [8]. In spatial domain techniques, the input images are fused in
the spatial domain, i.e. using localised spatial features. Assuming that g(·)
represents the “fusion rule”, i.e. the method that combines features from the
input images, the spatial domain techniques can be summarised, as follows:

If (x, y) = g(I1(x, y), . . . , IT (x, y)) (1)

The main motivation behind moving to a transform domain is to work in
a framework, where the image’s salient features are more clearly depicted
than in the spatial domain. It is important to understand the underlying im-
age structure for fusion rather than fusing image pixels independently. Most
transformations used in image processing are decomposing the images into im-
portant local components, i.e. unlocking the basic image structure. Hence, the
choice of the transformation is very important. Let T {·} represent a transform
operator and g(·) the applied fusion rule. Transform-domain fusion techniques

2



can then be outlined, as follows:

If (x, y) = T −1{g(T {I1(x, y)}, . . . , T {IT (x, y)})} (2)

The fusion operator g(·) describes the merging of information from the dif-
ferent input images. Many fusion rules have been proposed in the literature
[18,20,22]. These rules can be categorised, as follows:

• Pixel-based rules: the information fusion is performed in a pixel-by-pixel
basis either in the transform or spatial domain. Each pixel (x, y) of the T
input images is combined with various rules to form the corresponding pixel
(x, y) in the “fused” image IT . Several basic transform-domain schemes were
proposed [18], such as:
· fusion by averaging: fuse by averaging the corresponding coefficients in

each image (“mean” rule).

T {If (x, y)}) =
1

T

T
∑

i=1

T {Ii(x, y)} (3)

· fusion by absolute maximum: fuse by selecting the greatest in absolute
value of the corresponding coefficients in each image (“max-abs” rule)

T {If (x, y)}) = sgn(T {Ii(x, y)}) max
i

|T {Ii(x, y)}| (4)

· fusion by denoising (hard/soft thresholding): perform simultaneous fusion
and denoising by thresholding the transform’s coefficients (sparse code
shrinkage [12]).

· high/low fusion, i.e. combining the “high-frequency” parts of some images
with the “low-frequency” parts of some other images.
The different properties of these fusion schemes will be explained later on.

For a more complete review on pixel-based fusion methods, one can have
always refer to Piella [20], Nikolov et al [18] and Rockinger et al [22].

• Region-based fusion rules: in order to exploit the image structure more ef-
ficiently, these schemes group image pixels to form contiguous regions, e.g.
objects and impose different fusion rules to each image region. In [15], Li
et al created a binary decision map to choose between the coefficients us-
ing a majority filter, measuring activity in small patches around each pixel.
In [20], Piella proposed several activity level measures, such as the absolute
value, the median or the contrast to neighbours. Consequently, she proposed
a region-based scheme using a local correlation measurement to performs
fusion of each region. In [14], Lewis et al produced a joint-segmentation map
out of the input images. To perform fusion, they measured priority using
energy, variance, or entropy of the wavelet coefficients to impose weighting
on each region in the fusion process along with other heuristic rules.
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In this study, the application of Independent Component Analysis (ICA) and
Topographic Independent Component Analysis bases as an analysis tool for
image fusion in both noisy and noiseless environments is examined. The per-
formance of the proposed framework in image fusion is compared to traditional
fusion analysis tools, such as the wavelet transform. Common pixel-based fu-
sion rules are tested together with a proposed “weighted-combination” scheme,
based on the L1-norm. A region-based approach that segments and fuses ac-
tive and non-active areas of the image is introduced. Finally, an adaptive
unsupervised scheme for image fusion in the ICA domain using sparsity is
presented.

The paper is structured, as follows. In section 2, we introduce the basics of
the Independent Component Analysis technique and how it can be used to
generate analysis/synthesis bases for image fusion. In section 3, we describe
the general method for performing image fusion using ICA bases. In section
4, the proposed pixel-based weighted combination scheme and a combinatory
region-based scheme are introduced. In section 5, we describe an unsupervised
adaptive fusion scheme in the ICA framework. In section 6, several issues
concerning the reconstruction of the fused image from the ICA representation
are discussed. In section 7, the proposed transform and fusion schemes is
benchmarked using common fusion testbed. Finally, in section 8, we outline
the advantages and disadvantages of the proposed schemes together with some
suggestions about future work.

2 ICA and Topographic ICA bases

Assume an image I(x, y) of size M1 × M2 and a window W of size N × N ,
centered around the pixel (x0, y0). An “image patch” is defined as the product
between a N×N neighbourhood centered around pixel (x0, y0) and the window
W .

Iw(k, l) = W (k, l)I(x0 − ⌊N/2⌋ + k, y0 − ⌊N/2⌋ + l), ∀ k, l ∈ [0, N − 1](5)

where ⌊·⌋ represents the lower integer part and N is odd. For the subsequent
analysis, we will assume a rectangular window, i.e.

W (k, l) = 1, ∀ k, l ∈ [0, N − 1] (6)
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Fig. 1. Selecting an image patch Iw around pixel (x0, y0) and the lexicographic
ordering.

2.1 Definition of bases

In an effort to understand the underlying structure of an image, it is common
practice in image analysis to express an image as the synthesis of several basis
images. These bases are chosen according to the image features that need to
be highlighted with this analysis. A number of basis have been proposed in
literature so far, such as cosine bases, complex cosine bases, Hadamard bases
and wavelet bases. In this case, the bases are well-defined in order to serve
some specific analysis tasks. However, one can estimate non-standard bases by
training with a population of similar content images. The bases are estimated
after optimising a cost function that defines the bases’ desired properties.

The N × N image patch Iw(k, l) can be expressed as a linear combination of
a set of K basis images bj(k, l), i.e.

Iw(k, l) =
K

∑

j=1

ujbj(k, l) (7)

where uj are scalar constants. The two-dimensional (2D) representation can
be simplified to an one-dimensional (1D) representation, by employing lexico-
graphic ordering, in order to facilitate the analysis. In other words, the image
patch Iw(k, l) is arranged into a vector Iw, taking all elements from matrix Iw

in a row-wise fashion. The vectors Iw are normalised to zero mean, to avoid
the possible bias of the local grayscale levels. Assume that we have a popula-
tion of patches Iw, acquired randomly from the original image I(x, y). These
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image patches can then be expressed in lexicographic ordering, as follows:

Iw(t) =
K

∑

j=1

uj(t)bj = [b1 b2 . . . bK ]





















u1(t)

u2(t)

. . .

uK(t)





















(8)

where t represents the t-th image patch selected from the original image.
The whole procedure of image patch selection and lexicographic ordering is
depicted in figure 1. Let B = [b1 b2 . . . bK ] and u(t) = [u1(t) u2(t) . . . uK(t)]T .
Then, equation (8) can be simplified, as follows:

Iw(t) = Bu(t) (9)

u(t) = B−1Iw(t) = AIw(t) (10)

In this case, A = B−1 = [a1 a2 . . . aK ]T represents the analysis kernel and
B the synthesis kernel. This “transformation” projects the observed signal
Iw(t) on a set of basis vectors bj. The aim is to estimate a finite set of basis
vectors that will be capable of capturing most of the signal’s structure (en-
ergy). Essentially, we need N2 bases for a complete representation of the N2-
dimensional signals Iw(t). However, with some redundancy reduction mecha-
nisms, we can have efficient overcomplete representations of the original signals
using K < N2 bases.

The estimation of these K vectors is performed using a population of train-
ing image patches Iw(t) and a criterion (cost function), which is going to be
optimised in order to select the basis vectors. In the next paragraphs, we will
estimate bases from image patches using several criteria.

