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Hyaluronan (HA) is a prominent component of the extracellular matrix at many sites of
chronic inflammation, including type 1 diabetes (T1D), multiple sclerosis, and numerous
malignancies. Recent publications have demonstrated that when HA synthesis is inhib-
ited using 4-methylumbelliferone (4-MU), beneficial effects are observed in several animal
models of these diseases. Notably, 4-MU is an already approved drug in Europe and Asia
called “hymecromone” where it is used to treat biliary spasm. However, there is uncer-
tainty regarding how 4-MU treatment provides benefit in these animal models and the
potential long-term consequences of HA inhibition. Here, we review what is known about
how HA contributes to immune dysregulation and tumor progression. Then, we review
what is known about 4-MU and hymecromone in terms of mechanism of action, pharma-
cokinetics, and safety. Finally, we review recent studies detailing the use of 4-MU to treat
animal models of cancer and autoimmunity.

Keywords: hyaluronan, 4-methylumbelliferone, hymecromone, immune diseases, cancer

There have been an increasing number of studies utilizing 4-
methylumbelliferone (4-MU) to inhibit hyaluronan (HA) for
either experimental or pre-clinical purposes. These studies are
notable because of the central role HA plays in many disease
processes, including inflammation and cancer progression, and
because of the potential utility in repurposing 4-MU, a drug
already used in humans for other indications, to treat these
diseases.

This review will first briefly summarize the known contribu-
tions of HA to inflammation and cancer progression. Then, it will
describe the chemistry and pharmacokinetics of 4-MU, particu-
larly in regards to its inhibition of HA production. Finally, it will
examine the available clinical data on the use of 4-MU treatment
in humans and summarize the available data on safety and efficacy
in animal models.

HYALURONAN
HA is an extracellular matrix (ECM) glycosaminoglycan (GAG).
It has many roles in normal tissue function and development,
including providing support and anchorage for cells, facilitating
cell–cell signaling, and facilitating cell movement and migration
(1–4).

HA is synthesized by three, independently regulated HA syn-
thase (HAS) proteins. These generate predominantly high molec-
ular weight-HA (HMW-HA) of between 2× 105 and 2× 106 Da
(5). These enzymes lengthen HA by repeatedly adding glucuronic

acid and N -acetyl-glucosamine to the nascent polysaccharide as
it is extruded through the cell membrane into the extracellular
space (4). HA in circulation is rapidly degraded while HA bound
to proteins and incorporated into tissues such as joints, basement
membranes, and the vitreous of the eye is longer lived (5–8).

HA catabolism is mediated by endogenous hyaluroni-
dases, by bacterial hyaluronidases, by mechanical forces, and by
oxidative stress (9). This catabolism results in a continuum of
different-sized HA polymers, including low molecular weight-HA
(LMW-HA; <120 kDa) and, ultimately, in HA oligomers. One
important factor in determining the longevity and size of HA
are its interactions with HA-binding proteins, called hyaladherins
that protect HA from catabolism and turnover. These include
TNF-stimulated gene-6 (TSG-6) and inter-α-inhibitor (IαI) (10,
11). Hyaladherins are thought to interact with HA in such a way
as to promote the formation of macromolecular complexes that
modulate leukocyte adhesion and activation, thus influencing the
inflammatory response (3, 4, 10).

The main receptors for HA are CD44 and RHAMM. Upon
binding to HA, intracellular signaling pathways are activated; con-
sequently, the receptors participate in a variety of cellular functions
including lymphocyte activation and tumor metastasis.

HA levels are greatly elevated in injured tissues, with pro-
duction increasing by as much as 80-fold (4). Because HA is
highly hygroscopic (12), this increased HA production is likely
to drive edema at sites of injury. Consistent with this, HA has
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been implicated in vascular permeability changes (13), leuko-
cyte adhesion and egress (14), and migration (15). HA can be
organized into a variety of molecular architectures by forming
cross-linked complexes with the above mentioned proteins, and
can serve as ligands for leukocytes. Such interactions may trap
the leukocytes and prevent eventual destruction of the tissue,
as well as trap pro-inflammatory mediators (10). These ECM
molecules may initiate a cascade of events that promote inflam-
mation by attracting inflammatory cells and promoting their
activation (16).

