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Abstract. A usual way to construct block ciphers is to apply several
rounds of a given structure. Many kinds of attacks are mounted against
block ciphers. Among them, differential and linear attacks are widely
used. In [18, 19], it is shown that ciphers that achieve perfect pairwise
decorrelation are secure against linear and differential attacks. It is pos-
sible to obtain such schemes by introducing at least one random affine
permutation as a round function in the design of the scheme. In this pa-
per, we study attacks on schemes based on classical Feistel schemes where
we introduce one or two affine permutations. Since these schemes resist
against linear and differential attacks, we will study stronger attacks
based on specific equations on 4-tuples of cleartext/ciphertext messages.
We give the number of messages needed to distinguish a permutation
produced by such schemes from a random permutation, depending on
the number of rounds used in the schemes, the number and the position
of the random affine permutations introduced in the schemes.

Key words: affine permutations, classical Feistel permutations, pseudo-random
permutations, generic attacks, Luby-Rackoff theory, block ciphers.



1 Introduction

Differential cryptanalysis on encryption schemes was invented in the early 90s
by Biham and Shamir who applied it against DES [1, 2].Then Matsui developped
linear cryptanalysis against DES [9, 10]. Differential cryptanalysis exploits the
high probability of certain occurrences of plaintext differences and differences
into the last round of the cipher. Consider two inputs M ′ and M ′′ with cor-
responding outputs Y ′ and Y ′′. The input difference is ∆M and the output
difference is ∆Y . In an ideally randomizing cipher the probability that a par-
ticular output difference ∆Y occurs given a particular difference input ∆M is
1
2n where n is the number of bits of M . Differential cryptanalysis seeks to ex-
ploit a scenario where a particular ∆Y occurs given a particular input difference
∆M with a very high probability. Linear cryptanalysis tries to take advantage
of high probability occurrences of linear expressions involving plaintext bits, ci-
phertext bits and subkey bits. Both methods use pairs of plaintext/ciphertexts.
They allowed to produce attacks on classical Feistel schemes with random func-
tions [7, 8, 14] or random permutations [6, 17], unbalanced Feistel schemes with
expanding [5, 16, 20] or contracting functions [13, 15], Misty schemes [3, 11], gen-
eralized Feistel schemes of type 1, 2 and 3 [12]. In [18, 19], Vaudenay showed
that if a block cipher has perfect pairwise decorrelation, then it is secure against
linear and differential attacks. We recall that a function F has perfect pair-
wise decorrelation if for any x1 6= x2, the random variables F (x1) and F (x2)
are uniformly distributed and independent. Affine permutations are examples of
functions achieving perfect pairwise decorrelation. Now suppose that we have
r independent ciphers C1, . . . , Cr. If one of these cipher has perfect pairwise
decorrelation, then C = Cr ◦ . . .◦C1 has also perfect pairwise decorrelation ([18,
19]). Thus if one of the ciphers is an affine permutation, then C has perfect pair-
wise decorrelation and is secure against linear and differential cryptanalysis. This
gives a method to construct ciphers that are secure against linear and differential
attacks. COCONUT and PEANUT ([18]) are examples of such schemes: they are
of the form C3 ◦C2 ◦C1 where C1 and C3 are any ciphers and C2 performs per-
fect pairwise decorrelation. In [13], the authors studied the security of schemes
of the form C2 ◦ ψ ◦ C1 or ψ ◦ C1 where C1 and C2 are pairwise independent
permutation (they achieve perfect pairwise decorrelation) and ψ is a balanced
Feistel scheme or an unbalanced Feistel scheme with contracting functions. By
Vaudenay’s result, we know that again these schemes are secure against linear
and differential cryptanalysis. But we can consider different types of attacks. For
example, we may have specific relations on tuples of cleartext/ciphertext mes-
sages. In this paper, we will study these kind of attacks on a family of schemes
that are secure against linear and differential cryptanalysis. We will see that we
can use 4-tuples of cleartext/ciphertext messages. We consider schemes of the
form Ψd ◦ ϕ, ϕ′ ◦ Ψd ◦ ϕ, Ψd2 ◦ ϕ ◦ Ψd1 where ϕ,ϕ′ are affine permutations and
ψd, ψd1 , Ψd2 are classical Feistel schemes with respectively d, d1, d2 rounds. We
will denote these schemes as A-Feistel schemes. As far as we know, no systematic
study of attacks has been done on this family of schemes. We will study Known
Plaintext Attacks (KPA) and non adaptive Chosen Plaintext Attacks (CPA-1).
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We introduce an affine permutation at the beginning, at the end, inside the Feis-
tel scheme, or both at the beginning and at the end. Thus, by symmetry, we will
obtain results for Known Ciphertext Attacks (KCA) and non adaptive Chosen
Ciphertext Attacks (CCA-1). The affine permutations and the functions used in
the Feistel schemes are keyed dependent. With our attacks we want to distin-
guish a random permutation from a random permutation produced by a scheme.
For some of our attacks, we will make a precise analysis of standard deviation.
The paper is organized as follows. In section 2, we define our schemes that we
name A-Feistel schemes. In section 3, we describe our best KPA and CPA-1 on
schemes with one affine permutation. We show that it is possible to attack up to
3 rounds after the affine permutation with a number of messages less than 22n

and then we describe attacks against generators of permutations. We did some
simulations of our attacks. The results of these simulations are given in sec-
tion 3.4. In Section 4, we present attacks on schemes for which we apply first an
affine permutation, then a Feistel scheme with several rounds and again an affine
permutation. Appendices A and B are devoted to the computation of standard
deviations. In appendix C, it is shown that A-Feistel permutations have even
signature. This allows attacks by the signature when all the cleartext/ciphertext
pairs are known.

2 Preliminaries

2.1 Notation

We use the following standard notations. The number of messages is denoted
by m. The set of the 2n binary strings of length n is denoted by {0, 1}n. For
a, b ∈ {0, 1}n, [a, b] will be the string of length 2n of {0, 1}2n which is the
concatenation of a and b. For a, b ∈ {0, 1}n, a⊕b stands for bit by bit exclusive or
of a and b. The composition of functions is denoted by ◦. The set of all functions
from {0, 1}n to {0, 1}n is Fn. Let f be a function of Fn. Let L, R, S and T be
elements of {0, 1}n. We define Ψ(f)[L,R] = [S, T ] def⇔ S = R and T = L⊕f(R).
More generally, let d be an integer and f1, f2, . . . , fd be d functions of Fn. We
set: Ψd(f1, . . . , fd) = Ψ(fd) ◦ · · · ◦Ψ(f2) ◦Ψ(f1). The permutation Ψd(f1, . . . , fd)
is called a “Feistel scheme with d rounds” and is denoted by Ψd.

2.2 A-Feistel schemes

We now define A-Feistel Schemes. We consider an affine permutation from {0, 1}2n
to {0, 1}2n. It is written under the form: M → A.M ⊕ c where A ∈ GL(2n,K)
and c ∈ {0, 1}2n. In order to construct an A-Feistel scheme with “d rounds”, we
use one or two affine permutations and a classical Feistel scheme with d rounds.
Here d is related with the Feistel scheme. Let ϕ and ϕ′ be affine permutations,
an A-Feistel scheme with d rounds is one of the following permutations: Ψd ◦ ϕ,
ϕ◦Ψd, Ψd2 ◦ϕ◦Ψd1 with d1+d2 = d or ϕ′◦Ψd◦ϕ. Since A is a linear permutation
from {0, 1}2n to {0, 1}2n, it can be represented by a matrix, still denoted by A.
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We will write A under the form:

(
A1 A2

A3 A4

)
where each Ai ∈ M(n× n,F2). We

also set c = [c1, c2] where ci ∈ {0, 1}n.

We introduce the internal variables that appear in the different rounds of
A-Feistel schemes.

1. Ψd ◦ ϕ

[L,R]
ϕ−→ [P,Q]

Ψ(f1)−→ [Q,X1]
Ψ(f2)−→ [X1, X2] . . .

Ψ(fd−1)−→ [Xd−2, Xd−1]
Ψ(fd)−→ [S, T ]

Thus we have introduce internal variables: P = A1.L ⊕ A2.R ⊕ c1, Q =
A3.L ⊕ A4.R ⊕ c2, X1 = P ⊕ f1(Q), X2 = Q ⊕ f2(X1) and for j ≥ 3,
Xj = Xj−2 ⊕ fj(Xj−1).

2. ϕ ◦ Ψd

[L,R]
Ψ(f1)−→ [R,X1]

Ψ(f2)−→ [X1, X2] . . .

Ψ(fd−1)−→ [Xd−2, Xd−1]
Ψ(fd)−→ [Xd−1, Xd]

ϕ−→ [S, T ]

Here we have the internal variables: X1 = L⊕ f1(R), X2 = R⊕ f2(X1) and
for j ≥ 3, Xj = Xj−2 ⊕ fj(Xj−1). Since we apply ϕ at the end, we have:
S = A1.X

d−1 ⊕A2.X
d ⊕ c1, T = A3.X

d−1 ⊕A4.X
d ⊕ c2.

3. Ψd2 ◦ ϕ ◦ Ψd1 with d1 + d2 = d

[L,R]
Ψ(f1)−→ [R,X1]

Ψ(f2)−→ [X1, X2] . . .
Ψ(fd1 )−→ [Xd1−1, Xd1 ]

ϕ−→ [P,Q]
Ψ(fd1+1)−→ [Q,Xd1+1]

Ψ(fd1+2)−→ [Xd1+1, Xd1+2] . . .
Ψ(fd1+d2

)
−→ [S, T ]

The internal variables are: X1 = L ⊕ f1(R), X2 = R ⊕ f2(X1) and for
3 ≤ j ≤ d1, Xj = Xj−2 ⊕ fj(X

j−1), P = A1.X
d−1 ⊕ A2.X

d ⊕ c1, Q =
A3.X

d−1⊕A4.X
d⊕ c2, Xd1+1 = P ⊕ fd1+1(Q), Xd1+2 = Q⊕ fd1+2(Xd1+1).