2.1.1 Principal Component Analysis (PCA) bases

One of the transform’s targets might be to analyse the image patches into
uncorrelated components. Principal Component Analysis (PCA) can identify
uncorrelated vector bases [10], assuming a linear generative model, as in (9). In
addition, PCA can be used for dimensionality reduction to identify the K most
important basis vectors. This is performed by eigenvalue decomposition of the
data correlation matrix C = E{IwIT

w}, where E{·} represents the expectation
operator. Assume that H is a matrix containing all the eigenvectors of C
and D a diagonal matrix containing the eigenvalues of C. The eigenvalue at
the i-th diagonal element should correspond to the eigenvector at the i-th
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column of H. The rows of the following matrix V provide an orthonormal set
of uncorrelated bases, which are called PCA bases.

V = D−0.5HT (11)

The above set forms a complete set of bases, i.e. we have as many bases as
the dimensionality of the problem (N2). As PCA has efficient energy com-
paction properties, one can form a reduced (overcomplete) set of bases, based
on the original ones. The eigenvalues can illustrate the significance of their
corresponding eigenvector (basis vector). We can order the eigenvalues in the
diagonal matrix D, in terms of decreasing absolute value. The eigenvector ma-
trix H should be arranged accordingly. Then, we can select the first K < N2

eigenvectors that correspond to the K most important eigenvalues and form
reduced versions of D̂ and Ĥ. The reduced K × N2 PCA matrix V̂ is calcu-
lated using (11) for D̂ and Ĥ. The input data can be mapped to the PCA
domain via the transformation:

z(t) = V̂ Iw(t) (12)

The size of the overcomplete set bases K is chosen so that the computational
load of a complete representation can be reduced. However, the overcomplete
set should be able to provide an almost lossless representation of the original
image. Therefore, the choice of K is usually a trade-off between computational
complexity and image quality.

2.1.2 Independent Component Analysis (ICA) bases

A stricter criterion than uncorrelatedness is to assume that the basis vectors or
equivalently the transform coefficients are statistically independent. Indepen-
dent Component Analysis (ICA) can identify statistically independent basis
vectors in a linear generative model [13]. A number of different approaches
have been proposed to analyse the generative model in (9), assuming statisti-
cal independence between the coefficients ui in the transform domain. Statis-
tical independence can be closely linked with the nonGaussianity. The Central
Limit Theorem states that the sum of several independent random variables
tends towards a Gaussian distribution. The same principal holds for any linear
combination Iw of these independent random variables ui. The Central Limit
Theorem also implies that a combination of the observed signals in Iw with
minimal Gaussian properties can be one of the independent signals. Therefore,
statistical independence and nonGaussianity can be interchangeable terms.

A number of different techniques can be used to estimate independent coef-
ficients ui. Some approaches estimate ui by minimising the Kullback-Leibler
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(KL) divergence between the estimated coefficients ui and several probabilistic
priors on the coefficients. Other approaches minimise the mutual information
conveyed by the estimated coefficients or perform approximate diagonalisation
of a cumulant tensor of Iw. Finally, some methods estimate ui by estimating
the directions of the most nonGaussian components using kurtosis or negen-
tropy, as nonGaussianity measures. More details on these techniques can be
found in tutorial books on ICA, such as [3,13].

In this study, we will use an approach that optimises negentropy, as a non-
Gaussianity measurement to identify the independent components ui. This is
also known as FastICA and was proposed by Hyvärinen and Oja [9]. According
to this technique, PCA is used as a preprocessing step to select the K most
important vectors and orthonormalise the data using (12). Consequently, the
statistical independent components can be identified using orthogonal projec-
tions aT

i z. In order to estimate the projecting vectors ai, we have to minimise
the following non-quadratic approximation of negentropy:

JG(q
i
) =

(

E{G(qT

i
z)} − E{G(v)}

)2
(13)

where E{·} denotes the expectation operator, v is a Gaussian variable of zero
mean and unit variance and G(·) is practically any non-quadratic function. A
couple of possible functions were proposed in [11]. In our analysis, we will use:

G(x) =
1

α
log cosh αx (14)

where α is a constant that usually is bounded to 1 ≤ α ≤ 2. Hyvärinen
and Oja produced a fixed-point method, optimising the above definition of
negentropy, which is also known as the FastICA algorithm.

q+
i
← E{q

i
φ(qT

i
z)} − E{φ′(qT

i
z)}q

i
, 1 ≤ i ≤ K (15)

Q ← Q(QT Q)−0.5 (16)

where φ(x) = −∂G(x)/∂x. We randomly initialise the update rule in (15)
for each projecting vector q

i
. The new updates are then orthogonalised, using

the symmetric orthogonalisation scheme in (16). These two steps are iterated,
until q

i
have converged.

2.1.3 Topographical Independent Component Analysis (TopoICA) bases

In practical applications, one can frequently observe clear violations of the in-
dependence assumption. It is possible to find couples of estimated components
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that they are clearly dependent on each other. This dependence structure can
be very informative about the actual image structure and it would be useful
to estimate it [11].

Hyvärinen et al [11] used the residual dependency of the “independent” com-
ponents, i.e. dependencies that could not be cancelled by ICA, to define a
topographic order between the components. Therefore, they modified the orig-
inal ICA model to include a topographic order between the components, so
that components that are near to each other in the topographic representation
are relatively strongly dependent in the sense of higher-order correlations or
mutual information. The proposed model is usually known as the Topographic
ICA model. The topography is introduced using a neighbourhood function
h(i, k), which expresses the proximity between the i-th and the k-th compo-
nent. A simple neighbourhood model can be the following:

h(i, k) =











1, if |i − k| ≤ L

0, otherwise
(17)

where L defines the width of the neighbourhood. Consequently, the estimated
coefficients ui are no longer assumed independent, but can be modelled by
some generative random variables dk, fi that are controlled by the neighbour-
hood function and shaped by a nonlinearity φ(·) (similar to the one in the
FastICA algorithm). The topographic source model, proposed by Hyvärinen
et al [11], is the following:

ui = φ

(

K
∑

k=1

h(i, k)dk

)

fi (18)

Assuming a fixed-width neighbourhood L×L and a PCA preprocessing step,
Hyvärinen et al performed Maximum Likelihood estimation of the synthesis
kernel B using the linear model in (9) and the topographic source model in
(18), making several assumptions for the generative random variables dk and
fi. Optimising an approximation of the derived log-likelihood, they formed the
following gradient-based Topographic ICA rule:

q+
i
← q

i
+ ηE{z(qT

i
z)ri}, 1 ≤ i ≤ K (19)

Q ← Q(QT Q)−0.5 (20)

where η defines the learning rate of the gradient optimisation scheme and

ri =
K

∑

k=1

h(i, k)φ





K
∑

j=1

h(j, k)(qT

i
z)2



 (21)

9



As previously, we randomly initialise the update rule in (19) for each projecting
vector q

i
. The new updates are then orthogonalised and the whole procedure

is iterated, until ai have converged. For more details on the definition and
derivation of the Topographic ICA model, one can always refer to the original
work by Hyvärinen et al [11].

Finally, after estimating the matrix Q, using the ICA or the topographic ICA
algorithm, the analysis kernel is given by multiplying the original PCA bases
matrix V̂ with Q.

A ← QV̂ (22)

2.2 Training ICA bases

In this paragraph, we describe the training procedure of the ICA and to-
pographic ICA bases more thoroughly. The training procedure needs to be
completed only once for each data type. After we have successfully trained
the desired bases for each image type, the estimated transform can be used
for fusion of similar content images.