Along with the amount of HA, the size distribution of local
HA polymers varies between healthy and inflamed tissues. Longer
polymers of HMW-HA typically predominate in most tissues
under steady-state conditions while, shorter, LMW-HA polymers
predominate at sites of active inflammation (2, 17, 18). In light of
these associations, HA size has been called a natural biosensor for
the state of tissue integrity (19).

These changes in the size of HA have functional consequences
because of the differential impacts of HA polymers of differ-
ent sizes on injury responses and homeostasis. HMW-HA, which
predominates in healthy tissues, typically inhibits inflammation
(20–22). Consistent with this, administration of HMW-HA is
anti-inflammatory in lung injury models (23), collagen-induced
arthritis (24), and a variety of other in vivo model systems (25–
29). The generally anti-inflammatory properties of HMW-HA
may be mediated, in part, through interactions with the HA
receptor CD44 [reviewed in Ref. (18)] and/or through hyal-
adherins known to bind HA, including TSG-6 and IαI (11,
30, 31).

LMW-HA, conversely, is thought to drive local inflammatory
responses by acting as a pro-inflammatory “danger signal” or
damage-associated molecular pattern (DAMP) through effects
on Toll-like receptor (TLR) signaling (3, 32, 33). LMW-HA pro-
motes the activation and maturation of dendritic cells (DCs) (34),
drives the release of pro-inflammatory cytokines such as IL-1β,
TNF-α, IL-6, and IL-12 by multiple cell types (35–39), drives
chemokine expression and cell trafficking (40, 41), and promotes
proliferation (42, 43) and angiogenesis (44). In light of these and
other data (45), it seems likely that LMW-HA and HA catabo-
lism contribute to the perpetuation of inflammation in multiple
tissues.

HA IN CHRONIC INFLAMMATION
Many chronic disease processes associated with unremitting in-
flammation are associated with prolonged increases in HA, includ-
ing type 2 diabetes (T2D) (46, 47), liver cirrhosis (48), asthma, and
other diseases (49–54). These conditions are typically associated
with accumulations of LMW-HA [reviewed in Ref. (18)].

LMW-HA may also promote immune dysregulation at these
sites. We have reported that LMW-HA inhibits the function of
Foxp3+ regulatory T-cells (Treg) (38), a cell type that plays a
major role in suppressing autoimmunity (55). Other TLR agonists
are known to have similar effects on Treg (56).

Recently (57), we reported that autoimmune insulitis in auto-
immune type 1 diabetes (T1D) was associated with islet-
specific deposition of HA. Using human T1D tissue samples
from cadaveric organ donors obtained through the Juvenile

Diabetes Research Foundation (JDRF) National Pancreatic Organ
Donor (nPOD) program, we discovered that HA deposits were
present in islets from recent-onset T1D donors but not in
non-diabetic controls. These T1D-associated HA deposits were
also associated with local alterations in hyaladherins, includ-
ing reduced levels of intra-islet TSG-6 and IαI and increases in
mRNA of versican, a pro-inflammatory hyaladherin (57). We
have made similar observations in animal models of autoim-
mune diabetes, including non-obese diabetic (NOD) mice (58)
and DORmO mice. Together with recently published histo-
logic and biochemical analyses by our group and others, of
islet ECM in non-diabetic human and murine islets (59–62),
these data implicated HA and the islet ECM in the onset
of T1D.

Along with insulitis, HA is highly abundant within demyeli-
nated lesions in multiple sclerosis (MS) and in experimental
autoimmune encephalomyelitis (EAE) (63). It is produced by
local astrocytes (63, 64), and is known to contribute to EAE by
promoting the extravasation of leukocytes (65) and inhibiting
oligodendrocyte maturation (66, 67). Lymphocyte infiltration into
the CNS is known to precede HA production by astrocytes in
EAE, suggesting that astrocytes may produce HA in response to
inflammatory factors produced by lymphocytes (63, 64, 68, 69).

HA has also been implicated in other autoimmune diseases,
including rheumatoid arthritis (70, 71), lupus (72), Sjögren’s syn-
drome (73), and Hashimoto’s thyroiditis (74). There is further
evidence that targeting HA receptors, including CD44, may be
beneficial in several animal models of autoimmunity, including
the NOD mouse model of autoimmune diabetes and the collagen-
induced arthritis model of rheumatoid arthritis (75–77), though
these effects may result from effects on lymphocyte trafficking or
apoptosis rather than effects on the local ECM milieu.