We also have S = Xd1+d2−1 and T = Xd1+d2−2 ⊕ fd1+d2(Xd1+d2−1).

4. ϕ′ ◦ Ψd ◦ ϕ

[L,R]
ϕ−→ [P,Q]

Ψ(f1)−→ [Q,X1]
Ψ(f2)−→ [X1, X2] . . .

Ψ(fd−1)−→ [Xd−2, Xd−1]
Ψ(fd)−→ [Xd−1, Xd]

ϕ′−→ [S, T ]

The internal variables are: P = A1.L ⊕ A2.R ⊕ c1, Q = A3.L ⊕ A4.R ⊕ c2,
X1 = P ⊕ f1(Q), X2 = Q⊕ f2(X1) and for j ≥ 3, Xj = Xj−2 ⊕ fj(Xj−1).
Finally S = A′1.X

d−1 ⊕A′2.Xd ⊕ c′1, T = A′3.X
d−1 ⊕A′4.Xd ⊕ c′2.
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2.3 Overview of the attacks.

We present attacks that allow us to distinguish a permutation computed by
the scheme from a random permutation. Depending on the number of rounds,
it is possible to find some relations between the input and output variables.
These relations hold conditionally to equalities of some internal variables due
to the structure of the scheme. Our attacks consist in using 4-tuples of plain-
text/ciphertexts and in counting the number N of these 4-tuples that satisfy the
relations between the input and output variables. We then compare Nscheme,
the number of such 4-uples we obtain with an A-Feistel scheme, with Nperm,
the corresponding number for a random permutation. The attack is successful,
i.e. we are able to distinguish a permutation generated by an A-Feistel scheme
from a random permutation if, by the Chebyshev’s inequality, the difference
|E(Nscheme)−E(Nperm)| is larger than both standard deviations σ(Nperm) and
σ(Nscheme), where E denotes the expectancy function. This gives the number of
messages needed for the attack. In order to compute E and σ for a scheme and
a random permutation, we need to take into account the fact that the structures
obtained from the plaintext/ciphertext 4-tuples are not independent. However,
their mutual dependence is very small. To compute σ(Nperm) and σ(Nscheme), we
will use this well-known formula (see [4], p.97), that we will call the “Covariance
Formula”: if x1, . . . xn, are random variables, then if V represents the variance,
we have V (

∑n
i=1 xi) =

∑n
i=1 V (xi) + 2

∑n−1
i=1

∑n
j=i+1

[
E(xi xj) − E(xi)E(xj)

]
.

Examples of computations are given in Appendices A and B.

3 A-Feistel schemes with one affine permutation

3.1 One affine permutation and a Feistel scheme with one round

Ψ(f1)◦ϕ. Let [L,R] denote the input. The output is denoted by [S, T ]. Then we
have [L,R]→ [P,Q]→ [S, T ], where P = A1.L⊕A2.R⊕c1,Q = A3.L⊕A4.R⊕c2,
S = Q and T = X1 = P ⊕ f1(Q) and f1 ∈R Fn. Thus S = A3.L⊕A4.R⊕ c2.

CPA-1 with 4 messages. We choose L1, L2, R1, R2 such that L1 6= L2 and R1 6=
R2. Then we construct the four following messages: [L1, R1], [L1, R2], [L2, R1] and
[L2, R2]. Let us write [S1, T1] = Ψ(f1) ◦ ϕ[L1, R1], [S′1, T

′
1] = Ψ(f1) ◦ ϕ[L1, R2],

[S2, T2] = Ψ(f1) ◦ ϕ[L2, R2] and [S′2, T
′
2] = Ψ(f1) ◦ ϕ[L2, R1]. With an A-Feistel

scheme, the probability to obtain S1 ⊕ S′1 ⊕ S2 ⊕ S′2 = 0 is equal to one. For a
random permutation, the same probability is about 1

2n . Thus we need 4 messages
to distinguish a random permutation from a permutation of the form Ψ(f1) ◦ϕ.

KPA with 2n messages. We can transform the previous CPA-1 into a KPA. With
2n messages, by the birthday paradox, we can obtain with a good probability
L1, L2, R1, R2 such that L1 6= L2 and R1 6= R2. As previously we construct the
outputs [S1, T1], [S′1, T

′
1], [S2, T2] and [S′2, T

′
2]. Then we check if S1⊕S′1⊕S2⊕S′2 =

0. The probability to obtain this value is one with an A-Feistel and 1
2n for a

random permutation.
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ϕ ◦ Ψ(f1). Let [L,R] denote the input and [S, T ] denote the output. We have
[L,R] → [R,L ⊕ f1(R)],→ [S, T ], where S = A1.R ⊕ A2(L ⊕ f1(R)) ⊕ c1 and
T = A3.R⊕A4(L⊕ f1(R))⊕ c2.

CPA-1 with 4 messages . We choose again L1, L2, R1, R2 such that L1 6= L2 and
R1 6= R2 and we construct the 4 messages [L1, R1], [L1, R2], [L2, R1], [L2, R2].
Then with a permutation of the form ϕ ◦Ψ(f1) we obtain S1⊕S′1⊕S2⊕S′2 = 0
and T1 ⊕ T ′1 ⊕ T2 ⊕ T ′2 = 0 with probability one. With a random permutation
the probability to obtain theses equalities is about 1

22n .

KPA with 2n messages. We transform the previous CPA-1 into a KPA as previ-
ously and we need again 2n messages to distinguish a random permutation from
a permutation of the form ϕ ◦ Ψ(f1).

3.2 One affine permutation and a Feistel scheme with two rounds

Ψ(f2)◦Ψ(f1)◦ϕ. Here, the output is given by [S, T ] with S = X1 = P⊕f1(Q)
and T = X2 = Q ⊕ f2(P ⊕ f1(Q)) where f1, f2 ∈R Fn. Remind that P =
A1.L⊕A2.R⊕ c1, and Q = A3.L⊕A4.R⊕ c2.

CPA-1 with 2
n
2 messages. We choose only 2 values for L: L1 and L2. Then, we

choose approximately 1
2 .2

n
2 distinct values for Ri. Therefore we can construct

about m ' 2
n
2 messages. We count the number N of (Ri, Rj) values, Ri 6= Rj

such that with the 4 following messages:

i : [L1, Ri], i′ : [L2, Ri] j : [L1, Rj ], j′ : [L2, Rj ]

we have Si ⊕ Sj ⊕ Si′ ⊕ Sj′ = 0.
We are going to show that for an A-Feistel scheme, this number N is at

least twice the number we get for a random permutation. Since for a random

permutation, we have Nperm ' m2

2.2n , we will be able to distinguish when the
probability to have Nperm ≥ 1 is not negligible, i.e. when m ≥ 2

n
2 (we can also

try another [L1, L2]; for each [L1, L2] the probability of success of this attack is
not negligible). For A-Feistel schemes, the condition on the outputs may appear
at random as well. They also may happen due to condition on the internal
variables. First we notice that the conditions on the inputs imply:

Pi ⊕ Pj ⊕ Pi′ ⊕ Pj′ = 0 and Qi ⊕Qj ⊕Qi′ ⊕Qj′ = 0 (1)

Thus we get Si ⊕ Sj ⊕ Si′ ⊕ Sj′ = f1(Qi) ⊕ f1(Qj) ⊕ f1(Qi′) ⊕ f1(Qj′). The
equality (1) implies the following equivalences:

Qi = Qj ⇔ Qi′ = Qj′ (2)
Qi = Qi′ ⇔ Qj = Qj′ (3)
Qi = Qj′ ⇔ Qi′ = Qj (4)
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Thus if we have Qi = Qj or Qi = Qi′ , or Qi = Qj′ , we will obtain Si ⊕ Sj ⊕
Si′ ⊕ Sj′ = 0.
We will use the following proposition whose proof is straightforward.

Proposition 1 Suppose that Li = Lj, Lk = L` 6= Li, Ri = Rk and Rj = R` 6=
Ri. Then we have the following properties:

1. Qi = Qj ⇔ A4(Ri ⊕ Rj) = 0. Thus if A4 is a bijection, this condition will
never be satisfied since Ri 6= Rj. If A4 is not a bijection, then the probability
to have (2) is greater then 1

2n . Indeed, it is easy to check that if dim ker(A4) =

t then the probability that Ri ⊕Rj ∈ ker(A4) = 2t

2n = 1
2n−t ≥ 1

2n .
2. Qi = Qi′ ⇔ A3(L1 ⊕ L2) = 0. Thus if A3 is a bijection, this condition

will never be satisfied since L1 6= L2. Again, if A3 is not a bijection the
probability to have (3) is greater than 1

2n since it is equal to 1
2n−t′ where

t′ = dim(ker(A3)).
3. The condition Qi = Q` is not related to conditions on the dimension of the

kernels of either A3 or A4. Thus this condition is satisfied with probability
about 1

2n .

If A3 and A4 are bijective, we can only have Qi = Q`. We obtain Nscheme ' m2

2n .
Thus Nscheme is at least twice Nperm and we get a CPA-1 with m ' 2

n
2 messages

when both A3 and A4 are bijective. When A3 is not bijective and A4 is bijective,

then we have Nscheme ' m2

2n + m2

2.2n−t′ and m ' 2
n−t′

2 (it is also possible to
have A3 bijective and A4 not bijective). If A3 and A4 are not bijective, then

Nscheme ' m2

2n + m2

2.2n−t′ + m2

2.2n−t′ and m ' min(2
n−t′

2 , 2
n−t
2 ).