We select a set of images with similar content to the ones that will be used
for image fusion. A number of N × N patches (usually around 10000) are
randomly selected from the training images. We apply lexicographic ordering
to the selected images patches and normalise them to zero mean. We perform
PCA on the selected patches and select the K < N2 most important bases,
according to the eigenvalues corresponding to the bases. It is always possible
to keep the complete set of bases. Then, we iterate the ICA update rule in
(15) or the topographical ICA rule in (19) for a chosen L × L neighbourhood
until convergence. After each iteration, we orthogonalise the bases using the
scheme in (16).

Some examples from trained ICA and topographic ICA bases are depicted in
figure 2. We randomly selected 10000 16× 16 patches from natural landscape
images. Using PCA, we selected the 160 most important bases out of the
256 bases available. In figure 2(a), we can see the ICA bases estimated using
FastICA (15). In figure 2(b), the set of the estimated Topographic ICA bases
using the rule in (19) and a 3 × 3 neighbourhood for the topographic model
are depicted. The estimated bases feature an ordering based on similarity and
correlation and thus offer a more structured and meaningful representation.
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(a) ICA bases

(b) Topographic ICA bases

Fig. 2. Comparison between ICA and the topographical ICA bases trained on the
same set of image patches. We can observe the spatial correlation of the bases,
introduced by “topography”.

2.3 Properties of the ICA bases

Let us explore some of the properties of the ICA and the Topographical ICA
bases and the transforms they constitute. Both transforms are invertible, i.e.
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they guarantee perfect reconstruction. Using the symmetric orthogonalisation
step Q ← Q(QT Q)−0.5, the estimated bases remain orthogonal in the ICA
domain, i.e. the transform is orthogonal.

We can examine the estimated example set of ICA and Topographical ICA
bases in figure 2. The ICA and topographical ICA basis vectors seem to be
closely related to wavelets and Gabor functions, as they all represent localised
edge features. However, the ICA bases have more degrees of freedom than
wavelets [11]. The Discrete Wavelet transform has only two orientations and
the Dual-Tree wavelet transform can give six distinct sub-bands at each level
with orientation ±15o,±45o,±75o. In contrast, the ICA bases can get arbitrary
orientations to fit the training patches. On the other hand, the ICA bases do
not offer a multilevel representation as the wavelet or pyramid decomposition,
but only focus on localised features.

One basic drawback of the ICA-based transformations is that they are not
shift invariant by definition. This property is generally mentioned to be very
important for image fusion in literature [18]. Piella [20] comments that the
fusion result will depend on the location or orientation of objects in the in-
put sources in the case of misregistration problems or when used for image
sequence fusion. As we assume that the observed images are all registered, the
lack of shift invariance should not necessarily be a problem. In addition, Hy-
varinen et al proposed to approximate shift invariance in these ICA schemes,
by employing a sliding window approach [12]. This implies that the input im-
ages are not divided into distinct patches, but instead every possible N × N
patch in the image is analysed. This is similar to the spin cycling method, pro-
posed by Coifman and Donoho [4]. This will also increase the computational
complexity of the proposed framework. The sliding window approach is only
necessary for the fusion part and not for the estimation of bases.

The basic difference between ICA and topographic ICA bases is the “topog-
raphy”, as introduced in the latter bases. The introduction of some local cor-
relation in the ICA model enables the algorithm to uncover some connections
between the independent components. In other words, topographic bases pro-
vide an ordered representation of the data, compared to the unordered repre-
sentation of the ICA bases. In an image fusion framework, “topography” can
identify groups of features that can characterise certain objects in the image.
One can observe the ideas comparing figures 2(a) and 2(b). Topographic ICA
seems to offer a more comprehensive representation compared to the general
ICA model.

Another advantage of the ICA bases is that the estimated transform can be
tailored to the application field. Several image fusion applications work with
specific types of images. For example, military applications work with im-
ages of airplanes, tanks, ships etc. Biomedical applications employ Computed
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Fig. 3. The proposed fusion system using ICA / Topographical ICA bases.

Tomography (CT), Positron Emission Tomography (PET), ultra-sound scan
images etc. Consequently, one can train bases for specific application areas
using ICA. These bases should be able to analyse the trained data types more
efficiently than a generic transform.

3 Image fusion using ICA bases

In this section, we describe the whole procedure of performing image fusion us-
ing ICA or Topographical ICA bases, which is summarised in figure 3 [17,16].
We assume that a ICA or Topographic ICA transform T {·} is already esti-
mated, as described in section 2.2. Also, let Ik(x, y) be T M1 ×M2 registered
sensor images that need to be fused. From each image we isolate every possi-
ble N × N patch and using lexicographic ordering, we form the vector Ik(t).
The patches’ size N should be the same as the one used in the transform esti-
mation. Therefore, each image Ik(x, y) is now represented by a population of
(M1 −N)(M2 −N) vectors Ik(t),∀ t ∈ [1, (M1 −N)(M2 −N)]. These vectors
are normalised to zero mean and the subtracted means of each vector MNk(t)
are stored in order to be used in the reconstruction of the fused image. Each of
these representations Ik(t) is transformed to the ICA or Topographic ICA do-
main representation uk(t). Assuming that A is the estimated analysis kernel,
we have:

uk(t) = T {Ik(t)} = AIk(t) (23)
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Once the image representations are in the ICA domain, one can apply a
“hard” threshold on the coefficients and perform optional denoising (sparse
code shrinkage), as proposed by Hyvärinen et al [12]. The threshold can be
determined by supervised estimation of the noise level in constant background
areas of the image. Then, one can perform image fusion in the ICA or Topo-
graphic ICA domain in the same manner that is performed in the wavelet
or dual-tree wavelet domain. The corresponding coefficients uk(t) from each
image are combined in the ICA domain to construct a new image uf (t). The
method g(·) that combines the coefficients in the ICA domain is called “fusion
rule”:

uf (t) = g (u1(t), . . . , uk(t), . . . , uT (t)) (24)

Many of the proposed rules for fusion, as they were analysed in the introduc-
tion section and in literature [20,18], can be applied to this framework. The
“max-abs” and the “mean” rules can be two very common options. However,
one can use more efficient fusion rules, as will be presented in the next sec-
tion. Once the composite image uf (t) is constructed in the ICA domain, one
can move back to the spatial domain, using the synthesis kernel B, and syn-
thesise the image If (x, y) by averaging the image patches If (t) in the same
order they were selected during the analysis step. The whole procedure can
be summarised as follows:

(1) Segment all input images Ik(x, y) into every possible N ×N image patch
and transform them to vectors Ik(t) via lexicographic ordering.

(2) Move the input vectors to the ICA / Topographic ICA domain, and get
the corresponding representation uk(t).

(3) Perform optional thresholding of uk(t) for denoising.
(4) Fuse the corresponding coefficient using a fusion rule and form the com-

posite representation uf (t).
(5) Move uf (t) to the spatial domain and reconstruct the image If (x, y) by

averaging the overlapping image patches.

4 Pixel-based and Region-based fusion rules using ICA bases

In this section, we describe two proposed fusion rules for ICA bases. The first
one is an extension of the “max-abs” pixel-based rule, which we will refer to
as the Weight Combination (WC) rule. The second one is a combination of
the WC and the “mean” rule in a region-based scenario.
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4.1 A Weight Combination (WC) pixel-based method

An alternative to common fusion methods, is to use a “weighted combination”
of the transform coefficients, i.e.

T {If (t)} =
T

∑

k=1

wk(t)T {Ik(t)} (25)

There are several parameters that can be employed in the estimation of the
contribution wk(t) of each image to the “fused” one. In [20], Piella proposed
several activity measures. Following the general ideas proposed in [20], we
propose the following scheme. As each image is processed in N × N patches,
we can use the mean absolute value (L1-norm) of each patch (arranged in a
vector) in the transform domain, as an activity indicator in each patch.

