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Abstract. There exist precisely 149 topological types of semipolytopal tile-transitive
tilings of E3 by “extetrahedra” (obtained from tetrahedra by introducing certain new ver-
tices of degree 2). Dualization gives rise to 149 types of 4-regular vertex-transitive tilings.
The 4-coordinated networks carried by these tilings are closely related to crystal struc-
tures such as zeolites or diamond. These results are obtained using “combinatorial tiling
theory.”

1. Introduction

In Tilings and Patterns[GS2], Grünbaum and Shephard present in detail the full range
of problems and methods associated with (mainly two-dimensional) tilings and patterns
and discuss in depth their relevance for art and science. They address the problem of
tiling three-dimensional space in a number of papers including [GS1], [Gr2], [GMLS],
and [DGS].

It seems obvious that a classification of periodic tilings of three-dimensional Euclidean
spaceE3 will have applications in crystal chemistry, ideally by supplying an enumeration
of all mathematically feasible crystal-structures of a given type, up to a certain degree
of complexity.

However, the problem of classifying periodic tilings ofE3 is considerably more
difficult than the problem of classifying two-dimensional periodic tilings, and indeed
touches on one of mathematics great open problems: the Poincar´e Conjecture.
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More than 10 years ago Dress introduced the method of Delaney symbols [Dr1], [Dr2]
and developed the foundation of what we propose to callcombinatorial tiling theory.
This has given rise to a number of papers that investigate different questions and aspects
of this theory.

Based on combinatorial tiling theory, we have developed a computer-aided approach
[DHM], [DH3] to the problem of classifying periodic tilings ofE3, involving combi-
natorial topology [DH1], computational geometry [EM], [DH2], computational algebra
[Sc+], and other tools [Mc], [LMP+], [NM]. Its viability was recently demonstrated in
[DH3] by classifying all tilings of Euclidean space by combinatorial cubes, tetrahedra, or
octahedra, establishing, in particular, the existence of precisely 11, 9, and 3 (respectively)
topological types of tile-transitive tilings by such tiles.

One aim of the current paper is to show that our approach is not restricted to combi-
natorially regular tiles, but also applies in the case of combinatorially less regular ones.
In a future paper we shall demonstrate that it can also be used to classify tilings with two
or more types of tiles.

Crystal structures are often interpreted as atom-bond networks, or, topologically,
simply as graphs embedded inE3. Given such a network, it is a highly nontrivial task to
decide whether a periodic tiling exists thatcarries it in the sense that the edge-skeleton
of the tiling is (topologically) the given network.

A zeolite is an aluminosilicate in which the Al and Si atoms occupy 4-coordinated
(i.e., 4-valent) vertices of a three-dimensional network, and the oxygen atoms occupy 2-
coordinated positions between the 4-coordinated vertices [Sm]. Neglecting the 2-valent
oxygen atoms, zeolites are 4-valent networks, as is the diamond network, too. They have
many important applications in chemistry [Sm].

Currently, the online version of the Atlas of Zeolite Structure Types [OMB] (see
also [MO]) lists 121 approved zeolite structures. Precisely 18 of these areuninodal, i.e.,
have symmetry groups that act transitively on the set of 4-valent atoms. In turns out that
precisely six of these are carried by duals of tile-transitive tilings by combinatorial tetra-
hedra [DH3] This inspires us to consider the following question: Do there exist periodic
tilings that carry the remaining 12 uninodal zeolite structures?

In an attempt to answer this, we introduce the concept of anextetrahedronof levelh,
which is obtained by “extending” a tetrahedron by inserting new vertices of degree 2
into some of the original edges, up toh in each. We classify all tile-transitive tilings of
Euclidean space by extetrahedra of level 1 and will see that by dualization we obtain
carriers for all 18 uninodal zeolites.

Some further definitions are introduced in Section 2. We then give a short summary
of our approach in Section 3. Finally, in Section 4, we describe our classification results
in tabulated form and depict a number of interesting examples.

Combinatorial tiling theory and the methods and results described in this paper repre-
sent a major step forward toward the goal of systematically enumerating mathematically
feasible crystal structures [DDH+], [O’K].