Remark 1: In [13], it is proved that for d = 2, there is security against all
adaptive chosen plaintext attacks (CPA-2) when the number of queries is m ≤
2

n
2 . Since for d = 2, we have a CPA-1 with 2

n
2 messages, the bound is tight.

In their scheme, the authors use first a pairwise independent permutation and
then a Feistel Scheme with 2 rounds. As said before, an affine permutation is an
example of a pairwise independent permutation.

KPA with 2
5n
4 messages. The previous attack can be transformed into a KPA

with complexity O(2
5n
4 ): we count the number N of (i, j, i′, j′) such that{

Li = Lj
Li′ = Lj′ 6= Li

and

{
Ri = Ri′

Rj = Rj′ 6= Ri
and Si ⊕ Sj ⊕ Si′ ⊕ Sj′ = 0

We have Nperm ' m4

4.25n and Nscheme ' m4

2.25n for a A-Feistel permutation when

A3 and A4 are bijective. Therefore this KPA succeeds when m ' 2
5n
4 . As in the

previous CPA-1, if we want to take into account the properties of the kernels of

A3 and A4, we obtain m ' min(2
5n
4 , 2

5n−t
4 , 2

5n−t′
4 ).

ϕ ◦ Ψ(f2) ◦ Ψ(f1) Here, after one round the output is [R,L ⊕ f1(R)]. Let
X1 = R ⊕ f1(R). After the second round of a Feistel scheme, the output is
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[X1, X2] where X2 = R⊕ f2(X1). Then after the affine permutation, we obtain
S = A1.X

1 ⊕A2.X
2 + c1 and T = A3.X

1 ⊕A4.X
2 + c2.

We first describe a CPA-1 with 2
n
2 messages. We proceed as in the case Ψ(f2) ◦

Ψ(f1) ◦ ϕ. We choose only 2 values for L: L1 and L2. Then, we choose approx-
imately 1

2 .2
n
2 distinct values for Ri. Therefore we can construct about m ' 2

n
2

messages. We count the number N of (Ri, Rj) values, Ri 6= Rj such that with
the 4 following message: i : [L1, Ri], i′ : [L2, Ri] j : [L1, Rj ], j′ : [L2, Rj ],
we have Si⊕Sj ⊕Si′ ⊕Sj′ = 0 and Ti⊕Tj ⊕Ti′ ⊕Tj′ = 0. When we have an A-
Feistel scheme, the conditions on the inputs imply that X1

i ⊕X1
i′⊕X1

j ⊕X1
j′ = 0.

If we impose X1
i = X1

j′ (or X1
i = X2

k , or X1
i = X1

` ), then we will obtain

X2
i ⊕X2

i′ ⊕X2
j ⊕X2

j′ = 0 and the conditions on the outputs will be satisfied .

The probability to have X1
i = X1

j′ is about 1
2n . Notice that the conditions on the

outputs may also happen at random and in that case the probability is about
1

22n . Thus Nscheme ' m2

2.2n + 3
2 ×

m2

22n . For a random permutation, the probability
to get Si ⊕ Sj ⊕ Si′ ⊕ Sj′ = 0 and Ti ⊕ Tj ⊕ Ti′ ⊕ Tj′ = 0 is about 1

22n and we

have Nperm ' m2

22n . Thus with m ' 2
n
2 messages, the attack succeed and we can

distinguish an A-Feistel scheme from a random permutation.
This CPA-1 can be transformed into a KPA with 2

5n
4 messages.

Remark 2: Here we do not need to take into account the properties of the
kernels of A3 and A4.

Ψ(f2) ◦ ϕ ◦ Ψ(f1). Let as usual [L,R] denote the input. Then we have: S =
Q = A3.R⊕A4(L⊕f1(R)) and T = P ⊕f2(Q) with P = A1.R⊕A2(L⊕f1(R)).
We give a CPA-1 with 4 messages. We choose 4 messages [L1, R1], [L1, R2],
[L2, R1], [L2, R2] such that L1 6= L2 and R1 6= R2. Then again we check if
S1 ⊕ S′1 ⊕ S2 ⊕ S′2 = 0. The probability to obtain this equality is equal to one
with a scheme and to 1

2n with a random permutation.
We can transform this attack into a KPA with 2n messages.

Remark 3: In the next attacks, and in order to simplify the presentation,
we will assume that A3 and A4 are bijective. It is not difficult to study the other
possibilities. The properties of the kernels of A3 and A4 are not involved when
the scheme ends with the affine permutation.

3.3 One affine permutation and a Feistel scheme with three rounds

Ψ(f3) ◦Ψ(f2) ◦Ψ(f1) ◦ϕ. We have the following values: [L,R] −→ [P,Q] −→
[Q,X1] −→ [X1, X2] −→ [S, T ]. Here,the output is given by [S, T ] with S =
X2 = Q⊕ f1(X1) and T = X3 = X1 ⊕ f3(X2) where f1, f2, f3 ∈R Fn. Remind
that P = A1.L⊕A2.R⊕ c1, Q = A3.L⊕A4.R⊕ c2 and X1 = P ⊕ f1(Q).

KPA with 2
7n
4 messages. We want to count the number N of (i, j, k, `) such that{

Li = Lj
Lk = L` 6= Li

and

{
Ri = Rk
Rj = R` 6= Ri

and Si ⊕ Sj ⊕ Sk ⊕ S` = 0
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When we have a random permutation, E(Nperm) ' m4

4·25n (Appendix A), and

whenm ' 2
7n
4 , we obtain from the computations of Appendix A, that σ(Nperm) =

O( m
2

2
5n
2

). With an A-Feistel scheme, these equalities may happen at random or

because there are some conditions which can be satisfied by internal variables.
For example, we may have the following conditions:{

Li = Lj
Lk = L` 6= Li

and

{
Ri = Rk
Rj = R` 6= Ri

and

{
Qi = Q`
X1
i = X1

j or X1
i = X1

k

It is also possible to have no condition on the Qi values and 2 conditions on
the X1

i values (for example X1
i = X1

j and X1
k = X1

` ). Thus, using the com-

putations performed in Appendix B, we get E(Nscheme) ' m4

4.25n + O(m
4

26n ), and

σ(Nscheme) = O( m
2

2
5n
2

). We can distinguish an soon as the difference of the mean

values is greater than both standard deviations, i.e. m4

26n ≤
m2

2
5n
2

. This means we

must have m ' 2
7n
4 .

CPA-1 with 2
3n
2 messages. The previous KPA can be transformed into a CPA-1.

We choose all the possible [L,R] such that the first n
2 bits of L are equal to 0.

Therefore we have 2
n
2 · 2n = 2

3n
2 possible inputs. We keep the same input and

output conditions. Here E(Nperm) ' m4

4.24n and σ(Nperm) = O(m
2

22n ) since each
collision on L has probability about 1

2n/2 . The computation of the variance is
similar to the computation done for the KPA. For an A-Feistel scheme, we get

E(Nscheme) ' m4

4.24n +O(m
4

25n ) = m4

24n ) and σ(Nscheme) = O(m
2

22n ). This shows that
we can distinguish a random permutation from an A-Feistel permutation as soon

as m4

25n ≥
m2

22n . This gives a CPA-1 with 2
3n
2 messages.

Computer simulations We made computer simulations for this attack in the
following way: for all values (or almost all values) of L, and all values of R, we
compute S, T . Then for all i, j such that Li = Lj and Ri < Rj , we add to a list
the 3-tuple (Si ⊕ Sj , Ri, Rj). Finally we count how many collisions we have in
this list. These simulations confirm our theoretical results (see Table 1).

Table 1. Simulation results

n 4 6 8

Number of tries 100000 10000 10000

Random cipher N̄ = 899.9 N̄ = 15624 N̄ = 257042
V = 848.5 V = 15481 V = 259744

Ψ3 ◦ ϕ N̄ = 972 N̄ = 15717 N̄ = 257146
V = 3436 V = 19717 V = 264051

(% good distinction) -( % false alarm) +77.4% +38.5% +10.9%
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ϕ◦Ψ(f3)◦Ψ(f2)◦Ψ(f1) We have the following values: [L,R] −→ [R,X1] −→
[X1, X2] −→ [X2, X3] −→ [S, T ] with X1 = L⊕ f1(R), X2 = R⊕ f2(X1), X3 =
X1 ⊕ f3(X2),
S = A1.X

2 ⊕A2.X
3 ⊕ c1 and T = A3.X

2 ⊕A4.X
3 ⊕ c2

CPA-1 with 2n messages. We choose only 2 values for L: L1 and L2. Then, we
choose approximately 2n values for Ri (i.e. almost all the possible values for
Ri). Therefore we have m ' 2.2n messages. We count the number N of (Ri, Rj)
values, Ri 6= Rj such that with the 4 following message: i : [L1, Ri], i′ :
[L2, Ri] j : [L1, Rj ], j′ : [L2, Rj ], we have Si ⊕ Sj ⊕ Si′ ⊕ Sj′ = 0 and Ti ⊕
Tj ⊕ Ti′ ⊕ Tj′ = 0. When we have an A-Feistel scheme, these two equalities may
happen at random with probability about 1

22n . But we may also have equalities
on the internal variables that imply the equalities on the outputs. The conditions
on the inputs imply that X1

i ⊕X1
i′⊕X1

j⊕X1
j′ = 0. Then we may have X1

i = X1
j ⇔

X1
i′ = X1

j′ or X1
i = X1

j′ ⇔ X1
i′ = X1

j but we cannot have X1
i = X1

i′ ⇔ X1
j = X1

j′

because this will imply L1 = L2. Suppose that we have X1
i = X1

j′ ⇔ X1
i′ = X1

j ,

which happens with probability about 1
2n . Then we get X2

i ⊕X2
i′⊕X2

j ⊕X2
j′ = 0.