Ek(t) = ||uk(t)||1 k = 1, . . . , T (26)

The weights wk(t) should emphasise sources that feature more intense activity,
as represented by Ek(t). Consequently, the weights wk(t) for each patch t can
be estimated by the contribution of the k-th source image uk(t) over the total
contribution of all the T source images at patch t, in terms of activity. Hence,
we can choose:

wk(t) = Ek(t)/
T

∑

k=1

Ek(t) (27)

There might be some cases, where
∑T

k=1 Ek(t) is very small, denoting small
edge activity or constant background in the corresponding patch. As this can
cause numerical instability, the “max-abs” or “mean” fusion rule can be used
for those patches. Equally, a small constant can be added to alleviate this
instability.

4.2 Region-based Image fusion using ICA bases

In this section, the analysis of the input images in the estimated ICA domain
will be employed to perform some regional segmentation in order to fuse these
regions using different rules, i.e. perform region-based image fusion. During,
the proposed analysis methodology, we have already divided the image in
small N × N patches (i.e. regions). Using the splitting/merging philosophy
of region-based segmentation [23], a criterion is employed to merge the pixels
corresponding to each patch in order to form contiguous areas of interest.
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One could use the energy activity measurement, as introduced by (26), to infer
the existence of edges in the corresponding frame. As the ICA bases tend to
focus on the edge information, it is clear that great values for Ek(t), correspond
to increased activity in the frame, i.e. the existence of edges. In contrast,
small values for Ek(t) denote the existence of almost constant background
or insignificant texture in the frame. Using this idea, we can segment the
image in two regions: i) “active” regions containing details and ii) “non-active”
regions containing background information. The threshold that will be used
to characterise a region as “active” or “non-active” can be set heuristically
to 2meant{Ek(t)}. Since the aim here is to create the most accurate edge-
detector, we can allow some tolerance around the real edges of the image.
As a result, we form the following segmentation map mk(t) from each input
image:

mk(t) =











1, if Ek(t) > 2meant{Ek(t)}

0, otherwise
(28)

The segmentation map of each input image is combined to form a single seg-
mentation map, using the logical OR operator. As mentioned earlier, we are
not interested in forming a very accurate edge detection map, but instead it is
important to ensure that our segmentation map contains most of the strong
edge information.

m(t) = OR{m1(t),m2(t), . . . ,mT (t)} (29)

Once the image has been segmented into “active” and “non-active” regions,
we can fuse these regions using different pixel-based fusion schemes. For the
“active” region, we can use a fusion scheme that preserves the edges, i.e.
the “max-abs” scheme or the weighted combination scheme and for the “non-
active” region, we can use a scheme that preserves the background information,
i.e. the “mean” or “median” scheme. Consequently, this could form a more
accurate fusion scheme that looks into the actual structure of the image itself,
rather than fuse information generically.

5 A general optimisation scheme for image fusion

In this section, the focus is placed on defining an unsupervised image fusion
approach based on the minimisation of a formulated cost function involving
several source images. The main aim is to achieve visual improvements over the
original source images, such that certain specific features in the original source
images can be detected visually or through various models in the fused image.

16



Practical usage of this algorithm includes the confirmation of a particular
target in military purposes, when several different source images are obtained
from different sensors under different conditions [16].

The minimisation of a cost function involves the estimation of a set of optimal
parameters that will minimise the output value of the cost function. This
concept can thus be incorporated into the process of image fusion to obtain a
set of optimal coefficients that can be used to produce a fused image of better
quality than each of the original source images.

Let us assume that we are interested in the N×N patches around pixel (x0, y0)
in the input sensor image I1, . . . , IT . These patches are lexicographically or-
dered, as described in the previous section, to form the vectors I1, . . . , IT . We
also assume that an ICA transform T {·} has been trained, using patches of
similar content images. In this case, we will be using a complete represen-
tation, i.e. K = N2, although any overcomplete representation may also be
used. The input patches in the transform domain are denoted by ui = T {I i}.
The fused image uf in the transform domain can be given by the following
linear combination:

uf = w1u1 + w2u2 + . . . + wT uT (30)

where w1, . . . , wT are scalar coefficients that denote the mixing of each input
sensor patch in the transform domain. We denote w = [w1 w2 . . . wT ]T . All
elements of vector ui will contribute in the formation of the fused image,
according to the weight wi. Let us now define:

x(n) = [u1(n) u2(n) . . . uT (n)]T ∀ n = 1, . . . , N2 (31)

Hence, the fusion procedure can be equivalently described by the following
product:

uf (n) = wT x(n) ∀ n = 1, . . . , N2 (32)

The problem of fusion can now be described as an optimisation problem of
estimating w, so that the fused image follows certain properties, described
by the cost function. A logical assumption is that the fusion process should
enhance sparsity in the ICA domain. In other words, the fusion should empha-
size the existence of strong coefficients in the transform, whilst suppress small
values. We will approach the problem of estimating w, using a ML estimation
approach, assuming several probabilistic priors, that describe sparsity.

The connection between sparsity and ICA representations has been inves-
tigated thoroughly by Olshausen [19]. The basis functions that emerge when
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adapted to static, whitened natural images under the assumption of statistical
independence, resemble the Gabor-like spatial profiles of cortical simple-cell
receptive fields. That is to say that the functions become spatially localised,
oriented and bandpass. Because all of these properties emerge purely from
the objective of finding sparse, independent components for natural images,
the results suggest that the receptive fields of V1 neurons have been designed
under the same principle. Therefore, the actual non-distorted representation
of the observed scene in the ICA domain should be more sparse than the dis-
torted or different sensor input. Consequently, an algorithm that maximises
the sparsity of the fused image in the ICA domain can be justified.

5.1 Laplacian priors

Assuming a Laplacian model for uf (n), we can perform Maximum Likelihood
(ML) estimation of w. The Laplacian probability density function is given
below:

p(uf ) ∝ e−α|uf | (33)

where α is a parameter that controls the width (variance) of the Laplacian.
The likelihood expression for ML estimation can be given by:

Ln =− log p(uf |θn)

∝− log e−α|uf | = α|uf |

= α|wT x(n)| (34)

Maximum Likelihood estimation can be performed by maximising the cost
function J(w) = E{Ln}. Hence, the optimisation problem to be solved is the
following:

max
w

E{α|wT x|} (35)

subject to eT w = 1 (36)

w > 0 (37)

where e = [1 1 . . . 1]T . To begin evaluate the solutions to this problem, we
can firstly calculate the first derivative:

∂J(w)

∂w
=

∂

∂w
E{α|wT x|} = αE{sgn(wT x)x} (38)
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To solve the above optimisation problem, one has to consult methods for con-
straints optimisation. Using the Lagrange multipliers method for equality con-
straints and the Kuhn-Tucker conditions for inequality constraints is definitely
going to increase the computational complexity of the algorithm. In addition,
the available data points for the estimation of the expectation are limited to
N2. Therefore, we propose to solve the unconstrained optimisation problem
using a gradient ascent method and impose the constraints at each stage of
the adaptation. Consequently, the proposed algorithm can be summarised, as
follows:

(1) Initialise w = e/T . This implies the mean fusion rule, i.e. equal impor-
tance to all input patches.

(2) Update the weight vector, as follows:

w+ ← w + ηE{sgn(wT x)x} (39)

where η represents the learning rate
(3) Apply the constraints, using the following update rule:

w+ ← |w|/(eT |w|) (40)

(4) Iterate steps 2, 3 until convergence.