HA IN CANCER
There is extensive communication between the tumor microenvi-
ronment and cancer cells (78, 79). This communication is thought
to govern critical cellular processes in metastasis, including angio-
genesis, proliferation, and stimulation of tissue-degrading pro-
teases (80). Consistent with this, in vivo and in vitro data from
different origins and various malignancy grades revealed a pos-
itive correlation between tumor aggressiveness and stromal HA
expression (81–83).

Different expression patterns of HASes are seen during tumor
progression. Aggressive ovarian and breast cancer cells express
high levels of HA synthase 2 (HAS2) and lower levels of HA
synthase 3 (HAS3) compared to non-aggressive cancer cells
(84, 85). Indeed, HAS expression levels are inversely correlated
with breast cancer staging grades and patient survival (86).
HAS expression patterns may be somewhat cancer specific; for
example, metastatic prostate and colon cancer express higher
levels of HAS3 than HAS2. HA synthase 1 (HAS1) on the other
hand was expressed only at very low levels in these tumors
(87, 88).

HA forms inter- and intra-molecular organizations, creating a
viscous milieu well suited for tumor growth and metastasis. This
HA-rich tumor matrix provides structural integrity, maintenance
of homeostasis, release of growth factors, cytokines, and nutrients
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essential for proliferation (10). HA plays an important role in
cancer in intracellular signaling cascades associated with tumor
growth (89), tumor cell adhesion (90), neovascularization (91–
93), and metastasis (90). Many of these pro-tumorigenic effects
are attributable to HA fragments.

Conversely, HMW-HA was recently implicated in the inhibi-
tion of tumor progression (94). Tian et al. found that naked
mole-rat fibroblasts secrete HMW-HA, which is over five times
larger than human or mouse HA. This HMW-HA accumulates in
naked mole-rat tissues. Interestingly, once HMW-HA is removed
by either knocking down HAS2 or overexpressing hyaluronidase
2 (HYAL2), the naked mole-rat cells become susceptible to
malignant transformation and form tumors.

HA is also known to influence the susceptibility of tumors to
chemotherapeutic agents (95). HA-evoked anti-cancer drug resis-
tance may be of a physico-mechanical nature as a dense ECM
limits the delivery and distribution of therapeutic agents (96)
and enzymatic depletion of HA is being explored as a means to
improve drug delivery (97). Indeed, hyaluronidase, an enzyme that
degrades HA, has been used in tumor therapy in combination with
chemotherapeutic agents for over two decades (98).

Another reported approach to facilitate the delivery of
chemotherapeutic agents through HA is to use the large volumet-
ric domain of HA to entrain small chemotherapeutic drugs within
the HA matrix. The resultant HA/drug formulation accumulates
in the microvasculature of the tumor, forming a microembolism
that increases drug retention at the tumor site and allows for active
tumor uptake through HA receptors (99). As a result, a Phase II
clinical trial of specific HA formulations of three anti-cancer drugs
have been undertaken (100).

Taken together, these data suggest that HA may create a
permissive environment for tumor growth and metastasis.

4-METHYLUMBELLIFERONE
In light of these contributions of HA to inflammation, autoim-
munity, and to tumor growth and metastasis, there has been great
interest in identifying pharmacologic tools to inhibit HA synthesis.
One agent that has received much attention is 4-MU (Figure 1).

4-MU is a derivative of coumarin. Other coumarin deriva-
tives, phenprocoumon (Marcumar®) and warfarin (Coumadin®),
are used in preventive medicine to reduce cardiovascular events
due to its anticoagulatory mechanism. Coumarin hydroxylated
in position seven is known as umbelliferone and is a natural
molecule in plants worldwide. Known representatives of umbellif-
era are lovage (Levisticum officinale) and chamomile (Matricaria
recutita).

