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Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by
the degeneration of motor neurons. Mutations in the superoxide dismutase (SOD1) gene, causing
protein misfolding and aggregation, were suggested as the pathogenic mechanisms involved in
familial ALS cases. In the present study, we investigated the potential therapeutic effect of C4 and C5,
two derivatives of the chemical chaperone 4-phenylbutyric acid (4-PBA). By combining in vivo and
in vitro techniques, we show that, although C4 and C5 successfully inhibited amyloid aggregation of
recombinant mutant SOD1 in a dose-dependent manner, they failed to suppress the accumulation
of misfolded SOD1. Moreover, C4 or C5 daily injections to SOD1G93A mice following onset had no
effect on either the accumulation of misfolded SOD1 or the neuroinflammatory response in the spinal
cord and, consequently, failed to extend the survival of SOD1G93A mice or to improve their motor
symptoms. Finally, pharmacokinetic (PK) studies demonstrated that high concentrations of C4 and
C5 reached the brain and spinal cord but only for a short period of time. Thus, our findings suggest
that use of such chemical chaperones for ALS drug development may need to be optimized for more
effective results.

Keywords: amyotrophic lateral sclerosis (ALS); mutant SOD1; misfolded proteins; aggregation;
chemical chaperones

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegen-
erative disease characterized by the degeneration of the upper and lower motor neurons
(MNs) in the brain and spinal cord [1]. About 10% of ALS cases are familial, most of which
are inherited in a dominant manner [2], and approximately 20% of these familial cases are
attributed to mutations in the superoxide dismutase 1 (SOD1) gene [3]. To date, more than
180 different SOD1 variants have been associated with ALS [4].

Although the exact mechanisms underlying MN degeneration remain to be eluci-
dated [1], many studies suggest SOD1 toxic gain of function through protein misfolding
and aggregation, associated with aberrant cellular function [5,6]. Supporting this notion
are reports that insoluble aggregates are SOD1-immunoreactive in both familial [7] and
sporadic ALS cases [8], as well as in ALS mouse models [9,10], and that mutant SOD1
misfolding or aggregation is inversely correlated with disease duration [11,12]. Moreover,
SOD1 mutants have been shown to interact with ER [13,14] and mitochondria [15–17],
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solely in nervous system tissues, and are specifically associated with mitochondrial dys-
function [16] and ER stress induction [14]. Furthermore, studies have demonstrated fibrillar,
amyloid-like [5,18–21] filaments of misfolded SOD1 inclusions in human patients [22,23]
and mouse models [24,25] of the disease.

Many strategies have been investigated as therapeutic targets for ALS and other neu-
rodegenerative diseases. Among them are chemical chaperones, which have the potential to
restore protein homeostasis and improve cellular function [26]. A well-known hydrophobic
chemical chaperone [27], 4-phenylbutyric acid (4-PBA, Figure S1), was recently tested in
ALS clinical trials in which 4-PBA combined with a taurursodiol treatment had both func-
tional and survival benefits [28,29]. As a short-chain fatty acid 4-PBA is bioavailable as well
as a blood-brain barrier (BBB)-permeable compound, which has already been approved
by the Food and Drug Administration (FDA) to treat urea cycle disorders in children [27].
Even though the mechanism of action of 4-PBA has not been fully established yet, it is
proposed that 4-PBA hydrophobic regions interact with exposed hydrophobic segments
of unfolded proteins, thereby reducing protein aggregation levels [30]. Moreover, 4-PBA
was also shown to have a potential therapeutic effect in several mouse models of other neu-
rodegenerative disorders, also characterized by protein aggregation, such as Alzheimer’s
disease [31] and Huntington’s disease [32]. Despite these accumulating findings, suggest-
ing a positive effect of 4-PBA treatment, the main drawback to its therapeutic use is the
high dosage required—0.5 to 20 g per kg per day [30], a nonrealistic dosage for treating
chronic disorders such as ALS [33].

Recently, Azoulay-Ginsburg S. and colleagues identified and synthesized 4-PBA
derivatives in order to reduce the effective concentration required to achieve a therapeutic
effect. Two 4-PBA derivatives, N-(2-(1-methylpyrrolidin-2-yl)ethyl)-4-phenylbutanamide
(compound 4, C4) and 2-isopropyl-4-phenylbutanoic acid (compound 5, C5) (Figure 1),
exhibited positive outcomes when tested in several in vitro and in vivo models of neu-
rodegenerative diseases, characterized by protein aggregation [33,34]. More specifically,
compared to 4-PBA, the identified chemical chaperone C5 was more effective in protecting
cells under ER stress conditions in vitro. C5 also reduced the secretion rate of mutant
Neuroligin3 (an autism-related protein), acted as a direct chemical chaperone for purified
proteins, and reduced protein aggregation in the PC12 neuronal cell model [33]. The other
chemical chaperone synthesized, C4, was selectively targeted to the lysosome, part of the
cell clearance system, which may increase its effectivity and reduce its effective therapeutic
concentration. Furthermore, C4 exhibited a protective effect on cell viability following ER
stress in PC12 cells, and significantly reduced the retinal degeneration tested on a C9orf72
Drosophila melanogaster ALS model [34].
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In the current study, we investigated the potential therapeutic effect of C4 and C5 in
the mutant SOD1G93A mouse model of ALS, combining both in vitro and in vivo studies.
We hypothesized that C4 and C5 chaperone activity could reduce the levels of mutant
SOD1 misfolding and/or aggregation, which may result in improved motor function as
well as the prolonged survival rate of the transgenic mice. Although C4 and C5 successfully
suppressed recombinant mutant SOD1G93A amyloid aggregation levels in vitro, C4 or C5
daily injections to adult mice commencing after disease onset did not significantly affect
disease progression or survival of the treated SOD1G93A mice.