Effectively, equation (40) ensures that the weights wi remain always positive
and they sum up to one, as it is essential not to introduce any sign or scale
deformation during the estimation of the fused image.

5.2 Verhulstian priors

The main drawback of using Laplacian priors is the use of the sgn(u) function
in the update algorithm, that has a discontinuity at u → 0 and therefore may
cause numerical instability and errors during the update. Usually, this prob-
lem is alleviated by thresholding u by a small constant, so that u never gets
zero values. Therefore, one can use alternate probabilistic priors that denote
sparsity, such as the generalised Laplacian or the Verhulstian distribution. In
the section, we will examine the use of Verhulstian priors in the ML estimation
of the fused image.

The Verhulstian probability density function can be defined, as follows:

p(u) =
e−

u−m
s

s
(

1 + e−
u−m

s

)2 (41)

where m, s are parameters that control the mean and the standard deviation
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of the density function. In our case, we will assume zero mean and therefore
m = 0. We can now derive the log-likelihood function for ML estimation:

Ln =− log
e−

uf

s

s
(

1 + e−
uf

s

)2

=
uf

s
+ log s + 2 log

(

1 + e−
uf

s

)

=
1

s
wT x + log s + 2 log

(

1 + e−
1

s
wT x

)

(42)

Maximum Likelihood estimation can be performed in a similar fashion to
Laplacian priors, by maximising the cost function J(w) = E{Ln}. Again, a
gradient ascent algorithm is employed, as explained in the previous section
with a correcting step that will constrain the solutions in the solution space,
permitted by the optimisation problem. The gradient is calculated, as follows:

∂J(w)

∂w
=

∂

∂w
E

{

1

s
wT x + log s + 2 log

(

1 + e−
1

s
wT x

)

}

= E







1

s
x −

1

s
x

2e−
1

s
wT x

1 + e−
1

s
wT x







=
1

s
E







1 − e−
1

s
wT x

1 + e−
1

s
wT x

x







(43)

We can now perform the same algorithm as introduced for Laplacian priors,
the only difference being that in equation (39), we have to replace the gradient
with that of equation (43). Consequently, the algorithm can be outlined as
follows:

(1) Initialise w = e/T . This implies the mean fusion rule, i.e. equal impor-
tance to all input patches.

(2) Update the weight vector, as follows:

w+ ← w + ηE







1 − e−
1

s
wT x

1 + e−
1

s
wT x

x







(44)

where η represents the learning rate
(3) Apply the constraints, using the following update rule:

w+ ← |w|/(eT |w|) (45)

(4) Iterate steps 2, 3 until convergence.
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Fig. 4. Typical convergence of the ML-estimation fusion scheme using Laplacian
and Verhulstian priors.

In figure 4, a typical convergence of the two ML-estimation schemes using
the two proposed priors is shown. The algorithms converge smoothly after an
average of 50 − 60 iterations.

6 Reconstruction of the fused image

The above algorithms have provided a number of possible methods to estimate
the fused image uf (t) in the ICA transform domain. The next step is to esti-
mate the spatial-domain representation of the image If (x, y). To reconstruct
the image in the spatial domain, the process described in Section 2 is inverted.
The vectors uf (t) are re-transformed to the local N ×N patches If (k, l). The
local mean of each patch is restored using the stored patches means MNk(t).
The patches are consequently averaged with 1-pixel overlap to create the grid
in Figure 1, i.e. the fused image. This averaging usually creates an artificial
“frame” around the reconstructed image, which occurs due to the reduced
number of frames that are available around the image’s borders. To overcome
this effect, one can pad with zeros the borders of the input sensors images
before the fusion stage, so that the “framing” effect affects the zero-padded
areas only.
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The restoration of the patches’ local means is a very important issue. Initially,
all the patches were normalised to zero mean and the subtracted local inten-
sity mean MNk(t) was stored to be used in the reconstruction of the fused
image. Consequently, there exist T local intensity values for each patch of
the reconstructed image, each belonging to the corresponding input sensor. In
the case of performing multi-focus image fusion, it is evident that the local
intensities from all input sensors will be similar, if not equal, for all correspond-
ing patches. In this case, the local means are reconstructed by averaging the
MNk(t), in terms of k. In the case of multi-modal image fusion, the problem of
reconstructing the local intensities of the fused image becomes more serious,
since the T input images are acquired from different modality sensors with dif-
ferent intensity range and values. The fused image is an artificial image, that
does not exist in nature, and it is therefore difficult to find a criterion that can
dictate the most efficient way of combining the input sensors intensity range.
The details from all input images will be transferred to the fused image by the
fusion algorithm, however, the local intensities will be selected to define the
intensity profile of the fused image. In Figure 5, the example of a multi-modal
fusion scenario is displayed: a visual sensor image is fused with an infrared
sensor image. Three possible reconstructions of the fused image’s means are
shown: a) the contrast (local means) is acquired from the visual sensor, b)
the contrast is acquired from the infrared image and c) an average of the lo-
cal means is used. All three reconstructions contain the same salient features,
since these are dictated by the ICA fusion procedure. Each of the three recon-
structions simply gives a different impression of the fused image, depending
on the prevailing contrast preferences. The average of the local means seems
to give a more balanced representation compared to the two extremes. The
details are visible in all three reconstructions. However, an incorrect choice of
local means may render some of the local details, previously visible in some of
the input sensors, totally invisible in the fused image and therefore deteriorate
the fusion performance. In this chapter, we will use the average of the local
means, giving equal importance to all input sensors. However, there might be
another optimum representation of the fused image, by perhaps emphasising
means from input sensors with greater intensity range.

An additional problem can be the creation of a “colour” fused image, as the
result of the fusion process. Let us assume that one of the input sensors is
a visual sensor. In most real-life situations the visual sensor will provide a
colour input image or in other terms a number of channels representing the
colour information provided by the sensor. The most common representation
in Europe is the RGB (Red-Green-Blue) representation featuring 3 channels
of the three basic colours. If the traditional fusion methodology is applied
on this problem, a single channel “fused” image will be produced featuring
only intensity changes in grayscale. However, most users and operators will
demand a colour rather than a grayscale representation of the “fused” image.
There are several surveillance applications, where a colour “fused” image is
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(a) Visual Sensor (b) InfraRed Sensor

(c) Means from Visual
Sensor

(d) Means from InfraRed
Sensor

(e) Average Means

Fig. 5. Effect of local means choice in the reconstruction of the fused image.

expected from a visual and an Infrared sensor [27]. Even in the case of a
grayscale visual input sensor and other infrared, thermal sensors, the operator
is more likely to prefer a synthetic colour representation of the “fused” image,
rather than a grayscale one [26]. Therefore, the problem of creating a 3-channel
representation of the “fused” image from T channels available by the input
sensors can be rather demanding.

A first thought would be to treat each of the visual color channels indepen-
dently and fuse them with the input channels from the other sensors inde-
pendently to create a three channel representation of the “fused” image. Al-
though this technique seems rational and may produce satisfactory results in
several cases, it does not utilise the dependencies between the colour channels
that might be beneficial for the fusion framework [2]. Another proposed ap-
proach [2,27] was to move to another color space, such as the YUV color space
that describes a colour image using one luminance and two chrominance chan-
nels [2] or the HSV color space that describes a colour image using Hue, Satu-
ration and Intensity (luminance) channels. The two chrominance channels as
well as the hue-saturation channels convey colour information solely, whereas
the Intensity channel describes the image details more accurately. Therefore,
the proposed strategy is to fuse the intensity channel with the other input
sensor channels and create the intensity channel for the “fused” image. The
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chrominance/hue-saturation channels can be used to provide color information
for the “fused” image. This scheme features reduced computational complex-
ity as one visual channel is fused instead of the original three. In addition, as
all these colour transformations are linear mappings from the RGB space, one
can use Principal Component Analysis to define the principal channel in terms
of maximum variance. This channel is fused with the other input sensors and
the resulting image is mapped back to the RGB space, using the estimated
PCA matrix. The above techniques are producing satisfactory results in the
case of colour out-of-focus input images, since all input images have the same
chrominance channels. In the case of multi-modal or multi-exposure images,
these methods may not be sufficient and then one can use more complicated
color channel combination and fusion schemes in order to achieve an enhance
“fused” image [27]. These schemes may offer enhanced performance for se-
lected applications only but not in every possible fusion scenario.