4-MU is umbelliferone methylated at position four. It has the
IUPAC name 7-hydroxy-4-methylcoumarin and the international
free name (INN) hymecromone. It has the molecular formula
C10H8O3, a molecular weight of 176.2 kDa, the CAS number is
90-33-5, and a pKa of 7.79. The melting point of 4-MU is 194–
195°C. 4-MU is soluble in methanol with heating, DMSO, and in
glacial acetic acid. It is slightly soluble in ether or chloroform and
practically insoluble in water.

4-MU is known for its fluorescent properties and has an excita-
tion wavelength of 380 nm and an emission wavelength of 454 nm
in water. It is colorless at pH 7.0 and exhibits a blue fluorescence
at pH 7.5. In light of these properties, it has been used extensively
as a pH-sensitive fluorescent indicator in multiple experimental
settings.

4-MU-MEDIATED INHIBITION OF HA PRODUCTION
The other major experimental use of 4-MU is for HA inhibition.
4-MU has been shown to inhibit HA production in multiple cell
lines and tissue types both in vitro and in vivo (101–108).

FIGURE 1 | Molecular structure of 4-MU and its metabolites. (A) 4-Methylumbelliferone (4-MU), (B) 4-methylumbelliferyl sulfate (4-MUS), (C)
4-methylumbelliferyl glucuronide (4-MUG).
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4-MU is thought to inhibit HA production in at least two
ways. First, 4-MU is thought to function as a competitive substrate
for UDP-glucuronosyltransferase (UGT), an enzyme involved in
HA synthesis (106). HA is produced by the HAS1, HAS2, and
HAS3 from the precursors UDP-glucuronic acid (UDP-GlcUA)
and UDP-N -acetyl-glucosamine (UDP-GlcNAc). These are gen-
erated by the transfer of an UDP-residue to N -acetylglucosamine
and glucuronic acid via the UGT. The availability of UDP-GlcUA
and UDP-GlcNAc thereby controls HA synthesis (109). However,
when 4-MU is present, it covalently binds through its hydroxyl
group at position four to glucuronic acid via the UGT. As a conse-
quence, the concentration of UDP-GlcUA declines in the cytosol
and HA synthesis is reduced (Figure 2). 4-MU thereby reduces the
UDP-GlcUA content inside the cells and inhibits HA synthesis.

Second, 4-MU reduces expression of HAS mRNA expression
(105) as well as mRNA for UDP-glucose pyrophosphorylase and
dehydrogenase (110). It is unclear how this second mechanism
works or how selective it is for these mRNAs.

4-MU EFFECTS ON OTHER GAGs
4-MU is commonly described as a specific inhibitor of HA synthe-
sis. However, its impact on other GAGs has not been definitively
established, to our knowledge.

It was recently reported that 4-MU exerts at least some of its
actions via regulation of UDP-glucose dehydrogenase (UGDH), a
key enzyme required for both HA and sulfated-glycosaminoglycan
(sGAG) production (111). However, other GAGs, such as chon-
droitin and heparin sulfates, were less sensitive to UDP-GlcUA
deficiency. This was suggested to be because they are synthe-
sized in the Golgi apparatus, which has transporters with a very
high affinity that pump in UDP sugars from the cytosol that
might render inhibition by a competitive substrate such as 4-MU
less efficient. In contrast, HA is synthesized at the cytoplasmic
membrane.

4-MU EFFECTS ON TUMORS AND CANCER CELLS
The first described use of 4-MU in the context of HA was in
1995 when Nakamura et al. published their study about 4-MU in

human skin fibroblasts (112). The postulated 4-MU mechanism
was described years later in 2004 by Kakizaki and his group (106).

By far, the greatest experience with 4-MU is in cancer cell lines
and in vivo models. In 2006, the first in vivo study investigating the
effect of 4-MU on pancreatic cancer was published (113). More
in vitro and in vivo studies have followed on this subject (114–
129). These are detailed in Table 1. The consensus of these studies
is that 4-MU inhibits the proliferation, migration, and invasion of
multiple cancer cell types, both in vitro and in vivo.

Most of these effects are consistent with what is known about
the physiologic roles of HA in normal growth and differentiation
and how many tumors establish HA-rich matrices to promote
their own growth and metastasis. For example, consistent with
HA’s role in cell survival pathways, 4-MU treatment is associated
with growth arrest and apoptosis of tumor cells (120). Indeed, the
apoptotic effect of 4-MU on smooth muscle cells could be rescued
with exogenous HA (139). Consistent with the established role of
HA in angiogenesis, 4-MU treatment is reported to suppress the
new blood vessel growth required for metastases (103, 110).