Now we can impose either X2
i = X2

j ⇔ X2
i′ = X2

j′ or X2
i = X2

j′ ⇔ X2
i′ = X2

j ,

but we cannot impose X2
i = X2

j′ since this will imply Ri = Rj . Then we obtain

X3
i ⊕X3

i′⊕X3
j⊕X3

j′ = 0 and then the properties of the affine permutation will give

the required conditions on the outputs. If we impose X1
i = X1

j ⇔ X1
i′ = X1

j′ ,

then there are again two possibilities for equalities between X2
i , X

2
j , X

2
i′ , X

2
j′ .

With a random permutation, the conditions on the outputs will only appear at

random. Thus we get Nperm ' m2

2.22n and Nscheme ' 2.m
2

22n . This shows that when
m ' 2n we can distinguish a random permutation from a permutation produced
by an A-Feistel scheme.

KPA with 2
3n
2 messages. As usual, we can transform this CPA-1 into a KPA.

We count the number N of (i, j, k, `) such that{
Li = Lj
Lk = L` 6= Li

and

{
Ri = Rk
Rj = R` 6= Ri

and

{
Si ⊕ Sj ⊕ Sk ⊕ S` = 0
Ti ⊕ Tj ⊕ Tk ⊕ T` = 0

When we have a random permutation, E(Nperm) ' m4

4·26n . With an A-Feistel
scheme, these equalities may happen at random or, as previously, because there
are some conditions which can be satisfied by internal variables.

Thus E(Nscheme) ' m4

26n

We can distinguish a random permutation from a permutation produced by
an A-Feistel scheme when m ' 2

3n
2

Ψ(f3) ◦ Ψ(f2) ◦ ϕ ◦ Ψ(f1) or Ψ(f3) ◦ ϕ ◦ Ψ(f2) ◦ Ψ(f1). We explain the
attacks for Ψ(f3) ◦ Ψ(f2) ◦ ϕ ◦ Ψ(f1). The other case is quite similar. The values
are given by: [L,R] −→ [R,X1] −→ [P,Q] −→ [Q,X2] −→ [S, T ], with X1 =
L⊕f1(R), P = A1.R⊕A2.X

1⊕c1, Q = A3.R⊕A4.X
1⊕c2, S = X2 = P ⊕f2(Q)

and T = X3 = Q⊕ f3(X2).
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CPA-1 with 2
n
2 messages Here, we choose only 2 values for L: L1 and L2. Then,

we choose approximately 1
2 .2

n
2 distinct values for Ri. Therefore we can construct

about m ' 2
n
2 messages. We count the number N of (Ri, Rj) values, Ri 6= Rj

such that with the 4 following messages:

i : [L1, Ri], i′ : [L2, Ri] j : [L1, Rj ], j′ : [L2, Rj ]

we have Si⊕Sj ⊕Si′ ⊕Sj′ = 0. We obtain E(Nperm) ' m2

2·2n and E(Nscheme) '
m2

2n . Thus when m ' 2
n
2 , we can distinguish a random permutation from a

permutation generated by an A-Feistel scheme.

KPA1 with 2
5n
4 messages. The previous attack can be transformed into a KPA

with complexity O(2
5n
4 ): we count the number N of (i, j, i′, j′) such that{

Li = Lj
Li′ = Lj′ 6= Li

and

{
Ri = Ri′

Rj = Rj′ 6= Ri
and Si ⊕ Sj ⊕ Si′ ⊕ Sj′ = 0

We have Nperm ' m4

25n and Nscheme ' 2.m
4

25n for a A-Feistel permutation. There-

fore this KPA succeeds when m ' 2
5n
4 .

3.4 One affine permutation and a Feistel scheme with four rounds

Ψ(f4) ◦Ψ(f3) ◦Ψ(f2) ◦Ψ(f1) ◦ϕ. Here we are going to attack generators of
permutations and not only a single permutation. Thus we want to distinguish a
generator of random permutations from a generator of A-Feistel permutations.
We suppose that we have µ permutations. The values are given by: [L,R] −→
[P,Q] −→ [Q,X1] −→ [X1, X2] −→ [X2, X3] −→ [S, T ]. After round 4, the
output is given by [S, T ] where S = X3 and T = X4 = X2⊕f4(X3). Remind that
P = A1.L⊕A2.R⊕c1, Q = A3.L⊕A4.R⊕c2, X1 = P ⊕f1(P ), X2 = Q⊕f2(X1)
and X3 = X1 ⊕ f3(X2). Again, we want to count the number N of (i, j, k, `)
such that{

Li = Lj
Lk = L` 6= Li

and

{
Ri = Rk
Rj = R` 6= Ri

and Si ⊕ Sj ⊕ Sk ⊕ S` = 0

When we have a random permutation, E(Nperm) ' µ m4

4.25n and σ(Nperm) =

O(
√
µ m2

2
5n
2

). The computation of the standard deviation can be done as pre-

viously. With an A-Feistel scheme, these equalities may happen at random or
because there are some conditions that can be satisfied by internal variables.
For example, we may have (other conditions are possible like (Qi = Q`, X

1
i =

X1
j , X

2
i = X2

j ) or (Qi 6= Q`, X
1
i = X1

j , X
1
k = X1

` , X
2
i = X2

k)):

{
Li = Lj
Lk = L` 6= Li

and

{
Ri = Rk
Rj = R` 6= Ri

and


Qi = Q`
X1
i = X1

j

X2
i = X2

k

11



Remark 4: It is not possible to have the same kind of conditions on suc-
cessive variables. For example, it is not possible to have Qi = Q` and and
X1
i = X1

` , since this will imply Pi = P` and we obtain a contradiction since
we have permutations and [Li, Ri] 6= [L`, R`]. This is why we set the conditions
Qi = Q`, X

1
i = X1

j , X
2
i = X2

k . For a permutation produced be an A-Feistel

scheme, we obtain E(Nscheme) ' µm
4

25n +O(µm
4

27n ) and σ(Nscheme) = O(
√
µ m2

2
5n
2

).

We can distinguish when µm
4

27n ≥
√
µ m2

2
5n
2

. If we take the maximum number of

messages (i.e. 22n), we obtain µ = 2n and the number of needed computations
is given by λ = µ · 2n = 23n.

ϕ ◦ Ψ(f4) ◦ Ψ(f3) ◦ Ψ(f2) ◦ Ψ(f1) We have the following values:
[L,R] −→ [R,X1] −→ [X1, X2] −→ [X2, X3] −→ [X3, X4] −→ [S, T ]
with X1 = L⊕f1(R), X2 = R⊕f2(X1), X3 = X1⊕f3(X2), X4 = X2⊕f4(X3),
S = A1.X

3 ⊕A2.X
4 ⊕ c1 and S = A3.X

3 ⊕A4.X
4 ⊕ c2. We give here an attack

which needs the maximal number of messages, i.e. 22n. We count the number N
of (i, j, k, `) such that{

Li = Lj
Lk = L` 6= Li

and

{
Ri = Rk
Rj = R` 6= Ri

and

{
Si ⊕ Sj ⊕ Sk ⊕ S` = 0
Ti ⊕ Tj ⊕ Tk ⊕ T` = 0

Here we have E(Nperm) ' m4

4.26n , σ(Nperm) = O(m
2

23n ) and E(Nscheme) ' m4

4.26n +

O(m
4

27n ) and σ(Nscheme) = O(m
2

23n ). We can distinguish when m4

27n ≥
m2

23n . Thus
the attack succeeds when m ' 22n.

Ψ(f4) ◦ Ψ(f3) ◦ Ψ(f2) ◦ ϕ ◦ Ψ(f1) or Ψ(f4) ◦ Ψ(f3) ◦ ϕ ◦ Ψ(f2) ◦ Ψ(f1)
or Ψ(f4) ◦ϕ ◦Ψ(f3) ◦Ψ(f2) ◦Ψ(f1). We only give the sketch of the attacks
for Ψ(f4) ◦ Ψ(f3) ◦ Ψ(f2) ◦ ϕ ◦ Ψ(f1). The other cases are quite similar.

KPA with 2
7n
4 messages. The values are given by: [L,R] −→ [R,X1] −→

[P,Q] −→ [Q,X2] −→ [X2, X3] −→ [S, T ], with X1 = L ⊕ f1(R), P = A1.R ⊕
A2.X

1 ⊕ c1, Q = A3.R ⊕ A4.X
1 ⊕ c2, X2 = P ⊕ f2(Q), S = X3 = Q ⊕ f3(X2)

and T = X4 = X2 ⊕ f4(X3). We want count the number N of (i, j, k, `) such
that {

Li = Lj
Lk = L` 6= Li

and

{
Ri = Rk
Rj = R` 6= Ri

and Si ⊕ Sj ⊕ Sk ⊕ S` = 0

When we have a random permutation, E(Nperm) ' m4

4.25n and we obtain from

computations similar to those permform in section A, that σ(Nperm) = O( m
2

2
5n
2

).

With an A-Feistel scheme, these equalitites may happen at random or because
there are some conditions which can be satisfied by internal variables. For ex-
ample, we may have the following conditions:{

Li = Lj
Lk = L` 6= Li

and

{
Ri = Rk
Rj = R` 6= Ri

and

{
Qi = Q`
X2
i = X2

j

12



Thus, using the computations similar to those performed in Section B, we get we

get E(Nscheme) ' m4

4.25n +O(m
4

26n ) and σ(Nscheme) = O( m
2

2
5n
2

). We can distinguish

an soon as the difference of the mean values is greater than both standard

deviations, i.e. m4

26n ≤
m2

2
5n
2

. This means we must have m ' 2
7n
4 .