7 Experiments

In this section, we test the performance of the proposed image fusion schemes
based on ICA bases. It is not our intention to provide an exhaustive comparison
of the many different transforms and fusion schemes that exist in literature.
Instead, a comparison with fusion schemes using wavelet packets analysis and
the Dual-Tree (Complex) Wavelet Transform are performed. In these exam-
ples we will test the “fusion by absolute maximum” (maxabs), the “fusion by
averaging” (mean), the Weighted Combination (weighted), the Region-based
(Regional) fusion and the adaptive (Laplacian prior) fusion rules.

We present three experiments, using both artificial and real image data sets.
In the first experiment, the Ground Truth image Igt(x, y) is available, enabling
us to perform explicit numerical evaluation of the fusion schemes. We assume
that the input images Ii(x, y) are processed by the fusion schemes to create
the “fused” image If (x, y). To evaluate the scheme’s performance, we can use
the following Signal-to-Noise Ratio (SNR) expression to compare the ground
truth image with the fused image.

SNR(dB) = 10 log10

∑

x

∑

y Igt(x, y)2

∑

x

∑

y(Igt(x, y) − If (x, y))2
(46)

As traditionally employed by the fusion community, we can also use the Image
Quality Index Q0, as a performance measure [25]. Assume that mI represents
the mean of the image I(x, y) and all images are of size M1 × M2. As −1 ≤
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Q0 ≤ 1, the value of Q0 that is closer to 1, indicates better fusion performance.

Q0 =
4σIgtIf

mIgt
mIf

(m2
Igt

+ m2
If

)(σ2
Igt

+ σ2
If

)
(47)

where

σ2
I =

1

M1M2 − 1

M1
∑

x=1

M2
∑

y=1

(I(x, y) − mI)
2 (48)

σIJ =
1

M1M2 − 1

M1
∑

x=1

M2
∑

y=1

(I(x, y) − mI)(J(x, y) − mJ) (49)

For the rest of the experiments, as the “ground truth” image is not avail-
able, two Image Fusion performance indexes will be used: one proposed by
Piella [21] and one proposed by Petrovic and Xydeas [28]. Both indexes are
widely used by the image fusion community to benchmark the performance of
fusion algorithms. They both attempt at quantifying the amount of “interest-
ing” information (edge information) that has been conveyed from the input
images to the fused image. In addition, as Piella’s index employs the Image
Quality Index Q0 to quantify the quality of information transfer between each
of the input images and the fused image, it is bounded between −1 and 1.

The ICA and the topographic ICA bases were trained using 10000 8×8 image
patches that were randomly selected from 10 images of similar content to
the ground truth or the observed scene. We used 40 out of the 64 possible
bases to perform the transformation in either case. The local means of the
fused image were reconstructed using an average of the means of the input
sensor images. We compared the performance of the ICA and topographic
ICA transforms (topoICA) with a Wavelet Packet decomposition 1 and the
Dual-Tree Wavelet Transform 2 . For the Wavelet Packet decomposition (WP),
we used Symmlet-7 (Sym7) bases, with 5 level-decomposition using Coifman-
Wickerhauser entropy. For the Dual-Tree Wavelet Transform (DTWT), we
used 4 levels of decomposition and the filters included in the package. In the
next pages, we will present some of the resulting fusion images. However,
the visual differences between the fused images may not be very clear in the
printed version of this chapter, due to limitation in space. Consequently, the
reader is prompted to acquire the whole set either by download 3 or via email
to us.

1 We used WaveLab v8.02, as available at http://www-
stat.stanford.edu/∼wavelab/.
2 DT-WT code available online by the Polytechnic University of Brooklyn, NY at
http://taco.poly.edu/WaveletSoftware/
3 http://www.commsp.ee.ic.ac.uk/∼nikolao/BookElsevierImages.zip
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7.1 Experiment 1: Artificially distorted images

In the first experiment, we have created three images of an “airplane” using
different localised artificial distortions. The introduced distortions can model
several different types of degradation that may occur in visual sensor imaging,
such as motion blur, out-of-focus blur and finally pixelate or shape distortion,
due to low bit-rate transmission or channel errors. This synthetic example can
be a good starting point for evaluation, as there are no registration errors
between the input images and we can perform numerical evaluation, as we
have the ground truth image. We applied all possible combinations of trans-
forms and the fusion rules (the “Weighted” and “Regional” fusion rules can
not be applied in the described form for the WP and DTWT transforms).
Some results are depicted in figure 7, whereas the full numerical evaluation is
presented in table 1.

We can see that using the ICA and the TopoICA bases, we can get better fusion
results both in visual quality and metric quality (PSNR, Q0). We observe
the ICA bases provide an improvement of ∼ 2 − 4 dB, compared to the
wavelet transforms, using the “maxabs” rule. The topoICA bases seem to score
slightly better than the normal ICA bases, mainly due to better adaptation
to local features. In terms of the various fusion schemes, the “max-abs” rule
seems to give very low performance in this example using visual sensors. This
can be explained, due to the fact that this scheme seems to highlight the
important features of the images, however, it tends to lose some constant
background information. On the other hand, the “mean” rule gives the best
performance (especially for the wavelet coefficient), as it seems to balance the
high detail with the low-detail information. However, the “fused” image in
this case seems quite “blurry”, as the fusion rule has oversmoothed the image
details. Therefore, the high SNR has to be cross-checked with the actual visual
quality and image perception, where we can clearly that the salient features
have been filtered. The “weighted combination” rule seems to balance the
pros and cons of the two previous approaches, as the results feature high
PSNR and Q0 (inferior to the “mean” rule), but the “fused” images seem
sharper with correct constant background information. In figure 6, we can see
the segmentation map created by (18) and (19). The proposed region-based
scheme manages to capture most of the salient areas of the input images. It
performs reasonably well as an edge detector, however, it produces thicker
edges, as the objective is to identify areas around the edges, not the edges
themselves. The region-based fusion scheme produces similar results to the
“Weighted” fusion scheme. However, it seems to produce better visual quality
in constant background areas, as the “mean” rule is more suitable for the “non-
active” regions. The adaptive system based on the Laplacian prior seems to
achieve the maximum performance in the case of Topographic ICA bases, but
not on the trained ICA bases, where it matches the “mean” rule performance.
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Table 1
Performance comparison of several combinations of transforms and fusion rules in
terms of PSNR (dB)/Q0 using the “airplane” example.

WP (Sym7) DT-WT ICA TopoICA

Max-abs 14.03/0.8245 13.77/0.8175 16.28/0.9191 17.49/0.9354

Mean 23.19/0.9854 23.19/0.9854 20.99/0.9734 21.21/0.9752

Weighted - - 21.18/0.9747 21.41/0.9763

Regional - - 21.17/0.9746 21.42/0.9764

Laplacian - - 20.99/0.9734 21.73/0.9782

Fig. 6. Region mask created for the region-based image fusion scheme. The white
areas represent “active” segments and the black areas “non-active” segments.