However, it is not obvious that all of the effects of 4-MU treat-
ment are directly related to HA inhibition. For example, 4-MU was
recently reported to inhibit growth of an ovarian tumor cell line
via suppression of thymidine phosphorylase (TP) mRNA (127).

In summary, the use of 4-MU to inhibit cancer progression
is an active frontier in oncology research, with extensive data in
animal models and in vitro cell lines supporting further investi-
gation. However, while one can be optimistic about the potential
for adjunctive benefit of 4-MU in cancer therapy, much remains
unknown and crucial human clinical studies have yet to be done.

4-MU EFFECTS ON INFLAMMATION AND AUTOIMMUNITY
There have been more limited investigations into the impact
of 4-MU and HA synthesis inhibition in inflammation and
autoimmunity. McKallip et al. reported that 4-MU treatment
prevented lung injury and reduced inflammatory cytokine lev-
els in mouse models of staphylococcal enterotoxin-mediated
(135) and lipopolysaccharide-mediated acute lung injury (136).
4-MU has also been used to inhibit HA production by several

FIGURE 2 | Postulated 4-methylumbelliferone mechanism of HA synthesis inhibition. The left scheme shows the normal way HA gets synthesized. The
right scheme shows how 4-MU binds to glucuronic acid instead of UDP so the HA-synthases (HAS) cannot build HA.
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Table 1 | List of experimental studies using 4-MU, broken down by

disease type.

Cancer Inflammation Autoimmunity

Pancreatic cancer

(113–115)

Non-infectious

inflammation (130–132)

CNS autoimmunity

(133)

Prostate cancer (134) Infectious inflammation

(135, 136)

Autoimmune

arthritis (70)

Skin cancer (107, 116–118)

Esophageal cancer (129)

Breast cancer (119–121)

Liver cancer (122, 123)

Bone cancer/metastases

(126, 128, 137, 138)

Leukemia (124, 125)

Ovarian cancer (127)

human pathogens and their interactions with human cells
in vitro (140, 141).

4-MU has also been shown to have protective effects on non-
infectious inflammation, including renal ischemia and reperfusion
(130), and airway inflammation secondary to cigarette smoke
(131). 4-MU was shown to restore normoglycemia and promote
insulin sensitivity in obese, diabetic mice via increased production
of adiponectin (132).

4-MU has also been reported to ameliorate disease in a limited
number of mouse models of autoimmune disease. Specifically,
4-MU treatment was beneficial in the collagen-induced arthritis
model where it improved disease scores and reduced expression
of matrix metalloproteases (MMPs) (70). More recently, 4-MU
treatment was demonstrated to prevent and treat disease in the
EAE model where it increased populations of regulatory T-cells
and polarized T-cell differentiation away from pathogenic, T-
helper 1 T-cell subsets and toward non-pathogenic T-helper 2
subsets (133).

These effects point toward a potential role for 4-MU in immune
modulation. We have reported that 4-MU treatment prevented
cell–cell interactions required for antigen presentation (108) and
others have described inhibitory effects on T-cell proliferation
(102). These effects are consistent with established roles for HA
and its receptors in T-cell proliferation, activation, and differen-
tiation (3, 142, 143). These data also align well with the known
effects of 4-MU in lymphoma studies (124, 125).

One pressing question is why 4-MU is anti-inflammatory
in multiple systems whereas HA itself has both pro-and anti-
inflammatory attributes. One hypothesis is that 4-MU may
lead to a preponderance of HMW-HA polymers, with typically
anti-inflammatory properties over HA fragments, with typically
pro-inflammatory properties. This model assumes that loose HA
fragments are more readily cleared than HMW-HA, which is
more likely to be integrated into stable matrices and perhaps
therefore less subject to rapid turnover. A related notion is that
most of the increase in HA production that occurs at times of
inflammation is pro-inflammatory in ways that HA produced at

times of homeostasis is not. These differences could be mediated
either at the level of the different HASes or via cotemporane-
ous production of hyaladherins. These hypotheses remain to be
tested.