2. Results
2.1. C4 and C5 Chemical Chaperones Strongly Inhibited the Formation of SOD1 Amyloid
Aggregation In Vitro

C4 and C5 chemical chaperones are derivatives of 4-PBA (Figure 1) and were shown
previously to inhibit protein aggregation both in vitro and in vivo in models of autism
spectrum disorder (ASD) and C9orf72-related ALS [33,34]. In order to determine the effect
of C4 and C5 on SOD1G93A aggregation, we purified and incubated recombinant SOD1G93A

protein under aggregation-promoting conditions (i.e., in the presence of a reducing agent
and a metal chelator), with increasing concentrations of C4 (1–20 mM) (Figure 2A) and C5
(0.5–20 mM) (Figure 2C). We measured the kinetics of amyloid aggregation by monitoring
the fluorescence intensity signal of thioflavin-T (Th-T) at 485 nm over a period of about
70 h. Incubating SOD1G93A alone resulted in an exponential increase in Th-T fluorescence
intensity, indicating formation of amyloid fibrillar aggregates (Figure 2A,C). This was
confirmed by transmission electron microscopy (TEM) imaging performed at the end of the
incubation period (after 72 h), which revealed a fibrous aggregated formation (Figure 2B,D).
In contrast, incubating SOD1G93A in the presence of C4 (Figure 2A,B) or C5 (Figure 2C,D)
reduced the fluorescent signal in a dose-dependent manner, suppressed the formation of
fibrillar aggregates, and switched the aggregation pattern to an amorphous disordered one
(Figure 2B,D). The fluorescent signal measured during the incubation of C4 or C5 alone
without recombinant SOD1 was undetectable in the Th-T analysis, indicating that they did
not produce aggregates whatsoever (Figure 2A,C).

2.2. Daily Injection of C4 or C5 Chemical Chaperones Following Disease Onset Had No Effect on
Disease Progression and Survival of Mutant SOD1G93A Mice

To test the potential therapeutic effect of C4 and C5 in a mouse model of ALS, we used
the most studied mutant SOD1G93A model. We alleged that C5, as a α-isopropyl derivative
of 4-PBA, would pass the BBB, as is the case with 4-PBA [35]. In order to determine
whether C4 is indeed able to cross the BBB, its fluorinated derivative was synthesized
as described [33]. Wild type mice were intraperitoneally (IP) injected with 50 mg of 19F-
labeled C4 in acetate buffer, and 30 min later the brains were harvested and analyzed
by nuclear magnetic resonance (19F-NMR). Two clear 19F-NMR signals were observed
in injected but not in the noninjected mouse brain tissue (Figure S1A,B). Two 19F-NMR
peaks in −118.03 ppm and −118.26 ppm were obtained: one related to the 19F-labeled
4-phenylbutyric acid (Figure 1) and the other to 19F-C4. We assume that the compound
passed the BBB and was partially hydrolyzed (Figure S1C). Then, based on this positive
penetration outcome, transgenic SOD1G93A mice (males and females) were IP injected
daily, starting at postnatal day 104 (following disease onset), with either C4 (100 mg/kg,
in acetate buffer), C5 (25 mg/kg, in PBS), or 200 µL acetate buffer (pH 5.6) as a control.
Disease progression was monitored until the end stage by the neurological scoring system
NeuroScore (NS), the inverted screen test, and the routinely used mice weight loss rate
(Figure 3A). C4 or C5 daily injections starting after disease onset did not significantly extend
SOD1G93A mice survival (Figure 3B; Control: 171 d; C4: 176 d; C5: 165 d). Moreover, the
treatment did not significantly affect either the mice clinical neuroscore (Figure 3E) or their
weight loss rate (Figure 3D) and did not improve the mice motor function as analyzed by
the inverted screen test (Figure 3C). Since gender differences exist in this transgenic model,
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the males and females were also analyzed separately. Confirming our previous results, we
were not able to detect any statistical effect on survival, neither in males nor in females
(Figure S2).
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Figure 2. C4 and C5 strongly inhibited the formation of SOD1G93A amyloid aggregation in vitro.
(A,C) Recombinant SOD1G93A amyloid aggregation was determined by monitoring Th-T fluorescence
intensity during co-incubation of SOD1G93A solution (50 µM) with different molar ratios of C4
(1–20 mM, (A)) or C5 (0.5–20 mM, (C)) at 37 ◦C for ~70 h. Fluorescence was normalized to the
maximal Th-T fluorescence intensity elucidated by SOD1G93A alone. Data points represent the
average results from one representative experiment (performed in triplicates) of three independent
experiments. Fluorescence was fitted to the Boltzmann sigmoidal equation using GraphPad Prism
software. (B,D) TEM images of SOD1G93A solution (50 µM) after 70 h incubation at 37 ◦C alone or
with the presence of 1–20 mM of C4 (B) or 0.5–20 mM of C5 (D).
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Figure 3. C4 and C5 treatment did not significantly extend the survival or improve the motor symp-
toms of SOD1G93A mice. (A) Schematic representation of the experimental design. Treated SOD1G93A 
Figure 3. C4 and C5 treatment did not significantly extend the survival or improve the motor
symptoms of SOD1G93A mice. (A) Schematic representation of the experimental design. Treated
SOD1G93A mice received daily intraperitoneal injections of C4 (red, n = 12) or C5 (blue, n = 12)
starting at p104. The control group includes noninjected and acetate-buffer-injected mice (black,
n = 24). (B) C4 and C5 treatment does not significantly extend the survival of SOD1G93A mice.
(C) Motor function of C4- and C5-treated mice and control mice evaluated by the inverted screen
test. (D,E) Disease progression of C4- and C5-treated, and control mice evaluated by weight loss rate
(D) and NeuroScore (E).