7.2 Experiment 2: Out-of-focus image fusion

In the second experiment, we use the “Clocks” and the “Disk” examples, which
are real visual sensor example provided by Lehigh Image Fusion group [6]. In
these examples, there are two registered images with different focus points,
observing two complicated scenes. In the first image of each set, the focus is
on left part and in the second image the focus is on the right part of the image.
The ground truth image is not available, which is common in many multi-focus
examples. Therefore, SNR-type measurements are not available in this case.
Instead, the Piella fusion index [21] and the Petrovic fusion index [28] were
used and are depicted in Table 2 for various combinations of fusion rules and
transform domains. In Figures 8, 9 the resulting fused images for different
configurations of the two experiments are depicted.

Here, we can see that the ICA and TopoICA bases perform slightly better than
wavelet-based approaches in the first example and a lot better in the second ex-
ample. Also, we can see that the “maxabs” rule performs slightly better than
any other approach, with almost similar performance from the “Weighted”
scheme. The reason is that the three images have the same colour informa-
tion, however, most parts of each image are blurred. Therefore, the “maxabs”
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that identifies the greatest activity, in terms of edge information, seems more
suitable for a multi-focus example. The “maxabs” simply strengthens the exis-
tence of edges in the fused image and can therefore in an out-of-focus situation
can excel in restoring these blurred parts of the input images.

Table 2
Performance comparison of several combinations of transforms and fusion rules for
out-of-focus datasets, in terms of the Piella/Petrovic indexes.

WP (Sym7) DT-WT ICA TopoICA

Clocks dataset

Max-abs 0.8727/0.6080 0.8910/0.6445 0.8876/0.6530 0.8916/0.6505

Mean 0.8747/0.5782 0.8747/0.5782 0.8523/0.5583 0.8560/0.5615

Weighted - - 0.8678/0.6339 0.8743/0.6347

Regional - - 0.8583/0.5995 0.8662/0.5954

Laplacian - - 0.8521/0.5598 0.8563/0.5624

Disk dataset

Max-abs 0.8850/0.6069 0.8881/0.6284 0.9109/0.6521 0.9111/0.6477

Mean 0.8661/0.5500 0.8661/0.5500 0.8639/0.5470 0.8639/0.5459

Weighted - - 0.9134/0.6426 0.9134/0.6381

Regional - - 0.9069/0.6105 0.9084/0.6068

Laplacian - - 0.8679/0.5541 0.8655/0.5489

7.3 Experiment 3: Multi-modal image fusion

In the third experiment, we explore the performance in multi-modal image
fusion. In this case, the input images are acquired from different modality
sensors to unveil different components in the observed scene. We have used
some surveillance images from TNO Human Factors, provided by L. Toet [24].
More of these can be found in the Image Fusion Server [5]. The images are
acquired by three kayaks approaching the viewing location from far away. As
a result, their corresponding image size varies from less than 1 pixel to almost
the entire field of view, i.e. they are minimal registration errors. The first
sensor (AMB) is a Radiance HS IR camera (Raytheon), the second (AIM)
is an AIM 256 microLW camera and the third is a Philips LTC500 CCD
camera. Consequently, we get three different modality inputs for the same
observed scene. The third example is taken from the “UN Camp” dataset
available from the Image Fusion Server [5]. In this case, the inputs consist of
a grayscale visual sensor and an infrared sensor. The Piella fusion index [21]
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and the Petrovic fusion index [28] are measured and are depicted in Table 3
for various combinations of fusion rules and transform domains.

In this example, we can witness some minor effects of misregistration in the
fused image. We can see that all four transforms seem to have included most
salient information from the input sensor images, especially in the “max-
abs” and “weighted” schemes. However, the ICA and the TopoICA bases
approaches seem to excel in comparison to the dual-tree wavelet transform
and the wavelet packet approaches. The “fused image” constructed using the
proposed framework seems to be sharper and less blurry compared to the other
approaches, especially in the case of the “maxabs” and “weighted” schemes.
These observations can be verified in Figures 10, 11 and 12, where some of
the produced fused images are depicted for various configurations. The other
proposed schemes offer reasonable performance in all multi-modal examples,
but not the optimal.

8 Conclusion

The authors have introduced the use of ICA and Topographical ICA bases for
image fusion applications. These bases seem to construct very efficient tools,
which can compliment common techniques used in image fusion, such as the
Dual-Tree Wavelet Transform. The proposed method can outperform wavelet
approaches. The Topographical ICA bases offer more accurate directional se-
lectivity, thus capturing the salient features of the image more accurately. A
weighted combination image fusion rule seemed to improve the fusion quality
over traditional fusion rules in several cases. In addition, a region-based ap-
proach was introduced. At first, segmentation into “active” and “non-active”
areas is performed. The “active” areas are fused using the pixel-based weighted
combination rule and the “non-active” areas are fused using the pixel-based
“mean” rule. An adaptive fusion rule based on the sparsity of the coefficients
in the ICA-domain was also introduced. Sparsity was modelled using either
Laplacian or Verhulstian prior with promising results. The proposed frame-
work was tested with an artificial example, two out-of-focus examples and
three multi-modal, outperforming current state-of-the-art approaches based
on the wavelet transform.

The proposed schemes seem to increase the computational complexity of the
image fusion framework. The extra computational cost is not necessarily in-
troduced by the estimation of the ICA bases, as this task is performed only
once. The bases can be trained offline using selected image samples and then
employed constantly by the fusion applications. The increase in complexity
comes from the “sliding window” technique that is introduced to achieve shift
invariance. Implementing this fusion scheme in a more computationally effi-
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Table 3
Performance comparison of several combinations of transforms and fusion rules for
multimodal datasets, in terms of the Piella/Petrovic indexes.

WP (Sym7) DT-WT ICA TopoICA

Multimodal-1 dataset

Max-abs 0.6198/0.4163 0.6399/0.4455 0.6592/0.4507 0.6646/0.4551

Mean 0.6609/0.3986 0.6609/0.3986 0.6591/0.3965 0.6593/0.3967

Weighted - - 0.6832/0.4487 0.6861/0.4528

Regional - - 0.6523/0.3885 0.6566/0.3871

Laplacian - - 0.6612/0.3980 0.6608/0.3983

Multimodal-2 dataset

Max-abs 0.5170/0.4192 0.58022/0.4683 0.6081/0.4759 0.6092/0.4767

Mean 0.6028/0.420 0.6028/0.4207 0.6056/0.4265 0.6061/0.4274

Weighted - - 0.6252/0.4576 0.6286/0.4632

Regional - - 0.5989/0.4148 0.5992/0.4133

Laplacian - - 0.6071/0.4277 0.6068/0.4279

‘‘UN Camp’’ dataset

Max-abs 0.6864/0.4488 0.7317/0.4780 0.7543/0.4906 0.7540/0.4921

Mean 0.7104/0.4443 0.7104/0.4443 0.7080/0.4459 0.7081/0.4459

Weighted - - 0.7361/0.4735 0.7429/0.4801

Regional - - 0.7263/0.4485 0.7321/0.4508

Laplacian - - 0.7101/0.4475 0.7094/0.4473

cient framework than MATLAB will decrease the time required for the image
analysis and synthesis part of the algorithm.

For future work, the authors would be looking at evolving to a more au-
tonomous fusion system, exploring the nature of “topography”, as introduced
by Hyvärinen et al, and form more efficient activity detectors, based on topo-
graphic information. In addition, they would be looking at more sophisticated
methods for the selection of intensity or colour range of the fused image in the
case of multi-modal or colour image fusion.

30



Acknowledgements

This work was supported by the Data Information Fusion Phase-I project 6.4
and the Phase-II AMDF cluster project of the Defence Technology Centre,
UK.