There are also indications that 4-MU treatment may make some
models of inflammation worse. For example, 4-MU treatment was
also associated with worse atherosclerosis in ApoE-deficient mice
fed a high-fat diet (104). It is tempting to speculate that HA plays
roles in barrier function in some tissues such that its loss leads to
enhanced exposure to bacteria or inflammatory mediators.

HYMECROMONE
4-MU is already an established therapeutic currently used in
humans. Called “hymecromone,” it is used in multiple countries
mainly for its choleretic and biliary antispasmodic activity (144–
147). Despite being a coumarin derivative, hymecromone does
not possess anticoagulant properties. In Europe, hymecromone is
an approved drug for use in humans for biliary dyskinesia (orig-
inal European Union reference date 07/27/1960). For example, in
Italy, hymecromone is marketed as a generic named Cantabilin®
with a current marketing authorization via the Italian Medi-
cines Agency (AIC no. 02130002) [“Cantabilin® (hymecromone
Tablets) (Italian Package Insert)” 2013].

CLINICAL EXPERIENCE WITH HYMECROMONE (4-MU)
The typical approved dosing regimen for adults is 300–800 mg
three times/day by mouth (900–2400 mg/day). It is generally avail-
able as a tablet with dose strengths of 300–400 mg. Hymecromone
is currently not approved for any indication in the U.S., and there-
fore requires an Investigational New Drug (IND) application from
the Food and Drug Administration (FDA) for clinical studies
conducted in the U.S.

Several clinical trials in humans, including randomized
placebo-controlled, have been published on hymecromone and
all demonstrated excellent safety during short-term administra-
tion of approved doses (148–154) (Table 2). Taken together, at
least 182 patients have been exposed in clinical trials and no
serious adverse events from hymecromone were reported. The
longest reported duration of administration of hymecromone was
a multiple-dose study of oral administration of hymecromone at
1200 mg/day (400 mg three times/day) for 3 month in 20 partic-
ipants with biliary dyskinesia (152). The tolerability and safety
of longer durations of chronic administration is not known, yet
this will be necessary to formally establish given the potential
need for chronic long-term treatment duration as a therapy in
inflammatory or autoimmune conditions.

Overall, the most common side effects during hymecromone
treatment are diarrhea or other mild gastrointestinal symptoms
[“Cantabilin® (hymecromone tablets) (Italian Package Insert)”
2013]. The diarrhea occurs in 1–10% of patients and appears to
be dose-dependent. One study reported a dose of 2400 mg/day
(800 mg three times/day) continued for more than 7 days would
be expected to result in unacceptable diarrhea. However, this was
a study in patients who had undergone bile duct surgery including
insertion of a T-drain into the common bile duct. Therefore,
whether patients with a normal biliary system would experience
the same level of diarrhea at this dose is unknown.
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Table 2 | Clinical trials using hymecromone (4-MU) in humans.