CPA-1 with 2
3n
2 messages. The previous KPA can be transformed into a CPA-1.

We choose all the possible [L,R] such that the first n
2 bits of L are equal to 0.

Therefore we have 2
n
2 .2n = 2

3n
2 possible inputs. We keep the same input and

output conditions. Here E(Nperm) ' m4

4·24n and σ(Nperm) = O(m
2

22n ) since each
collision on L has probability about 1

2n/2 . The computation of the variance is
similar to the computation done for the KPA. For an A-Feistel scheme, we get

E(Nscheme) ' m4

4·24n + O( m4

4·25n ) and σ(Nscheme) = O(m
2

22n ). This shows that we
can distinguish a random permutation from an A-Feistel permutation as soon

as m4

25n ≥
m2

22n . This gives a CPA-1 with 3n
2 messages.

3.5 Complexities of attacks on A-Feistel with one affine permutation

For the following rounds, we always have to add one more condition on the in-
ternal variables and we perform the same computations. We need to alternate
the conditions on the indices. The complexities of our attacks are summarized
in Table 2 (A-Feistel). We also mention the results for classical Feistel schemes
(Ψd, see [15]). As said before we only give the results for KPA and CPA-1. By
symmetry, we obtain the corresponding complexities of a KCA and CCA-1: for
example the complexity of KPA on Ψ3 ◦ϕ is the complexity of a KCA on ϕ ◦Ψ3

and so on. For d ≥ 5, we attack generators of permutations and not only a single
permutation.
Remark 5: The attacks performed on classical Feistel schemes are 2-points at-
tacks. These kind of attacks cannot be mounted in the case of A-Feistel schemes.
There exist 4-points attacks on classical Feistel schemes for that achieve the same
complexity as the attacks on Ψd2 ◦ ϕ ◦ Ψd1 with d1 + d2 = 4 (see [14]).

4 A-Feistel schemes with two affine permutations

This section is devoted to attacks on schemes for which we have first an affine
permutation, then a Feistel schemes with several rounds, and finally an affine
permutation. The attacks are very similar to the ones in section 3. We will give
an overview of these attacks and provide the results. We give here a CPA-1 and
a KPA when we apply first an affine function ϕ, then a Feistel scheme with 2
rounds and we finish with an affine permutation ϕ′. We still suppose that A3 and
A4 are bijective. We have the following values: [L,R] −→ [P,Q] −→ [Q,X1] −→
[X1, X2] −→ [S, T ], with P = A1.L ⊕ A2.R ⊕ c1, Q = A3.L ⊕ A4.R ⊕ c2,
X1 = P⊕f1(P ), X2 = Q⊕f2(X1), S = A′1.L⊕A′2.R⊕c′1, T = A′3.L⊕A′4.R⊕c′2.
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Table 2. Complexities of attacks on A-Feistel with one affine permutation and on
classical Feistel schemes Ψd.

Ψd

d (round) KPA CPA-1

Ψ1 1 1

Ψ2 2
n
2 2

Ψ3 2
n
2 2

n
2

Ψ4 2n 2n/2

Ψ5
2 23n/2 2n

Ψ6
2 22n 22n

Ψd, d ≥ 6 2(d−4)n 2(d−4)n

A-Feistel
Structure KPA CPA-1
Ψ1 ◦ ϕ 2n 4
ϕ ◦ Ψ1 2n 4

Ψ2 ◦ ϕ 2
5n
4 2

n
2

Ψ1 ◦ ϕ ◦ Ψ1 2n 4

ϕ ◦ Ψ2 2n 2
n
2

Ψ3 ◦ ϕ 2
7n
4 2

3n
2

Ψ2 ◦ ϕ ◦ Ψ1 2
5n
4 2

n
2

Ψ1 ◦ ϕ ◦ Ψ2 2
5n
4 2

n
2

ϕ ◦ Ψ3 2
3n
2 2n

Ψ4 ◦ ϕ 23n 23n

d1 + d2 = 4 Ψd2 ◦ ϕ ◦ Ψd1 2
7n
4 2

3n
2

ϕ ◦ Ψ4 22n 22n

Ψ5 ◦ ϕ 25n

d1 + d2 = 5 Ψd2 ◦ ϕ ◦ Ψd1 23n

ϕ ◦ Ψ5 24n

Ψd ◦ ϕ, d ≥ 5 2(2d−5)n

d1 + d2 = d Ψd2 ◦ ϕ ◦ Ψd1 2(2d−7)n

ϕ ◦ Ψd 2(2d−6)n

For the CPA-1, we choose only 2 values for L: L1 and L2. Then, we choose ap-
proximately 2n values for Ri (i.e. almost all the possible values for Ri). There-
fore we have m ' 2.2n messages. We count the number N of (Ri, Rj) values,
Ri 6= Rj such that with the 4 following message: i : [L1, Ri], i′ : [L2, Ri] j :
[L1, Rj ], j′ : [L2, Rj ], we have Si⊕Sj⊕Si′⊕Sj′ = 0 and Ti⊕Tj⊕Ti′⊕Tj′ = 0.

Then, we obtain: E(Nperm) ' m2

2.22n and E(Nscheme) ' m2

22n . This shows that it
is possible to distinguish a random permutation from a permutation produced
by an A-Feistel scheme with 2 affine permutations when m ' 2n. As usual, this
CPA-1 can be transform into a KPA with m ' 2

3n
2 . The results of our attacks

(CPA-1 and KPA) are given in table 3. By symmetry, we also get the results for
KCA and CCA-1. For d ≥ 4, we give the complexity of the attacks on generators
of permutations and on a single permutation.

Table 3. Complexities of attacks on A-Feistel with two affine permutations

Structure KPA CPA-1

ϕ′ ◦ Ψ1 ◦ ϕ 2
5n
4 2

n
2

ϕ′ ◦ Ψ2 ◦ ϕ 2
3n
2 2n

ϕ′ ◦ Ψ3 ◦ ϕ 22n 22n

ϕ′ ◦ Ψd ◦ ϕ, d ≥ 4 2(2d−4)n
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Remark. Another possibility would be to alternate affine permutation and Feis-
tel scheme with one round. This does not secure the scheme. Indeed the diffu-
sion is too slow. For example, we get the same complexities for Ψ3 ◦ ϕ and
Ψ1 ◦ ϕ ◦ Ψ1 ◦ ϕ ◦ Ψ1 ◦ ϕ. We have the same complexities for ϕ′ ◦ Ψ2 ◦ ϕ and
ϕ ◦ Ψ1 ◦ ϕ ◦ Ψ1 ◦ ϕ as well.

5 Conclusion

By [18, 19] we know that A-Feistel schemes are secure against linear and dif-
ferential attacks In this paper, we provided attacks on A-Feistel schemes using
4-tuples of cleartext/ciphertext messages. Our results on A-Feistel schemes are
given in Tables 2 and 3. The simulations of our attacks given in Table 1 (sec-
tion 3.4) confirm our theoretical analysis for the complexity of these attacks.
The analysis of the attacks requires to study the standard deviations of random
variables.
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A Computation of the mean value and the variance for a
random permutation (attack on Ψ3 ◦ ϕ)

In this section, we compute the mean value and the standard deviation for a
random permutation. For 1 ≤ i ≤ m, we choose randomly in {0, 1}n, and with
a uniform distribution, variables Li, Ri and Si. Then we want to compute then
number Nperm of (i, j, k, `) such that i ≤ j, i ≤ k and i ≤ ` and{

Li = Lj
Lk = L` 6= Li

and

{
Ri = Rk 6= Ri
Rj = R`

and Si ⊕ Sj ⊕ Sk ⊕ S` = 0

We introduce the following random variables:
δijk` = 1 ⇔


Li = Lj
Lk = L` 6= Li
Ri = Rk
Rj = R` 6= Ri

and Si ⊕ Sj ⊕ Sk ⊕ S` = 0

δijk` = 0 otherwise
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Let D = {(i, j, k, `) pairwise distinct, i < j, i < k, i < `}. Then we have:

Nperm =
∑

(i,j,k,`)∈D

δijk`.

A.1 Computation of the mean value

Since we have permutations, we assume that the inputs and the outputs are
pairwise distinct. We compute E(δijk`). For [Li, Ri], there are 22n possibilities.
For [Lj , Rj ], there are (2n−1) possibilities since Lj is fixed and Rj 6= Ri. Now we
have Lk 6= Li and Rk is fixed. Thus there are (2n − 1) possibilities for [Lk, Rk]
and then [L`, T`] is fixed. The numbers of inputs satisfying the conditions is
22n.(2n − 1)2. We count the number of distinct outputs [Si, Ti], [Sj , Tj ], [Sk, Tk]
and [S`, T`] such that Si ⊕ Sj ⊕ Sk ⊕ S` = 0. There are different cases:
Case 1: Si = Sj = Sk = S`. Then Ti, Tj , Tk, T` are pairwise distinct. There are
22n.(2n − 1).(2n − 2).(2n − 3) possibilities for the outputs.
Case 2: Equalities of the form Si = Sj and Sk = S` 6= Si. We can also have
Si = Sk and Sj = S` 6= Si or Si = S` and Sj = Sk 6= Si. The number of
possible pairwise distinct outputs is given by 3×22n(2n−1)(2n−1)2n.(2n−1) =
3× 23n(2n − 1)3.
Case 3: Si, Sj , Sk and S` are pairwise distinct. Here the numbers of outputs is
equal to 22n(2n − 1)2n(2n − 2)2n2n = 25n(2n − 1)(2n − 2).
The total numbers of possible distinct inputs and outputs is given by [22n(22n−
1)(22n − 2)(22n − 3)]2. Thus we obtain:

E(δijk`) =
24n(2n − 3)3(24n + 23n − 5× 22n − 2× 2n + 6)

[22n(22n − 1)(22n − 2)(22n − 3)]2
=

1

25n
(1− 2

2n
+

7

22n
− 9

23n
+

22

24n
+O(

1

25n
))

This gives: E(Nperm) ' m(m−1)(m−2)(m−3)
4·25n (1− 2

2n + 7
22n −

9
23n + 22

24n +O( 1
25n )).