2.3. C4 or C5 Treatment Starting after Disease Onset Failed to Rescue the Motor Neurons and
Reduce the Activation of Astrocytes and Microglia in the Spinal Cord of SOD1G93A Mice

In order to determine whether the 4-PBA derivatives have any effect on motor neu-
ron survival, immunoblot against ChAT, a motor neuron marker was performed. ChAT
expression levels were reduced in mutant SOD1G93A spinal cord compared to littermate
non-transgenic controls (Figure 4A), with daily injections of C4 or C5 starting after on-
set having no effect on motor neuron survival (Figure 4A,C). Moreover, ALS pathology
is accompanied by non-cell autonomous processes [36,37]. Specifically, studies report
widespread activation as well as impaired function of astrocytes [9,38] and microglia in
both ALS patients and mouse models [39]. Indeed, immunoblotting of spinal cords of
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mutant SOD1G93A mice showed a strong increase in astrocyte (GFAP) and microglia (Iba1)
activation (Figure 4B,D,E) in their spinal cord with no difference in this activation pattern
(Figure 4B,D,E) following C4 or C5 administration compared with untreated mice. These
results were confirmed by immunofluorescence of untreated and treated mutant SOD1G93A

spinal cord sections (Figure S3).
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Figure 4. C4 and C5 treatment had no effect on motor neuron survival or the neuroinflamma-
tory response in SOD1G93A mice spinal cords. (A) Motor neurons survival was evaluated by im-
munoblot of lysates from spinal cords of non-transgenic and SOD1G93A mice with anti-ChAT antibody.
(B) Quantification of ChAT level intensity in non-transgenic mice (control) and C4- and C5-treated
and untreated SOD1G93A mice. (C–E) Neuroinflammatory response was evaluated by immunoblot
of lysates from spinal cords of non-transgenic and SOD1G93A mice with anti-GFAP and anti-Iba1
antibodies (C). (D) Quantification of activated astrocytes (GFAP antibody, D) and activated microglia
(Iba1 antibody, (E)) in non-transgenic and SOD1G93A mice untreated or treated with C4 or C5. Ctrl-
non-transgenic mouse; NI- SOD1G93A noninjected; B- SOD1G93A injected with acetate buffer. Quan-
tification analysis was performed with Student’s t-test. Bars represent mean ± SEM. Data indicate
one representative experiment out of 3–5 independent experiments. n.s, nonsignificant; * p < 0.05;
** p < 0.01.

2.4. Daily Injection of C4 or C5 Chemical Chaperones Starting after Disease Onset Failed to Reduce
the Accumulation of Misfolded SOD1

Immunoprecipitation with a conformational antibody that specifically recognizes mis-
folded SOD1, B8H10 [40,41], was used to determine the accumulation of misfolded SOD1
in spinal cords of treated and untreated SOD1G93A mice (Figure 5A). Mutant SOD1G93A

mice injected with C4 or C5 had similar accumulation of misfolded SOD1 in the lumbar
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spinal cord (Figure 5B,C) and in the brain (Figure S4) compared with that of SOD1G93A

mice injected with acetate buffer as control (bound fraction).
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folded SOD1 levels were detected by immunoprecipitation with B8H10 antibody after incubating 
recombinant SOD1G93A protein (2 µg) with different concentrations of C4 (1–50 mM) (D) or C5 (0.25–
12.5 mM) (F). (E,G) Quantification of misfolded SOD1 levels of mutant SOD1G93A protein without or 
with C4 (E) or C5 (G) incubation. Quantification analysis was performed with Student’s t-test. Bars 
represent mean ± SEM. Data indicate one representative experiment out of 3–5 independent exper-
iments. 

Supporting these findings, end-stage mice were perfused with 4% PFA, and frozen 
sections of spinal cord were immunostained by the free-floating technique with the same 
conformational antibody against misfolded SOD1, B8H10, to compare the accumulation 
of misfolded SOD1 in the spinal cords of treated and nontreated SOD1G93A mice (Figure 
S5). Misfolded SOD1 accumulation levels were not significantly reduced in the spinal cord 
of C4- (Figure S5A) or C5 (Figure S5B)-injected mice compared to nontreated SOD1G93A 

Figure 5. C4 or C5 chemical chaperones did not reduce SOD1 misfolding in vitro or in vivo.
(A) Schematic representation of the experimental protocol. (B) Misfolded SOD1 levels were de-
tected by immunoprecipitation produced with B8H10 antibody from mutant SOD1G93A spinal cords.
IP—immunoprecipitation; B—acetate buffer. (C) Quantification of misfolded SOD1 levels in un-
treated (n = 12, grey) and C4 (n = 7, red) or C5 (n = 5, blue)-treated mutant SOD1G93A spinal cords.
(D,F) Misfolded SOD1 levels were detected by immunoprecipitation with B8H10 antibody after
incubating recombinant SOD1G93A protein (2 µg) with different concentrations of C4 (1–50 mM)
(D) or C5 (0.25–12.5 mM) (F). (E,G) Quantification of misfolded SOD1 levels of mutant SOD1G93A

protein without or with C4 (E) or C5 (G) incubation. Quantification analysis was performed with
Student’s t-test. Bars represent mean± SEM. Data indicate one representative experiment out of
3–5 independent experiments.
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Supporting these findings, end-stage mice were perfused with 4% PFA, and frozen
sections of spinal cord were immunostained by the free-floating technique with the same
conformational antibody against misfolded SOD1, B8H10, to compare the accumulation of
misfolded SOD1 in the spinal cords of treated and nontreated SOD1G93A mice (Figure S5).
Misfolded SOD1 accumulation levels were not significantly reduced in the spinal cord
of C4- (Figure S5A) or C5 (Figure S5B)-injected mice compared to nontreated SOD1G93A

mice. Moreover, we have tested the ability of C4 (Figure 5D,E) and C5 (Figure 5F,G)
to reduce misfolded SOD1 accumulation of recombinant SOD1G93A protein. C4 and C5
were incubated with recombinant SOD1G93A at different concentrations (C4, 1–50 mM; C5,
0.25–12.5 mM). Immunoprecipitation produced by the B8H10 antibody showed no differ-
ence in the accumulation of misfolded SOD1 following incubation with C4 (Figure 5D,E) or
C5 (Figure 5F,G).