Reference Patient type Study type n Dose Duration Adverse events/notes

(153) Patients requiring

cholecystectomy,

age >14

Double-blind, randomized,

placebo-controlled

25 2400 mg/day× 7.5 days

then 1200 mg×7 days

2 weeks Decreased drain output and

need for post-op analgesics,

two pts with mild headaches

in treatment group, three with

decreased appetite and

diarrhea in placebo group

(149) Post-cholecystectomy

dyspepsia, age >60,

mean 58.5 years

Double-blind, randomized,

placebo-controlled

15 600 mg BID 3 weeks N/A

(152) Biliary dyskinesia Randomized controlled trial

vs. tiropramide 300 mg

20 1200 mg daily 3 months N/A

(149) Patients requiring

cholecystectomy, age

29–84

Placebo-controlled,

randomized

13 1600 mg/day 3 weeks N/A

(155) Healthy, age 21–35 Pharmacokinetics 8 400 mg IV, 800 mg IV,

600 mg PO solution,

1200 mg PO solution,

1200 mg tablets

Once N/A

(150) Healthy, age 22–30 Prospective, double-blind,

randomized cross-over study

20 400 mg IV Once, after

meal

N/A

(148) Healthy Placebo-controlled,

multicenter, randomized

61 600 mg with lunch,

600 mg with dinner

2 weeks N/A

(154) Healthy, age 20–37 4-methylumbelliferone PO

and IV

20 800 mg×1 (PO and IV) Once, with

meal

N/A

Also of value from a safety perspective is a single dose study
in healthy volunteers given as an intravenous dose of 400 and
800 mg (145). Side effects other than those related to intra-
venous (IV) injection for the 400 mg IV dose included minor
dizziness and nausea (four of eight subjects) and “cold sweat”
for 5 min (two of eight subjects). After the 800 mg IV dose,
side effects reported included “bad after taste” (one of six sub-
jects), nausea and dizziness (three of six subjects), and eme-
sis (two of six subjects). This safety data is of significance as
the bioavailability after oral dosing is <3%. Therefore, the sys-
temic exposures after these IV doses were substantially higher
than the exposure after typical oral doses. While the safety data
at these higher exposures after IV dosing are severely limited
given only single dose exposure, it may hint at the tolerability
of higher oral doses of hymecromone in humans, which may
be necessary for new indications of the drug if higher systemic
exposures are required. The overall safety of hymecromone is
further supported by animal data noted in the Italian Medi-
cines Agency “package insert” which notes, “acute toxicity has
proved to be very low: the LD50, for oral administration is
7593 mg/kg in mice and 6220 mg/kg in rats. Protracted oral admin-
istration in the range of 800–2400 mg/kg/day for 3 months and
in the rat 400–1000 mg/kg/day for 4 months, has shown excel-
lent tolerability. . .” [“Cantabilin® (hymecromone tablets) (Italian
Package Insert)”2013]. Contraindications to taking hymecromone
include pregnancy and lactation given the lack of safety data

in these groups [“Cantabilin® (hymecromone tablets) (Italian
Package Insert)” 2013].

Taken together, the clinical experience to date suggests
hymecromone is a safe and well-tolerated oral medication. The
safety of oral hymecromone doses as high as 2400 mg/day and
treatment durations as long as 3 months have been demonstrated
in humans and can serve as a benchmark for early stage clinical
trials exploring new indications.

CLINICAL PHARMACOLOGY OF HYMECROMONE
Hymecromone is extensively metabolized and <1% of a given dose
is excreted unchanged in the urine (155, 156). Metabolism of the
drug occurs via conjugation to either a glucuronic acid, 4-MUG, or
a sulfate (4-MUS) (Figure 1). The glucuronide is the predominant
pathway and accounts for over 90% of its metabolism (155, 156).
Following conjugation of glucuronic acid to hymecromone, the
resulting more hydrophilic metabolite, 4-MUG, is eliminated in
the bile and urine (156). Biliary eliminated 4-MUG likely under-
goes further enterohepatic recirculation with reabsorption of the
metabolite from the intestine and ultimate elimination in the urine
via the kidney. This is supported by a healthy volunteer phar-
macokinetic study in which 93% of a single intravenous dose of
hymecromone was eliminated as the 4-MUG metabolite in the
urine (155). However, the precise contribution of enterohepatic
recycling in the disposition of hymecromone and its metabolite is
not well studied.
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Glucuronidation of hymecromone is catalyzed by the UGTs
which are a large superfamily of over 20 proteins involved in the
Phase II biotransformation of lipophilic xenobiotics and endoge-
nous compounds (157, 158). UGTs are expressed in a wide range
of tissues, however, for the purposes of drug biotransformation,
the most clinically relevant are located in the liver and intestine
(159, 160). Interestingly, hymecromone is a promiscuous molecule
in that it is a substrate of most of the major hepatic and intestinal
UGTs involved in drug metabolism (158). Consequently, the intes-
tine and liver are very efficient in the metabolism of hymecromone.
Pharmacokinetic studies in animals have demonstrated the extrac-
tion of hymecromone by the gastrointestinal system (pre-hepatic)
to be ~40% and extraction by the liver as high as 97% (156). As a
result of this high extraction, the fraction of an administered oral
dose of hymecromone that reaches the systemic circulation (post-
hepatic) as unchanged drug (i.e., the bioavailability) is very low. In
a pharmacokinetic study of hymecromone in healthy volunteers,
the systemic bioavailability of hymecromone after oral dosing was
<3% (155). As a treatment for biliary colic, the low bioavailability
of hymecromone after an oral dose is less of a pharmacokinetic
liability. Indeed, the high extraction by the liver may actually be
beneficial as the drug is able to concentrate in the hepatic and
biliary system.