A.2 Computation of the variance

We now compute the variance ofNperm. LetD = {(i, j, k, `) pairwise distinct, i <
j, i < k, i < `}. We apply the covariance formula:

V (Nperm) =
∑

(i,j,k,`)∈D

V (δijk`) +
∑

(i,j,k,`)∈D
(p,q,r,s)∈D

(i,j,k,`)6=(p,q,r,s)

[E(δijk`δpqrs)−E(δijk`)E(δpqrs)]

We have V (δijk`) = E(δijk`)−(E(δijk`))
2. We have to study the term second part

of the formula. First E(δijk`)E(δpqrs) = 1
210n (1− 4

2n + 18
22n −

46
23n + 129

24n +O( 1
25n )).

Then we compute E(δijk`δpqrs). There are several cases.
Case 1. In {i, j, k, `, p, q, r, s}, there are 8 pairwise distinct values. First, we
study the different possibilities for the inputs. We have the following conditions:

Li = Lj , Ri = Rk, Lp = Lq, Rp = Rr
Lk = L` 6= Li, Rj = R` 6= Ri, Lr = Ls 6= Lp, Rq = Rs 6= Rp
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There are several sub-cases.

1. Equalities of the form:

Li = Lj = Lp = Lq, Ri = Rk, Rp = Rr 6= Ri, Rj
Lk = L` = Lr = Ls 6= Li, Rj = R` 6= Ri, Rq = Rs 6= Ri, Rj , Rp

There are 4 possibilities for this kind of equalities. The number of inputs
satisfying these conditions is: 22n(2n − 1)2(2n − 2)(2n − 3).

2. Equalities of the form:

Li = Lj = Lp = Lq, Ri = Rk, Rp = Rr 6= Ri, Rj
Lk = L` 6= Li, Rj = R` 6= Ri, Rq = Rs 6= Ri, Rj , Rp
Lr = Ls 6= Li, Lk

There are 8 possibilities for this kind of equalities. The number of inputs
satisfying these conditions is: 22n(2n − 1)2(2n − 2)2(2n − 3).

3. There is no relations between the inputs indexed by i, j, k, ` and the inputs
indexed by p, q, r, s. In that case, the number of inputs is 22n(2n − 1)2(2n −
2)2(2n − 3)2.

Finally, the total number of inputs in given by: 22n(2n−1)2(2n−2)(2n−3)(22n+
3× 2n − 6).
We now study the conditions on the outputs:

Si ⊕ Sj ⊕ Sk ⊕ S` = 0, Sp ⊕ Sq ⊕ Sr ⊕ Ss = 0

We have to consider several possibilities:

1. Relations of the form Si ⊕ Sj = Sk ⊕ S` = Sp ⊕ Sq = Sr ⊕ Ss. There are 9
ways to obtain such relations.
When we have these conditions, several sub-cases appear. We represent in
Figure 1 the indices i, j, k, `, p, q, r, s in order to explain the relations that
may appear between the outputs.

Fig. 1. Representation of the indices

i k p r

j ` q s

(a) Si = Sj = Sk = S` = Sp = Sq = Sr = Ss. There are 22n(2n − 1)(2n −
2)(2n − 3)(2n − 4)(2n − 5)(2n − 6)(2n − 7) outputs satisfying these con-
ditions.

(b) As represented in Figure 2, we may have 4 vertical equalities and one
horizontal equality which implies another horizontal equality (dotted
line):
There are 6 ways to obtain these relations. The number of outputs is
given by 6× 24n(2n − 1)4(2n− 2)2(2n − 3)
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Fig. 2. 4 vertical equalities and one horizontal equality

i k p r

j ` q s

(c) We only have vertical equalities. The number of outputs is: 25n(2n −
1)5(2n − 2)(2n − 3).

(d) As shown in Figure 3, we may have 4 vertical equalities and 4 horizontal
equalities. There are 4 ways to get this kind of relations. The number of

Fig. 3. 4 vertical equalities and 4 horizontal equalities

i k p r

j ` q s

outputs is: 4× 23n(2n − 1)3(2n − 2)(2n − 3)(2n − 4)(2n − 5).
(e) Another possibility is to have two distinct groups with two vertical and

horizontal equalities as shown in Figure 4. There are 6 such combinations.
The number of outputs is 6× 23n(2n − 2)3(2n − 2)2(2n − 3)2.

Fig. 4. Two distinct groups with two vertical and horizontal equalities

i k p r

j ` q s

(f) Here we only have horizontal or diagonal relations as shown below (Fig-
ure 5). There are 8 possibilities. Then the number of outputs is given by:
8× 23n(2n − 2)3(2n − 2)2(2n − 3)2.

(g) We have two horizontal or diagonal equalities. There are 16 possibilities
and the number of out puts is 16× 25n(2n − 5)3(2n − 2)3.

(h) We only have one horizontal or diagonal relation. There are 12 possibil-
ities and the number of outputs is 12× 27n(2n − 1)3(2n − 2)(2n − 4).

(i) We do not have any relation. The number of outputs is given by 29n(2n−
1)(2n − 2)(2n − 4)(2n − 6).
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Fig. 5. Horizontal or diagonal relations

i k p r

j ` q s

i k p r

j ` q s

2. No relations of the form Si⊕Sj = Sp⊕Sq. Again we need to consider several
sub-cases.
(a) We have Si = Sj = Sk = S` and Sp, Sq, Sr, Ss are pairwise distinct. We

may also exchange the roles of the indices. First there is a link between
the blocks of indices (i, j, k, `) and (p, q, r, s). For example, we have Si =
Sj = Sk = S` = Sp. There are 4 possible links. Or there is no link
between the blocks. The number of outputs is given by 8 × 25n(2n −
1)2(2n− 2)2(2n− 3)(2n− 4) + 2× 26n(2n− 1)2(2n− 2)2(2n− 3)(2n− 4).

(b) We have for example Si = Sj and Sk = S` 6= Si and Sp, Sq, Sr, Ss are
pairwise distinct. Again we may have a link between the two blocks of
indices or we may have no link. There are three ways to choose the
relations between Si, Sj , Sk and Sl and we can also exchange the roles
of the indices. The number of outputs is given by 48× 26n(2n− 1)3(2n−
2)2(2n − 4) + 6× 27n(2n − 1)3(2n − 2)(2n − 3)(2n − 4)(2n − 8).

(c) Si, Sj , Sk, S` and Sp, Sq, Sr, Ss are pairwise distinct and we may have or
not a link between the blocks of indices. We obtain here 16 × 28n(2n −
1)2(2n−2)(2n−4)(2n−8)+29n(2n−1)(2n−2)(2n−4)(2n−8)(2n−16).

We now multiply the number of inputs and outputs we have obtained and we
divide by the total number of pairwise distinct inputs and outputs and finally
we get:

E(δijk`δpqrs) =
1

210n
(1− 4

2n
+

48

22n
− 346

23n
+

1265

24n
+O(

1

25n
))

Thus in E(δijk`δpqrs) − E(δijk`)E(δpqrs), the dominant term is in O( 1
212n ) and

when m ' 2
7n
4 , we will have m4

25n '
m8

212n .
Case 2. In {i, j, k, `, p, q, r, s}, there are 7 pairwise distinct values. We may
assume for example that i = p (there are 16 possibilities of equalities between
the indices). We have the following relations:Li = Lj = Lq, Ri = Rk = Rr, Si ⊕ Sj ⊕ Sk ⊕ S` = 0

Lk = L` 6= Li, Rj = R` 6= Ri, Si ⊕ Sq ⊕ Sr ⊕ Ss = 0
Lr = Ls 6= Li, Rq = Rs 6= Ri,

The number of inputs is given by 23n(2n − 1)2(2n − 2).
There are several cases for the outputs.

1. We have relations of the type Si⊕Sj = Sk⊕S` = Si⊕Sq = Sr⊕Ss. Thus is
equivalent to Sj = Sq and Si⊕Sj = Sk⊕S` = Sr ⊕Ss. There 9 possibilities
to get this type of relations. Again, we have to consider several sub-cases.
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(a) We have Si = Si = Sk = S` = Sq = Sr = Ss. The number of outputs is
22n(2n − 1)(2n − 2)(2n − 3)(2n − 4)(2n − 5)(2n − 5).

(b) We suppose we have vertical equalities. This will imply the dotted equal-
ities (see Figure 6). Here we consider that we have 3 different blocks and

Fig. 6. Vertical equalities

r i k

s q j `

we study the possible links between the blocks. We can either one link
or no link. We notice that if we have two links, then the values are equal.
There are 2 cases where we have the link between a vertical line and a
triangle and on case where we have a link between two vertical lines.
The number of outputs is given by 2× 23n(2n− 1)3(2n− 2)(2n− 3)(2n−
4)+23n(2n−1)3(2n−2)2(3n−3). We may also have no link between the
blocks and in that case the number of outputs is 24n(2n − 1)4(2n − 2)2.

(c) We now suppose that we do not have vertical equalities and we study the
possibility to horizontal or diagonal links. First we can have two horizon-
tal or diagonal equalities as shown in Figure 7. There are 4 possibilities

Fig. 7. Two horizontal or diagonal equalities

r i k

s q j `

r i k

s q j `

of equalities and the number of outputs is given by 4×23n(2n−1)3(2n−
2)2(2n − 4).

(d) We may also have one horizontal or diagonal equality. There are 2 ×
25n(2n − 1)3(2n − 2)2 + 25n(2n − 1)4(2n − 2) possible outputs.