2.5. Daily Injection of C4 or C5 Chemical Chaperones Following Disease Onset Failed to Reduce
Total Aggregate Formation of Mutant SOD1

In order to determine whether C4 or C5 had any effect on total protein aggregation
in our treated mice, we separated the soluble and insoluble fractions from the spinal
cords of the treated and nontreated mutant SOD1G93A mice (Figure 6A). Our analysis
revealed no significant difference in SOD1 aggregation levels in the C4- or C5-injected
mice compared to the untreated SOD1G93A mice (Figure 6B,C). In addition, we transfected
SH-SY5Y neuronal cells with SOD1WT and SOD1G93A plasmids, followed by incubation
with C4 at increasing concentrations (10–200 µM). We separated the soluble and insoluble
fractions 72 h post-transfection and compared SOD1 aggregation levels in the insoluble
fraction. Immunoblotting revealed no difference in SOD1G93A aggregation levels following
incubation with C4 at the tested concentrations (Figure 6D,E).

2.6. High Levels of C4 and C5 Reached the Brain and Spinal Cord for a Short Period of Time

Finally, in order to determine whether sufficient amounts of both tested compounds
indeed reach the brain and spinal cord, the classical PK experiment (single dose injection)
was conducted, as described in “Materials and Methods”. The obtained t1/2 of tested
compounds showed that C4 t1/2 and C5 t1/2 in serum were approximately 48 min and
20 min, respectively (Figure S6A,D). The maximal amount of C4 in the brain was detected
after 30 min: 0.189 ± 0.02 mM and after 3 h the concentration of C4 in the brain had dropped
by 10-fold (Figure S6B). Moreover, in the spinal cord after 30 min, the compound reached
its peak concentration: 0.338 ± 0.02 mM, and similarly to the brain, by 3 h C4 concentration
decreased by 10-fold (Figure S6C). C5 reached the highest concentration in the brain
immediately following administration (approximately after 6 min): 0.175 ± 0.043 mM, and
by 30 min, the amount of the compound in the brain was negligible (Figure S6E). Moreover,
in the spinal cord, the compound showed a similar pattern of behavior: 0.136 ± 0.024 mM
in the beginning, and after 30 min, only a minimal concentration of the compound was
detected (17-fold lower compared to the starting level) (Figure S6F).
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Figure 6. C4 or C5 chemical chaperones did not reduce SOD1 aggregate formation in vivo. (A) A 
schematic representation of the experimental protocol. (B) SOD1 aggregation levels were detected 
by immunoblotting of soluble and SDS-insoluble fractions of spinal cords from untreated and C4- 
or C5-treated mutant SOD1G93A mice. Anti-GAPDH antibody was used to detect total protein load-
ing amounts. Data indicate one membrane out of 3 independent experiments. (C) Quantification of 
the band intensity representing the insoluble SOD1 in fractions of spinal cords from untreated (n = 
12, grey) and C4 (n = 7, red) or C5 (n = 6, blue) treated mutant SOD1G93A mice performed with Evo-
lution-Capt Edge software. (D,E) SH-SY5Y neuronal cells were transfected with hSOD1WT or 
hSOD1G93A plasmids and treated with different concentrations of C4 (10–200 µM). (D) SOD1 aggre-
gation levels were detected by immunoblotting of insoluble fractions of the cell lysates. (E) Quanti-
fication of bands intensity of SOD1 insoluble to total SOD1 amount (soluble + insoluble). NT—non-
transfected. Quantification analysis of the relative aggregation propensity performed with student 
t-test. Bars represent mean ± SEM. 

Figure 6. C4 or C5 chemical chaperones did not reduce SOD1 aggregate formation in vivo. (A) A
schematic representation of the experimental protocol. (B) SOD1 aggregation levels were detected by
immunoblotting of soluble and SDS-insoluble fractions of spinal cords from untreated and C4- or
C5-treated mutant SOD1G93A mice. Anti-GAPDH antibody was used to detect total protein loading
amounts. Data indicate one membrane out of 3 independent experiments. (C) Quantification of the
band intensity representing the insoluble SOD1 in fractions of spinal cords from untreated (n = 12,
grey) and C4 (n = 7, red) or C5 (n = 6, blue) treated mutant SOD1G93A mice performed with Evolution-
Capt Edge software. (D,E) SH-SY5Y neuronal cells were transfected with hSOD1WT or hSOD1G93A

plasmids and treated with different concentrations of C4 (10–200 µM). (D) SOD1 aggregation levels
were detected by immunoblotting of insoluble fractions of the cell lysates. (E) Quantification of
bands intensity of SOD1 insoluble to total SOD1 amount (soluble + insoluble). NT—non-transfected.
Quantification analysis of the relative aggregation propensity performed with student t-test. Bars
represent mean± SEM.
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3. Discussion

In this study, we evaluated the potential therapeutic effect of the chemical chaperones
C4 and C5, two 4-PBA derivatives which exhibited positive outcomes when tested in
several models of protein aggregation diseases [33,34], on the mutant SOD1G93A model
of ALS. We found that C4 and C5 strongly inhibited the formation of mutant SOD1G93A

amyloid aggregates in a dose-dependent manner in vitro by changing the aggregation
pattern from amyloid aggregation to an amorphous less toxic one [42], as examined by the
Th-T assay and confirmed by TEM imaging. However, daily injections of C4 or C5 into a
SOD1G93A mouse model, starting after disease onset, failed to significantly affect disease
progression or survival of treated mice.

Correlating with these in vivo findings, was the observation that the accumulation
of soluble misfolded SOD1 was not reduced in the spinal cord and brain of C4- and C5-
injected mice. Moreover, SOD1 aggregation in end-stage spinal cords was only slightly (but
not significantly) reduced by C4 and C5 daily injections, as revealed by a soluble–insoluble
assay and confirmed by immunofluorescence staining. Finally, our treatment had no effect
on the neuroinflammatory response in SOD1G93A mice lumbar spinal cord.