If first-pass metabolism is bypassed by giving the dose IV, the
systemic exposure achieved can be more than 10–30-fold higher
than after the same dose given orally (155). However, due to
the high clearance of hymecromone, systemic concentrations will
decrease rapidly after an IV dose and peripheral exposures will
likely be quite low by 4–6 h after a dose (apparent terminal half-life
of ~1 h).

The pharmacokinetics of the hymecromone metabolite, 4-
MUG, are not well studied. In healthy volunteers, the systemic
exposure of 4-MUG after an IV dose was shown to be higher than
that of hymecromone (155). Pharmacokinetic data in humans
after oral dosing on systemic exposure of 4-MUG are lack-
ing. However, animal data from our group has demonstrated
that the median plasma concentration of 4-MUG compared to
hymecromone was more than 3,000-fold higher in Balb/C mice
on 5% oral hymecromone chow. This animal data highlights
the potential importance of understanding 4-MUG pharmaco-
kinetics during oral hymecromone therapy given the expected
much higher exposures of the metabolite relative to the parent
in peripheral tissues other than the intestine and liver. Future
clinical studies of hymecromone in humans would benefit from
a more thorough understanding of the pharmacokinetics of the
4-MUG metabolite including whether it is a potentially active
moiety.

THE THERAPEUTIC OUTLOOK FOR REPURPOSING
HYMECROMONE
The existing in vitro and in vivo data suggest that hymecromone
may have utility as a component of therapeutic regimens directed
against HA-producing cancers. There is less data at present to
support this strategy in settings of chronic inflammation and
autoimmunity but the potential is there as well. However, signif-
icant unresolved questions about safety, dosing, and mechanism
remain.

While hymecromone has a long and relatively reassuring safety
record, many questions remain about its potential repurposing for
cancer treatment and other applications. These indications may
require much higher dosages than those currently used to treat
biliary spasm, introducing the potential for additional side effects.
Certainly, the potent effects seen with 4-MU on tumor prolifera-
tion, angiogenesis, and migration could have detrimental effects
on other tissues. There may also be unanticipated issues related
to these novel applications. For example, in mouse models, 4-MU
treatment has been linked to a reduced ability to renally excrete
electrolytes and fluids (to diuresis) in response to rapid hydration
(161). One could envision how this might be problematic if 4-MU
were used in conjunction with chemotherapies that are renally
cleared.

Long-term hymecromone treatment, rather than the more
intermittent use associated with treatment of biliary spasm, might
also be associated with unanticipated consequences. For exam-
ple, we reported that 4-MU treatment was associated with worse
atherosclerosis in ApoE-deficient mice fed a high-fat diet (104).

Several clinical pharmacology considerations must also be
addressed. The large first-pass metabolism and rapid clearance
of hymecromone are obstacles to achieving and maintaining high
drug concentrations. This is particularly a concern in peripheral
tissues (i.e., pancreas, skin, brain, etc.). Targeting conditions in the
intestine and liver will pose less of a problem as these organs likely
experience much higher exposures after oral dosing.

Understanding how experimental studies in animal models are
likely to relate to human drug dose need and concentration is
also likely to be important. Notably, the metabolism and drug
disposition of 4-MU in mice may be very different than in humans.

Certainly the successful development of hymecromone will
demand robust, pharmacokinetic studies of hymecromone and
its metabolites in humans. Such detailed pharmacokinetic under-
standing will help develop dosing strategies including appropriate
dose strength and frequency. These studies will set the stage for
evaluation of this promising therapy in human clinical trials.

In summary, there is potential for hymecromone to be devel-
oped and repurposed as a safe, long-term adjunctive therapy for
cancer treatment or other potential indication. Hymecromone’s
long and reassuring clinical track record, its oral route of delivery,
and the exciting in vitro and in vivo data in mice all support fur-
ther exploration of this therapeutic strategy. However, substantial
pharmacologic and safety issues must be addressed in order to
facilitate the translation of hymecromone into the clinic.
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