References

[1] I. Bloch and H. Maitre. Data fusion in 2d and 3d image processing: An overview.
In Proc. X Brazilian symposium on Computer Graphics and Image Processing,
pages 122–134, 1997.

[2] L. Bogoni, M. Hansen, and P. Burt. Image enhancement using pattern-selective
color image fusion. In Proc. Int. Conf on Image Analysis and Processing, pages
44–49, 1999.

[3] A. Cichocki and S.I. Amari. Adaptive Blind Signal and Image Processing.

Learning algorithms and applications. John Wiley & Sons, 2002.

[4] R.R. Coifman and D.L. Donoho. Translation-invariant de-noising. Technical
report, Department of Statistics, Stanford University, Stanford, California,
1995.

[5] The Image fusion server. http://www.imagefusion.org/.

[6] Lehigh fusion test examples. http://www.eecs.lehigh.edu/spcrl/if/toy.htm.

[7] A. Goshtasby. 2-D and 3-D Image Registration: for Medical, Remote Sensing,

and Industrial Applications. John Wiley & Sons, 2005.

[8] P. Hill, N. Canagarajah, and D. Bull. Image fusion using complex wavelets. In
Proc. 13th British Machine Vision Conference, Cardiff, UK, 2002.

[9] A. Hyvärinen. Fast and robust fixed-point algorithms for independent
component analysis. IEEE Trans. on Neural Networks, 10(3):626–634, 1999.

[10] A. Hyvärinen. Survey on independent component analysis. Neural Computing

Surveys, 2:94–128, 1999.

[11] A. Hyvärinen, P. O. Hoyer, and M. Inki. Topographic independent component
analysis. Neural Computation, 13, 2001.

[12] A. Hyvärinen, P. O. Hoyer, and E. Oja. Image denoising by sparse code
shrinkage. In S. Haykin and B. Kosko, editors, Intelligent Signal Processing.
IEEE Press, 2001.

[13] A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis.
John Wiley & Sons, 2001.

31



[14] J.J. Lewis, R.J. O’Callaghan, S.G. Nikolov, D.R. Bull, and C.N. Canagarajah.
Region-based image fusion using complex wavelets. In Proc. 7th International

Conference on Information Fusion, pages 555–562, Stockholm, Sweden, 2004.

[15] H. Li, S. Manjunath, and S. Mitra. Multisensor image fusion using the wavelet
transform. Graphical Models and Image Processing, 57(3):235–245, 1995.

[16] N. Mitianoudis and T. Stathaki. Adaptive image fusion using ICA bases. In
Proceedings of the International Conference on Acoustics, Speech and Signal

Processing, Toulouse, France, May 2006.

[17] N. Mitianoudis and T. Stathaki. Pixel-based and region-based image fusion
schemes using ICA bases. Elsevier Information Fusion, 8(2):131–142, 2007.

[18] S.G. Nikolov, D.R. Bull, C.N. Canagarajah, M. Halliwell, and P.N.T. Wells.
Image fusion using a 3-d wavelet transform. In Proc. 7th International

Conference on Image Processing And Its Applications, pages 235–239, 1999.

[19] B.A. Olshausen. Sparse Codes and Spikes. In: Probabilistic Models of the
Brain: Perception and Neural Function. R. P. N. Rao, B. A. Olshausen, and M.
S. Lewicki, Eds., MIT Press, 2002.

[20] G. Piella. A general framework for multiresolution image fusion: from pixels to
regions. Information Fusion, 4:259–280, 2003.

[21] G. Piella. New quality measures for image fusion. In 7th International

Conference on Information Fusion, Stockholm, Sweden, 2004.

[22] O. Rockinger and T. Fechner. Pixel-level image fusion: The case of image
sequences. SPIE Proceedings, 3374:378–388, 1998.

[23] M. Sonka, V. Hlavac, and R. Boyle. Image processing, Analysis and Machine

Vision. Brooks/Cole Publishing Company, 2nd edition, 1999.

[24] A. Toet. Targets and backgrounds: Characterization and representation viii.
The International Society for Optical Engineering, pages 118–129, 2002.

[25] Z. Wang and A.C. Bovik. A universal image quality index. IEEE Signal

Processing Letters, 9(3):81–84, 2002.

[26] A.M. Waxman, M. Aguilar, D.A. Fay, D.B. Ireland, J.P. Racamato Jr., W.D.
Ross, J.E. Carrick, A.N. Gove, M.C. Seibert, E.D. Savoye, R.K. Reich, B.E.
Burke, W.H. McGonagle, and D.M. Craig. Solid-state color night vision: Fusion
of low-light visible and thermal infrared imagery. Lincoln Laboratory Journal,
11(1):41–60, 1998.

[27] Z. Xue and R.S. Blum. Concealed weapon detection using color image fusion.
In Proc. Int. Conf on Information Fusion, pages 622– 627, 2003.

[28] C. Xydeas and V. Petrovic. Objective pixel-level image fusion performance
measure. In In Sensor Fusion IV: Architectures, Algorithms and Applications ,

Proc. SPIE, vol. 4051, pages 88 – 99, Orlando, Florida,, 2000.

32



(a) Airplane 1 (b) Airplane 2 (c) Airplane 3

(d) Ground Truth (e) DTWT-maxabs (f) ICA-maxabs

(g) TopoICA-maxabs (h) TopoICA-mean (i) TopoICA-Weighted

(j) TopoICA-regional (k) TopoICA-Laplacian

Fig. 7. Three artificially-distorted input images and various fusion results using
various transforms and fusion rules.
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(a) Clocks 1 (b) Clocks 2 (c) DTWT-maxabs

(d) ICA-maxabs (e) TopoICA-maxabs (f) TopoICA-mean

(g) TopoICA-Weighted (h) TopoICA-regional (i) TopoICA-Laplacian

(j) TopoICA-Verhulstian

Fig. 8. The “Clocks” data-set demonstrating several out-of-focus examples and var-
ious fusion results with various transforms and fusion rules.
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(a) Disk 1 (b) Disk 2 (c) DTWT-maxabs

(d) ICA-maxabs (e) TopoICA-maxabs (f) TopoICA-mean

(g) TopoICA-Weighted (h) TopoICA-regional (i) TopoICA-Laplacian

(j) TopoICA-Verhulstian

Fig. 9. The “Disk” data-set demonstrating several out-of-focus examples and various
fusion results with various transforms and fusion rules.
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(a) AMB (b) AIM (c) CCD

(d) DTWT-maxabs (e) ICA-maxabs (f) TopoICA-maxabs

(g) TopoICA-mean (h) TopoICA-Weighted (i) TopoICA-regional

(j) TopoICA-Laplacian

Fig. 10. Multi-modal image fusion: Three images acquired through different modal-
ity sensors and various fusion results with various transforms and fusion rules.
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(a) AMB (b) AIM (c) CCD

(d) DTWT-maxabs (e) ICA-maxabs (f) TopoICA-maxabs

(g) TopoICA-mean (h) TopoICA-Weighted (i) TopoICA-regional

(j) TopoICA-Laplacian (k) TopoICA-Verhulstian

Fig. 11. Multi-modal image fusion: Three images acquired through different modal-
ity sensors and various fusion results with various transforms and fusion rules.
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(a) Visual sensor (b) Infrared sensor (c) DTWT-maxabs

(d) ICA-maxabs (e) TopoICA-maxabs (f) TopoICA-mean

(g) TopoICA-Weighted (h) TopoICA-regional (i) TopoICA-Laplacian

(j) TopoICA-Verhulstian

Fig. 12. The “UN camp” dataset containing visual and infrared surveillance images
fused with various transforms and fusion rules.
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