(e) There are no equalities. This gives 27n(2n− 1)2(2n− 2)(2n− 4) outputs.

2. We do not have any relations of the type Si⊕Sj = Sk⊕S` = Si⊕Sq = Sr⊕Ss.
Again, we consider the 2 blocks of indices (i, j, k, `) and (i, q, r, s) and we
proceed as in the case where we had 8 different indices. The number of
outputs is given by 2× 25n(2n− 1)2(2n− 2)2(2n− 3) + 6× 26n(2n− 1)3(2n−
2)(2n − 4) + 28n(2n − 1)(2n − 2)(2n − 4)(2n − 8).

We now multiply the number of inputs and outputs we have obtained and we
divide by the total number of pairwise distinct inputs and outputs and finally
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we get:

E(δijk`δpqrs) =
1

210n
(1− 4

2n
+

36

22n
− 62

23n
− 128

24n
+O(

1

25n
))

Thus in E(δijk`δpqrs) − E(δijk`)E(δpqrs), the dominant term is in O( 1
212n ). We

have m7

212n �
m4

25n .
Case 3. In {i, j, k, `, p, q, r, s}, there are 6 pairwise distinct values. Due to the
conditions on the inputs, there are relations between the indices that are not
allowed. For example, it is not possible to have i = q and j = r since this implies
that Li = Ls and Ri = Rs. This is not possible since the inputs are pairwise
distinct and i 6= s. We examined all the possible combinations and it turns out
that there is 16 possibilities to choose the relation between the two 4-tuples
of indices (i, j, k, `) and (p, q, r, s). We have to link either vertical relations or
horizontal relations but no diagonal relations. For example, we suppose that
i = p and j = q. Then we have the conditions:

Li = Lj , Ri = Rk = Rr,
Lk = L` 6= Li, Rj = R` = Rs 6= Ri,
Lr = Ls, Si ⊕ Sj = Sk ⊕ S` = Sr ⊕ Ss,

The number of inputs is given by 22n(2n − 1)2(2n − 2). In order to compute the
number of outputs, we proceed as in the cases with 8 or 7 indices. We consider
the different kind of equalities that may occur between Si, Sj , Sk, S`, Sr, Ss. We
obtain that the number of outputs is given by

22n(2n − 1)(2n − 2)(2n − 3)(2n − 4) + 3× 23n(2n − 1)2(2n − 2)2(2n − 3)+

24n(2n − 1)4(2n − 2) + 4× 23n(2n − 1)3(2n − 2)2 + 6× 25n(2n − 1)2(2n − 2)2+

27n(2n − 2)(2n − 2)(2n − 4)

We now multiply the number of inputs and outputs we have obtained and we
divide by the total number of pairwise distinct inputs and outputs and finally
we get:

E(δijk`δpqrs) =
1

29n
(1− 4

2n
+

14

22n
− 1

23n
− 162

24n
+O(

1

25n
))

Thus in E(δijk`δpqrs) − E(δijk`)E(δpqrs), the dominant term is in O( 1
29n ). We

have m6

29n �
m4

25n since m� 22n in this attack.

The conditions on the inputs do not allow to have 5 pairwise distinct indices
in {i, j, k, `, p, q, r, s}.
The previous computations show that V (Nperm) = O(m

4

25n ) + O(m
6

29n ) It is easy

to check that the dominant term is m4

25n as soon as m ≤ 22n and then we obtain

that σ(Nperm) ' m2

2
5n
2

.

Remark 1: It is very important to notice that the variance does not always
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behave like the mean value. In the previous computation, if we do not include
the condition on S, but we only keep the conditions on L and R, we obtain

E(Nperm) ' m(m− 1)(m− 2)(m− 3)

4 · 24n
and V (Nperm) = O(

m6

27n
) +O(

m4

24n
)

Here when m ≥ 2
3n
2 , the dominant term in V (Nperm) is m6

27n and not m4

24n .

B Computation of the mean value and the variance for a
Ψ3 ◦ ϕ permutation

Here we compute the mean value and the standard deviation for an A-Feistel
permutation. With an A-Feistel scheme, the equalities that we want to be sat-
isfied may happen at random or because there are some conditions which are
verified by the internal variables. We still want to have:{

Li = Lj
Lk = L` 6= Li

and

{
Ri = Rk
Rj = R` 6= Ri

and Si ⊕ Sj ⊕ Sk ⊕ S` = 0

B.1 Computation of the mean value

Here we have Si⊕Sj⊕Sk⊕S` = Qi⊕Qj⊕Qk⊕Q`⊕f2(X1
i )⊕f2(X1

j )⊕f2(X1
k)⊕

f2(X1
` ). Since Qi⊕Qj ⊕Qk⊕Q` = 0 (by the conditions on the input variables),

we get Si ⊕ Sj ⊕ Sk ⊕ S` = 0⇔ f2(X1
i )⊕ f2(X1

j )⊕ f2(X1
k)⊕ f2(X1

` ) (∗). Thus
this may happen at random, or due to conditions satisfied by internal variables.

A3 and A4 are bijective As stated in Proposition 1, the conditions that
may appear on the internal variables depend on the properties of the kernels
of A3 and A4. Here we suppose that A3 and A4 are bijective. We want to have
f2(X1

j )⊕f2(X1
k)⊕f2(X1

` ) = 0. In our attacks, we use the difference between the
mean value obtained when we have a random permutation and the one obtained
with a scheme. Thus we will compute the first terms of the mean value. We now
look at the conditions on the internal variables that will imply (∗):

1. Equalities on the Q variables. Since A3 and A4 are bijective, the only pos-
sibility is Qi = Q` ⇔ Qj = Qk. This happens with probability 1

2n . This
implies X1

i ⊕X1
j ⊕X1

k ⊕X1
` = 0. The we may have X1

i = X1
k ⇔ X1

k = X1
` .

The probability is 1
2n . it is also possible to have X1

i = X1
k ⇔ X1

j = X1
` but

it is not possible to have X1
i = X1

` since this implies Pi = P`. Remember
that Qi = Q` and we have an affine permutation. Then we multiply by the
probability of Qi = Q`. The probability in this case is 2

22n .
2. We now suppose that Qi 6= Q` ⇔ Qj 6= Qk. We want to have f2(X1

i ) ⊕
f2(X1

j ) ⊕ f2(X1
k) ⊕ f2(X1

` ). Then we can get (∗) if we have X1
i = X1

j and

X1
k = X1

` or X1
i = X1

k and X1
j = X1

` or X1
i = X1

` and X1
j = X1

k . The

probability in that case is given by 3× (1− 1
2n )× 1

22n .
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3. We are not in the previous case and we have the (∗). Here the probability is
(1− 2

22n − 3(1− 1
2n ) 1

22n ) 1
2n = 1

2n −
5

23n −
3

24n .

Thus the probability to get (∗) is 1
2n + 5

22n −
8

23n −
3

24n . In order to compute
the mean value, we have consider the conditions on the inputs. The probabil-
ity that the inputs satisfy the conditions is 1

24n (1 − 2
2n + 13

22n −
24
23n + 98

24n +
O( 1

25n ). Thus we get E(δijk`) = 1
25n (1 + 3

2n −
5

22n +O( 1
23n )) and E(Nscheme) '

m(m−1)(m−2)(m−3)
4·25n (1 + 3

2n −
5

22n +O( 1
23n )).

A3 is bijective and A4 is not bijective. The case where A3 in not bijective
and A4 is bijective is similar. If A4 is not bijective, we can have Qi = Qj ,
since this is equivalent to have Ri ⊕ Rj ∈ ker(A4) whose probability is about

1
2n−t where t = dim(ker(A4)). Moreover, when we have Qi = Qj then we get
X1
i ⊕X1

j ⊕X1
k⊕X1

` = 0 and we obtain (∗) by setting X1
i = X1

k or X1
i = X1

` . The

conditions on the inputs do not change. Here, we obtain E(δijk`) = 1
25n (1+ 2

2n−t +
3
2n +O( 1

22n−t )) and E(Nscheme) ' m(m−1)(m−2)(m−3)
4·25n (1+ 2

2n−t + 3
2n +O( 1

22n−t )).
In that case, the difference of the mean values (for a random permutation and
for a scheme) is 2

2n−t . Thus if t > 0 then the attack will be better that the attack
in the case where A3 and A4 are bijective.

A3 and A4 are not bijective. Since A3 is not bijective, we can have Qi = Qk.
This is equivalent to Li⊕Lk ∈ ker(A3) and the probability is about 1

2n−t′ where

t′ = dim(ker(A3)). We proceed as previously and we obtain E(δijk`) = 1
25n (1 +

2
2n−t + 2

2n−t′ + 3
2n + O( 1

22n−max(t′,t) )) and E(Nscheme) ' m(m−1)(m−2)(m−3)
4·25n (1 +

2
2n−t + 2

2n−t′ + 3
2n + O( 1

22n−max(t,t′) )). The difference of the mean values (for a

random permutation and for a scheme) is min( 2
2n−t ,

2
2n−t′ ).