A key question in the field of protein misfolding-related disorders is whether the
toxic species is the soluble misfolded form of the protein or the formation of insoluble
cytoplasmic inclusions. Specifically, the benefits and harmful processes associated with
the formation of insoluble aggregates are still being investigated [43]. Traditionally, the
presence of protein inclusions in neurodegenerative diseases has been related to the cell’s
failure to refold misfolded proteins by chaperone activity [44]. However, other findings
highlight the possibility that inclusion formation is not necessarily pathological [45]. Amy-
loid fibril formation is an intrinsic property of proteins in general [46,47], and there is
accumulating evidence that this property may serve as a protective response, essential
for several biological activities [45,48]. For example, protein aggregation into insoluble
deposits was reported as a protective mechanism against oxidative stress [44] to allow
efficient cell cycle restart after stress [49]. Recently, SOD1 insoluble aggregate formation was
suggested as a protective mechanism to reduce the amount of toxic SOD1 trimers [50,51].
In addition, it was shown that inclusion body formation can function as a coping response
to toxic mutant huntingtin [52]. Moreover, it was suggested that the aggregation process
itself is related to toxicity, and that a common mechanism of toxicity is involved in several
aggregation-related disorders [43]. In light of these findings, we raise the question of
whether reducing the solubility of mutant proteins through aggregation may be part of
the cell’s protective strategy, and whether the soluble misfolded SOD1 form is indeed the
most toxic. Since the inhibition of SOD1 amyloid aggregation observed in vitro could not
be replicated in our treated mice, we cannot make any definitive claim on this issue.

In an attempt to explain the lack of in vivo effect of the compounds on SOD1G93A

pathogenesis, it is worth considering the possibility that C4 or C5 injection starting at an
earlier time point, prior to disease onset, might have been more beneficial. The 4-PBA was
already tested in the SOD1G93A ALS mouse model [53–55]. These studies showed that
treating mice prior to manifestation of clinical symptoms resulted in extended survival
rate, in addition to improved body weight loss rate as well as improved motor func-
tion [53,55]. Supporting this notion is our in vitro Th-T assay, where C4 and C5 suppressed
SOD1 amyloid aggregation before its formation. Starting with C4 or C5 injections at the
presymptomatic stage would likely suppress the formation of amyloid aggregates and thus
potentially affect disease progression.

We hypothesized that, when compared to 4-PBA, C4 and C5 may be effective in
inhibition of aggregation at lower, more therapeutically relevant, concentrations. However,
our Th-T results, accompanied by TEM imaging, revealed a complete suppression of
SOD1G93A amyloid aggregates during incubation with relatively high concentrations of the
compounds, suggesting that the synthesis of these new 4-PBA derivatives failed to achieve
therapeutic outcomes at low dosages, as we had expected. Supporting these findings was a
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soluble–insoluble assay, where the incubation of SOD1G93A-expressing human neuronal
cells with lower concentrations of C4 failed to reduce SOD1 aggregation levels.

Furthermore, previous findings from SOD1G93A mice show that an effective therapeu-
tic dosage was achieved by the administration of 200–400 mg/kg per day of 4-PBA [53–55].
Here, we aimed to test whether the new synthesized 4-PBA derivatives would present
positive outcomes when administrating significantly lower dosages (100 mg/kg per day
for C4 and 25 mg/kg per day for C5). Important to mention is that, even such high doses of
both compounds that resulted in very high concentrations in the brain and spinal cord (mM
range), although for a very short time, did not provide the expected outcome on disease
progression and survival of SOD1G93A. Thus, increasing C4 and C5 stability might have
resulted in slower disease progression.

In addition, we tested the potential therapeutic effect of C4 and C5 on the early onset
and very aggressive SOD1G93A model of ALS [56]. Other SOD1 ALS-related mutations
might present different outcomes. Likewise, C4 or C5 may act as chaperones for other
ALS-related protein aggregates, such as ALS models presenting cytosolic TDP-43 inclusions,
which may also involve other pathological mechanisms.

Riluzole [57,58] and edaravone [57,59] are the only two drugs approved by the FDA
as therapeutic agents in ALS to date; however, their mechanism of action is not fully un-
derstood. Riluzole, a glutamate antagonist, appears to reduce damage to MNs by averting
excitotoxicity [60,61]. Although riluzole was approved in 1995 based on clinical trials [58,62],
more recent studies testing its therapeutic effect in currently available ALS-relevant mouse
models revealed that it failed to improve the lifespan of the treated mice [63]. Edaravone is
an antioxidant with a free radical-scavenging activity which successfully reduced oxidative
stress and improved the motor performance of SOD1G93A mice [59,64–66]. Both riluzole
and edaravone are mildly effective, prolonging some patients’ survival by up to 2–3 months,
and have a beneficial effect only when taken at the first few months after diagnosis [67].
Combining 4-PBA treatment with riluzole [55] or with the antioxidant AEOL 10150 [54]
was reported to improve disease outcome and extended mice survival rate [54,55]. Thus,
combining the chaperone activity of C4 or C5 with other known therapeutic strategies
might be more effective in eliminating mutant SOD1 toxicity.

In conclusion, our findings suggest that the use of such chemical chaperones alone may
not be realistic due to their high and barely tolerable active doses and bad PK parameters.
Thus, the chemical chaperone-based strategy for ALS drug development may need to be
optimized for more effective results.

4. Materials and Methods
4.1. Chemical Chaperones Synthesis

C4 and its fluorinated derivative 19F-C4 were synthesized as described [34]. C5 was
purchased from Enamine, Kyiv, Ukraine.

4.2. Animals and Injection Protocol

Altogether, 48 B6 background (C57BL/6J TgN-SOD1-G93A-Gur; SOD1G93A) female
and male mice were used for the experiments. The treatment protocol was approved by
the Animal Care and Use Committee of Ben-Gurion University of the Negev, as required
by Israeli legislation. Mice received 200 µL final volume of intraperitoneal (IP) injections
every 24 h. C4-treated mice received 100 mg/kg/day diluted in acetate buffer, pH 5.6.
C5-treated mice received 25 mg/kg/day diluted in PBS, pH 7.3. The control group included
noninjected mice and mice injected only with acetate buffer.

All behavioral tests and body weight measurements were conducted twice a week. The
inverted screen test [68] and the neurological score [69] were assessed as described previously.
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4.3. 19F-NMR

A solution of compound 4 (labeled by the fluorine atom: 19F-C4), Figure S1 (50 mg,
final concertation: 0.34 M), was prepared in acetate buffer, pH = 5.6. The acidic pH of the
formulation was used to ensure the solubility of the compound as a quaternary ammonium
salt in the blood. Thirty minutes post-IP administration of the compound, mice were
euthanized, the brain was reperfused by saline, isolated, and homogenized. The entire
brain homogenate was mixed with D2O and the 19F-NMR analysis was conducted as
described [34].

4.4. SOD1G93A Protein Purification

Recombinant mutant SOD1G93A was purified as previously described [70]. Briefly,
sequence of human SOD1G93A was optimized for codon usage in E. Coli, cloned into pHIS1
vector [71], and expressed as 6HIS-tagged (N-term) soluble protein in BL21 (New England
BioLabs, Ipswich, MA, USA) cells. An amount of 0.5 mL of bacteria culture were grown
in 100 mL enriched lysogenic broth (LB) medium (2% tryptone, 1% yeast extract, 0.5%
NaCl) at 37 ◦C for 3 h. Grown culture was added to new enriched LB (2% tryptone, 1%
yeast extract, 0.5% NaCl, 0.2% sterile glycerol) containers, and the cultures were grown at
30 ◦C until turbidity at 600 nm reached 0.6–0.8 optical density (OD). The expression of the
protein was induced by the addition of 0.1 mM of isopropyl β-D-1-thiogalactopyranoside
(IPTG), followed by overnight incubation at 20 ◦C. Bacteria cells were harvested by 30 min
centrifugation (7434.64× g) at 4 ◦C, the pellet was washed in 50 mM Tris-HCl buffer
(pH 8), followed by an additional 20 min of centrifugation. After 30 min incubation on
ice in sonication buffer (0.5 M NaCl, 50 mM Tris-HCl pH 7.5, 10 mM imidazole, 2 mM
β-mercaptoethanol, 0.1 mM PMSF, 1 µL/mL protease inhibitor (PI, APExBio), 1 mg/mL
lysozyme), the cells were disrupted by sonication for 3 min (amplitude: 95%, 20 s on and
40 s off; 18 ◦C). To remove the DNA, the crude extract was incubated on ice for 30 min
in the presence of 25 µg/mL bovine pancreas DNaseI (Merck, Israel) and 5 mM MgSO4,
followed by 30 min centrifugation (1486× g) at 4 ◦C. The supernatant was loaded on a
5 mL HisTrap FF column (Cytiva, Marlborough, MA, USA), using ÄKTA pure protein
purification system (GE Healthcare, Chicago, IL, USA) equilibrated with binding buffer
(0.5 M NaCl, 50 mM Tris-HCl pH 7.5, 10 mM imidazole, 2 mM β-mercaptoethanol). The
column was washed with washing buffer (0.5 M NaCl, 50 mM Tris-HCl pH 7.5, 20 mM
imidazole, 2 mM β-mercaptoethanol), and the protein was eluted by a linear 20–400 mM
imidazole gradient. The peak fractions were dialyzed (8–12 h each) at 4 ◦C against dialysis
buffer 1 (10 mM EDTA, 100 mM sodium acetate, pH 3.8), followed by dialysis against
dialysis buffer 2 (0.1 M NaCl, 100 mM sodium acetate, pH 3.8) three times, followed by
dialysis against dialysis buffer 3 (0.1 M NaCl, 100 mM Sodium Acetate, pH 5.5, 10%
glycerol) twice. Afterwards, the fraction was centrifuged at 100,000× g at 4 ◦C for 1 h
using ultracentrifuge (Sorvall M120, Discovery, AZ, USA), and the supernatant was stored
at −80 ◦C until use. Protein concentration was measured by the Bradford method using
bovine serum albumin as standard.

4.5. Thioflavin-T (Th-T) Aggregation Assay

Recombinant mutant SOD1G93A protein (50 µM) with or without C4 (10–50 mM) was
incubated in 200 µL HEPES buffer (HEPES bufferX4: 200 mM, NaCl 400 mMm (pH 7.4)),
5 mM Ethylenediaminetetraacetic acid (EDTA, Sigma, Burlington, MA, USA), and 1 mM
Tris(2-carboxyethyl)phosphine hydrochloride (TCEP HCl, Sigma, Burlington, MA, USA) in
the presence of 2 mM thioflavin T (Sigma, Burlington, MA, USA) in a black 96-well plate
at 37 ◦C with fast continuous shaking. All samples were performed in triplicates and the
fluorescence (λEx. = 440 nm; λEm. = 485 nm) was measured at 15 min intervals for 70–80 h
by Infinite M200 pro (Tecan, Mannedorf, Zurich, Switzerland).
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4.6. Transmission Electron Microscopy (TEM)

TEM imaging was performed by the Nano-Fabrication Center team at Ben-Gurion
University of the Negev, as described previously [21]. Briefly, at the end of the ThT
aggregation assay (after ~70 h), 2.5 µL samples were deposited on a carbon-coated copper
300 grid. After 1 min, the excess liquid was carefully blotted onto filter paper, which was
then dried at ambient temperature for 1 min. Uranyl acetate (5 µL, 2%) was added to the
grid, and after 1 min, the excess of the salt solution was carefully removed with a filter
paper. The imaging was performed using a ThermoFisher Scientific (FEI, Waltham, MA,
USA) Talos F200C transmission electron microscope operating at 200 kV. The images were
taken with Ceta 16M CMOS camera at various magnifications (100–500 nm), depending
on the size of the fibril aggregates. The visible features were sensitive to the electron bean
exposure, indicating their organic origin.