B.2 Computation of the variance

A3 and A4 are bijective Here E(δijk`)E(δpqrs) = 1
210n (1 + 6

2n −
1

22n +
O( 1

23n )). Now, in order to compute the variance, the main issue is to know
the value of E(δijk`δpqrs). Again, we have to consider several cases. Our aim
is to show that the variance behaves like the mean value. For example, when
in {i, j, k, `, p, q, r, s} we have 8 pairwise distinct values, we want the dominant

term in E(δijk`δpqrs)−E(δijk`)E(δpqrs) to be smaller than m4

25n . This shows that

we must not have terms in m8

210n and in m8

211n . We have to look carefully on the
first two terms of E(δijk`δpqrs)− E(δijk`)E(δpqrs).
Case 1. In {i, j, k, `, p, q, r, s}, there are 8 pairwise distinct values. We are look-

ing for the terms in m8

210n and in m8

211n when computing E(δijk`δpqrs). We still have
the following conditions on the inputs:

Li = Lj , Ri = Rk, Lp = Lq, Rp = Rr
Lk = L` 6= Li, Rj = R` 6= Ri, Lr = Ls 6= Lp, Rq = Rs 6= Rp
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Then we add

f2(X1
i )⊕ f2(X1

j )⊕ f2(X1
k)⊕ f2(X1

` ) = 0 (5)
f2(X1

p)⊕ f2(X1
q )⊕ f2(X1

r )⊕ f2(X1
s ) = 0 (6)

In order to get the first two terms of E(δijk`δpqrs), we have to consider the
following cases:

1. (Qi = Q` and X1
i = X1

j ) or (Qi = Q` and X1
i = X1

k) and there is no condi-

tion on the internal variables Qp, Qq, Qr, Qs, X
1
p , X

1
q , X

1
r , X

1
s except (6). In

that case, the probability is given by 2
22n (1 − 5

22n −
3

23n ) 1
2n . Since there is

also a symmetry in i, j, k, ` and p, q, r, s, we obtain 4
23n (1− 5

22n −
3

23n ).
2. Here we have Qi 6= Q`, ( X1

i = X1
j and X1

k = X1
` ) or (X1

i = X1
k and X1

j =

X1
` ) or (X1

i = X1
` and X1

j = X1
k) and there is no condition on the internal

variables Qp, Qq, Qr, Qs, X
1
p , X

1
q , X

1
r , X

1
s except (6). Again there is also a

symmetry in i, j, k, ` and p, q, r, s. The probability is 6
23n (1− 1

2n )(1− 5
22n−

3
23n ).

3. We do not have any conditions on Qi, Qj , Qk, Q`, X
1
i , X

1
j , X

1
k , X

1
` and

Qp, Qq, Qr, Qs, X
1
p , X

1
q , X

1
r , X

1
s but we have (5) and (6). In that case, the

probability is (1− 10
23n −

50
25n + 18

27n )2 1
22n .

Thus the probability to get (5) and (6) is 1
22n (1 + 10

2n −
60
23n +O( 1

24n )). In order
to compute the mean value, we have consider the conditions on the inputs. The
probability on the inputs is given by

22n(2n − 1)2(2n − 2)(2n − 3)(22n + 3× 2n − 6)

22n(22n − 1)(22n − 2)(22n − 3)(22n − 4)(22n − 5)(22n − 6)(22n − 7)

The computation gives: 1
22n (1− 4

2n + 18
22n−

36
23n +0( 1

24n )) Thus we get E(δijk`δpqrs) =
1

210n (1 + 6
2n −

22
22n +O( 1

23n )). In that case, the dominant term in E(δijk`δpqrs)−
E(δijk`)E(δpqrs), is in O( 1

212n ) and when m ' 2
7n
4 , we will have m4

25n '
m8

212n . In
that case, we have V (δijk`) = O( 1

25n ).
Remark 1: There are other possibilities on the internal variables in order to
get (5) and (6), but they involve too many equations and this is not useful since
we are interested in finding the two first terms. For example, it is possible to
have no conditions on Qi, Qj , Qk, Q`, Qp, Qq, Qr, Qs, but Xi = Xj , Xk = X`

and (X1
i , X

1
j , X

1
k , X

1
` ) = (X1

p , X
1
q , X

1
r , X

1
s ).

Case 2. In {i, j, k, `, p, q, r, s}, there are 7 pairwise distinct values. We may as-
sume for example that i = p (there are 16 possibilities of equalities between the
indices). We have the following relations:

Li = Lj = Lq, Ri = Rk = Rr, f2(X1
i )⊕ f2(X1

j )⊕ f2(X1
k)⊕ f2(X1

` ) = 0
Lk = L` 6= Li, Rj = R` 6= Ri, f2(X1

i )⊕ f2(X1
q )⊕ f2(X1

r )⊕ f2(X1
s ) = 0

Lr = Ls 6= Li, Rq = Rs 6= Ri,

The number of inputs is given by 23n(2n − 1)2(2n − 2).
In that case, we just have to check that there is no term in 1

210n in E(δijk`δpqrs)−
E(δijk`)E(δpqrs). This,is the easy part of the computation, since the term in
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1
210n appears when there is no relations between the internal variables. Thus the
dominant term in E(δijk`δpqrs)−E(δijk`)E(δpqrs), is in O( 1

211n ) and V (δijk`) =
O( 1

25n ).
Case 3. In {i, j, k, `, p, q, r, s}, there are 6 pairwise distinct values. The dominant
term in E(δijk`δpqrs)− E(δijk`)E(δpqrs) is in O( 1

26n ).

Finally, from Cases 1,2 and 3, we have V (Nscheme) = O(m
4

25n )+O(m
6

29n ) and when

m ≤ 2
7n
4 , we have V (Nscheme) = O(m

4

25n ). Then the difference of the mean values
will be greater than the standard deviations and again the attack succeeds.

A3 is bijective and A4 is not bijective. Here we are interested in obtaining
the first three terms of E(δijk`δpqrs), i.e the terms in 1

210n + 1
211n−t + 1

211n . We will
show that the dominant term in E(δijk`δpqrs)−E(δijk`)E(δpqrs) is in O( 1

212n−2t ).

Thus if m ' 2
7n−2t

4 , we will get that the variance behave like the mean value
and the attack will succeed if the difference of the mean value is greater than

both standard deviation. This will be the case if m = O(2
7n−2t

4 ). In order to get
this result, we proceed as in the case where A3 and A4 are bijective. When in
{i, j, k, `, p, q, r, s}, there are 8 pairwise distinct values, we study the conditions in
the internal variables in order to get (5) and (6). Again we take into account the
cases that do not involve too many equations. We consider the same possibilities
as in the previous case. The probability to get (5) and (6) is 1

22n (1 + 4
2n−t + 10

2n +
O( 1

22n−2t )). In order to compute the mean value, we have consider the conditions
on the inputs. We obtain E(δijk`δpqrs) = 1

210n (1+ 4
2n−t + 6

2n +O( 1
22n−2t )). In that

case, the dominant term in E(δijk`δpqrs)−E(δijk`)E(δpqrs), is in O( 1
212n−2t ) and

when m ' 2
7n−2t

4 , we will have m4

25n '
m8

212n−2t . When in {i, j, k, `, p, q, r, s}, there
are 7 or 6 pairwise distinct values, the computations are similar. Finally, when

m ' 2
7n−2t

4 , we obtain and V (Nscheme = O(m
4

25n ). Then the difference of the
mean values will be greater than the standard deviations and again the attack
succeeds.

A3 and A4 are not bijective. The computations are very similar to those
performed previously. We just have to add the possibility to get the equal-
ity Qk = Q`. Then we obtain E(δijk`δpqrs) = 1

210n (1 + 4
2n−t + 4

2n−t′ + 6
2n +

O(min( 1
22n−2t ,

1
22n−2t′ ))). When m ' min(2

7n−2t
4 2

7n−2t′
4 ), the dominant term in

the variance will be in m4

25n . Then the difference of the mean values will be greater
than the standard deviations and again the attack succeeds.

C The signature of A-Feistel schemes is even

We want to compute the signature of A-Feistel schemes. We already know that
classical Feistel schemes and unbalanced Feistel schemes with contracting func-
tions have even signature [14, 15]. Thus we just have to study the signature of
any affine permutation from {0, 1}N to {0, 1}N . Affine functions are of the form
M → A.M + C where A ∈ GL(N,K).
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For all i 6= j we define Tij,λ to be the matrix with 1 on the diagonal and 0
elsewhere except in (i, j) where the coefficient is equal to λ ∈ K. Such matrices
are called transvection matrices and generate SL(N,K). When λ = 1, we just
write Tij .

If we want to generate GL(N,K) we have to add the dilation matrices Di,λ

with a 1 on the diagonal except in (i, i) where the coefficient is equal to λ ∈ K∗.
In the special case where K = Z/2Z, we have SL(N,Z/2Z) = GL(N,Z/2Z).

So, GL(N,Z/2Z) is generated by the matrices Tij and we have T−1ij = Tij for
all i 6= j.

We want to show that the signature of A is even. It is enough to show that
transvections have an even signature. Let Tij be a transvection and M ∈ {0, 1}N ,

with M = (M1, . . . ,MN ) and Mi ∈ {0, 1}. We set M̃ = Tij(M). Then we have:

M̃` =
∑N
k=1 t`kMk. Since t`k = 1 if ` = k or (`, k) = (i, j) and 0 otherwise, we

get: M̃` = M` if ` 6= i and M̃i = Mj ⊕Mi.

If Mj = 0, then M̃ = M . If Mj = 1, then A.M = M̃ ⇔ A.M̃ = M . This
means that in A, we have 2N−2 transpositions and the signature of A is even.

If we consider the function from {0, 1}N to {0, 1}N defined by M →M ⊕C,

then there are 2N

2 = 2N−1 transpositions. Thus the signature is even for N ≥ 3.
Finally the signature of an affine permutation is even.

The computations made previously and the results on Feistel schemes show
that an A-Feistel scheme (N = 2n) and A-Unbalanced Feistel schemes with con-
tracting functions (N = kn) have an even signature.
The consequence is that it is possible to distinguish a generator of Φd permuta-
tions (respectively Gdk permutations from a generator of truly random permuta-
tions from 2n bits to 2n bits respectively kn bits to kn bits) after O(22n) (re-
spectively O(2kn)) computations on O(22n) (respectively O(2kn)) input/output
values.
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