4.7. Cell Culture and Transfection

SH-SY5Y cells were maintained at 37 ◦C in a humidified, 5% CO2 incubator in Dul-
becco’s modified Eagle medium (DMEM), supplemented with 10% tetracycline-free fetal
bovine serum (FBS), 2 mM L-Glutamine, penicillin (100 units/mL), and streptomycin
(0.1 mg/mL). Cells were split every two or three days (when they reached ~90% conflu-
ency) using Trypsin (Trypsin EDTA solution B 0.25%, EDTA 0.05%, Biological Industries,
CAT# 03–052-1A).

Cells were transfected using TurboFectTM transfection reagent (Thermo, Waltham,
Massachusetts, USA) according to manufacturer’s protocol. Briefly, cells were seeded
~0.8 × 105 in 2 mL media (DMEM, 10% FBS, 2 mM L-glutamine, 100 units/mL ampicillin
and 0.1 mg/mL streptomycin) in a 60 mm petri dish. Keeping a ratio of DNA:TurboFectTM

(1:2), 3 µg of DNA and 6 µL TurboFectTM were dissolved in 200 µL of DMEM, mixed by
vortex, and incubated for 25 min at room temperature. The mixture was added dropwise
to the preseeded cells and incubated for 48 h at 37 ◦C in a humidified, 5% CO2 incubator.

4.8. Cell Lysis and Protein Extraction

Protocol was performed on ice. Briefly, media was removed, and cells were washed
twice with 0.1 M PBS, and then lysed in 1 mL of ice-cold soluble buffer (0.1 M PBS, 1%
Triton X, 5 mM EDTA, 10% Glycerol, 1 mM PMSF, 0.5% PI) with 20 min incubation at 4 ◦C.
Cells were then detached using a cell scraper, collected into an Eppendorf, homogenized at
4000 RPM for 30 s, and centrifuged at 17,000× g for 30 min at 4 ◦C. The supernatant (soluble
fraction) was collected and stored at −20 ◦C until use. The pellet was resuspended in 1 mL
ice-cold soluble buffer (0.1 M PBS, 1% Triton X, 5 mM EDTA, 10% Glycerol) and centrifuged
at 17,000× g at 4 ◦C for 30 min. Next, the pellet (insoluble fraction) was resolved using
400 µL of 8 M urea and sonication for 1 h at 4 ◦C. Protein concentration of soluble fractions
was measured by the Bradford method using bovine serum albumin as standard, and the
protein concentration of insoluble fractions was measured by the protein determination
(BCA) kit (Cayman Chemical).

4.9. Tissue Harvesting and Protein Extraction

Brain/spinal cord (SC) tissues were dissected out, cut in half, and homogenized on ice
in 3 volumes of ice-cold homogenization buffer (150 mM NaCl, 20 mM Tris-HCl pH 7.5,
1 mM PMSF, 1% triton, 1% PI (APExBio, Houston, TX, USA), 0.5% sodium deoxycholate,
0.1% SDS). Homogenates were centrifuged at 5000× g at 4 ◦C for 30 min, the supernatant
(cytosolic fraction) was collected, and then stored at −80 ◦C until use. Protein concentration
was measured by the Bradford method using bovine serum albumin as standard.

4.10. Immunoprecipitation (IP) Assay

Brain/SC tissue extracts (100 µg), or recombinant SOD1G93A incubated with C4
(1–50 mM) or C5 (0.25–12.5 mM) for 1 h at 37 ◦C, were solubilized in IP buffer (0.5 M
NaCl, 50 mM Tris (pH 7.4), 0.5% Nonidet P-40) and incubated at 4 ◦C overnight with B8H10
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antibody (MediMabs, Montreal, Quebec), previously crosslinked to DynabeadsTM protein
G (Thermo, Waltham, MA, USA) according to the manufacturer’s instructions. The beads
were magnetically isolated and, after crosslinking with the antibody, were washed three
times with PBST (0.1 M PBS with 0.02% Tween20). After magnetic separation, unbound
fractions were withdrawn for immunoblotting analysis. Beads were washed three times
with IP buffer and the bound fractions were eluted by boiling for 5 min at 95 ◦C in X2
sample loading buffer.

4.11. Soluble-Insoluble Separation Assay

Spinal cord tissues were dissected out, cut in half, homogenized on ice in 200 µL of
ice-cold soluble buffer (5 mM EDTA, 1 mM PMSF, 1% triton, 1% PI (APExBio, Houston,
TX, USA), 0.1 M PBS), and incubated at 4 ◦C for 2 h while rotating. Homogenates were
then centrifuged at 17,000× g at 4 ◦C for 30 min and the supernatant (soluble fraction)
was collected and stored at −80 ◦C until use. The pellet was resuspended with 1 mL
ice-cold soluble buffer (5 mM EDTA, 1% triton, 0.1 M PBS) and centrifuged at 17,000× g
at 4 ◦C for 30 min. Next, the pellet (insoluble fraction) was resolved using 300 µL of
8 M urea and sonicated for 2 h at 4 ◦C. Protein concentration of soluble fractions was
measured by the Bradford method using bovine serum albumin as standard, and protein
concentration of insoluble fractions was measured by the protein determination (BCA) kit
(Cayman Chemical).

4.12. Immunoblotting

Desired proteins were separated on a 10%, 12%, or 15% acrylamide SDS-PAGE gel
in running buffer (25 mM Tris, 192 mM glycine, 0.1% SDS). Separated proteins were then
blotted on a nitrocellulose membrane in transfer buffer (25 mM Tris, 192 mM glycine, 20%
methanol). Blotted membranes were stained with ponceau-s (Sigma, Burlington, MA, USA)
to verify protein presence and then washed several times with Tris-buffers saline with
Tween20 (TBST) until color disappearance. The membranes were then incubated in 5%
skimmed milk powder (Sigma, Burlington, MA, USA) in Tris-buffers saline (TBS) for 1 h
while shaking to block exposed areas. The blocked membranes were incubated overnight at
4 ◦C while shaking with desired primary antibodies, including: mouse anti-SOD1 (1:1000,
24, SCB), mouse anti-GAPDH (1:200, SCB), rabbit anti-ChAT (1:1500, GeneTex), mouse anti-
GFAP (1:1000, Merck), and rabbit anti-Iba1 (1:500, Abcam). The next day, the membranes
were washed for 3 min in TBST followed by 3 × 3 min in TBS while shaking. Horseradish
peroxidase (HRP)-conjugated goat anti-mouse or goat anti-rabbit IgG secondary antibodies
(Jackson Immunochemicals, West Grove, PA, USA) were used and detected by the EZ-ECL
reagent kit (Biological Industries, Kibbutz Beit-Haemek, Israel) containing the Luminol
substrate for HRP. The membranes were photographed by Fusion Solo X (Vilber, Collegien,
France). Reprobing of the membranes was performed in stripping buffer (Thermo, Waltham,
MA, USA) for 15 min while shaking, followed by TBST and TBS washings.

4.13. Pharmacokinetic (PK) Study

A total of 26 mice (8–9 weeks old) were used in this study. The animals were randomly
assigned to the treatment groups before the pharmacokinetic study. Six sampling time
points (0, 0.5, 1, 3, 8, 24 h) were set for the experiment. Each of the time point treatment
group included 3 animals. Test compounds: C4 (100 mg/kg) and C5 (25 mg/kg) were
injected IP. Mice were sacrificed by cervical dislocation, and after that, the blood samples
were collected by cardiac puncture, settled for 20 min, and then centrifuged for 10 min at
3000× g 4 ◦C degrees. Samples were snap-frozen and stored at −70 ◦C until subsequent
analysis. An amount of 200 µL of acetonitrile was added to 50 µL of serum, and after
centrifugation, the supernatant was used for mass spectroscopy analysis. Brains were
harvested and lysed in 500 µL PBS using 18 G needle, and then 1 mL of acetonitrile was
added. After the addition of the acetonitrile, the samples were homogenized again with
the same needle. Spinal cords (SCs) were harvested and lysed in 250 µL PBS using 18 G
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needle, and then 500 µL of acetonitrile was added. After the addition of the acetonitrile,
the samples were homogenized again with the needle. All procedures were conducted on
ice. LC/MS from Agilent Technologies (Santa Clara, CA, USA) was used for PK analysis.
Data were processed using mass L-ynX ver. 4.1 calculation and deconvolution software
(Waters Corp., Milford, MA, USA). Spiking and calibration curve were generated using
serum of the nontreated mice.

4.14. Immunofluorescence

Mice were anesthetized via inhalation of 1 mL isoflurane, followed by perfusion
with 50 mL 0.1 M PBS, and then switched to 4% paraformaldehyde (PFA) in 0.1 M PBS.
The spinal cords were dissected out and postfixed in 4% formaldehyde in 0.1 M PBS at
4 ◦C overnight, cryoprotected in 20% sucrose in 0.1 M PBS 48 h at 4 ◦C, and afterwards
embedded in Optimal Cutting Temperature (OCT) matrix compound (Tissue-Tek, Sakura
Finetek). Sections were cut from the lumbar spinal cord (35 µm thickness), and the free-
floating sections were stored in 0.1 M PBS with 0.02% sodium azide at 4 ◦C to conserve
until staining. Sections were stained using standard protocol. First, sections were washed
(3 × 15 min) in 0.1 M PBS with 0.03% Tween20 and then blocked for 1 h in blocking
and permeabilization buffer (0.1 M PBS, 10% donkey serum, 1% BSA, 0.3% triton) with
gentle agitation at room temperature. Sections were washed (3 × 15 min) in 0.1 M PBS
with 0.03% Tween20 and then incubated overnight at 4 ◦C with gentle agitation, with
primary antibodies made in 0.1 M PBS, 1% donkey serum, 1% BSA, 0.15% triton, including
mouse anti-misfolded SOD1 (B8H10, 1:100, MediMabs, Montreal, Quebec), mouse anti-glial
fibrillary acidic protein (GFAP, 1:400, Merck), goat anti-ionized calcium-binding adaptor
molecule 1 (Iba1, 1:500, Abcam), and rabbit anti-neuronal nuclei antigen (NeuN, 1:200,
Merck). The following day, the sections were washed (3 × 15 min) in 0.1 M PBS with 0.03%
Tween20 and then incubated for 1 h at room temperature, gently shaking, with fluorescent
conjugated secondary antibodies in 0.1 M PBS, 1% donkey serum, 1% BSA, 0.15% triton,
including donkey anti-mouse (1:300, Alexa 555, Thermo), donkey anti-goat (1:200, Alexa
647, Abcam), donkey anti-mouse (1:200, Alexa 647, Abcam), and donkey anti-rabbit (1:200,
Alexa 405, Abcam). Sections were then washed (3 × 15 min) in 0.1 M PBS and mounted
on slides using Immu-MountTM mounting solution (Thermo), dried at room temperature
overnight, and stored at 4 ◦C until imaging. Images were acquired on a NIKON C2Plus
laser unit dock to a Nikon Eclipse Ti unit of the confocal microscope by using 10× and
20× objectives and 60× oil immersion objective. Scanning settings were reused across
the samples.

4.15. Statistical Analysis

Quantification of band intensity across experiments was done using Evolution-Capt
Edge software (version 18,08, Vilber, Collegien, France). The data was transferred and
statistically analyzed using OriginPro software (2021, OriginLab, Northampton, MA, USA).
Values are reported throughout as mean ± SEM. After confirming a normal distribution
by the Shapiro–Wilk normality test, a one-way ANOVA was performed to compare the
database between the 3 experimental groups. For nonlinear data, a Kruskal–Wallis test was
performed instead. Significance was set at a confidence level of 0.05.

ThT aggregation assay analysis was done using GraphPad Prism (La Jolla, CA, USA).

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms23169403/s1.
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