2. Definitions

Although there is a common general understanding of what a tiling should be, definitions
differ in their details. Within the framework of “combinatorial tiling theory,” tilings
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are naturally and very generally defined in terms of their chamber systems as those
subdivisions of space that possess a “Delaney-symbol” [Dr1], [Dr2]. For the purposes
of this paper, we define a tiling of somed-dimensional manifoldX without boundary
as the collection of cells of a regular CW-complex with total spaceX. The cells are also
calledfacesof the tiling. This definition is narrower in that every tiling that satisfies it
possesses a Delaney symbol, but not vice versa.

We define the termsvertex, edge, facet, andtile in the usual way. Obviously, the set
of tiles coversX. Two faces are said to beincident if one is included in (the boundary
of) the other. Two nonincident faces areadjacentif their intersection is nonempty. Iff
is any fixed face, then the set of all faces contained in the boundary off form a tiling of
this boundary.

We define thegraph carriedby a tiling to be the graph naturally induced by the
vertices and edges of the 1-skeleton of the tiling. As usual, a graph is calledpolytopalif
it is isomorphic to the graph of a convex 3-polytope, i.e., if it is planar and 3-connected
[Gr1]. We call a tiling of a topological 2-sphere acombinatorial polytopeif its graph
is polytopal, and we call itsemipolytopalif its graph can be derived from a polytopal
graph by subdivision of edges. We call a tiling ofE3 semipolytopalif all its tiles and the
tiles of its dual are semipolytopal.

The degreeof a vertex is the number of edges incident to it and we call a tiling
n-regular if all its vertices have degreen. The smallest degree that can appear in a
semipolytopal tiling is 4.

We call two tilingstopologically equivalentif there exists a homeomorphism between
their total spaces that takes faces onto faces. Thesymmetry groupof a tiling of some
metric space such asE3 consists of all isometries of that space that map faces onto faces.
A tiling is calledvertex-transitiveif for each pair of vertices there exists a symmetry that
maps one onto the other. In general,transitivity classesof tiles, faces, edges, or vertices
are to be understood with respect to the symmetry group of the tiling.

3. Methods

Ultimately we are interested in vertex-transitive 4-regular tilings. These arise by dual-
ization from tile-transitive tilings by 4-faced tiles and we now focus on the latter.

There exist precisely 11 different topological types of extetrahedra of level 1, see
Fig. 1. Each gives rise to one or more differentequivariant types, which are distinguished
by taking the possible symmetry groups into account, as in [DH3]. The 11 depicted
topological typest, t1, t2a, t2b, . . . give rise to 11, 5, 2, 8, 2, 4, 4, 2, 8, 5, and 11 equivariant
types, respectively.

For each equivariant typeT , we apply the combinatorial enumeration approach de-
scribed in [DH3] to classify all periodic tilings ofE3 by tiles of typeT . In total we obtain
1720 different topological types, including the nine types of tilings by tetrahedra. To be
precise, in terms of combinatorial tiling theory, this produces a list of “maximal Delaney
symbols” that describe the tilings uniquely up to topological equivalence.

For each such combinatorial description we are then faced with the task of con-
structing a geometric realization of the encoded tiling. In [De] and [DH3] we indi-
cate how a straight-edge realization can often be obtained by first determining and
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Fig. 1. The 11 extended tetrahedra of level 1.

parameterizing the linear hull of the space of admissible vertex positions and then
using standard optimization techniques to find “preferable” parameter values.

We prefer parameters values that give rise to realizations with high volume (mea-
sured as the ratio of the volume of a fundamental domain and the cubed average edge
length) and small variation of edge lengths. For a given positioning of vertices, each
higher-dimensional face is constructed inductively as the linear cone on its boundary
with apex at the center of gravity of its vertices. Some simple steps were taken to give
the two-dimensional faces a smoother appearance in Figs. 2–4.

This simple form of optimization is not guaranteed always to produce correctly em-
bedded tilings and indeed for 11 of the 149 cases listed in Table 2 (numbers 53, 58,
67, 68, 77, 78, 79, 100, 101, 102, and 145) it fails to do so. However, we empha-
size that the existence of Euclidean Delaney symbols for these exceptional cases im-
plies that they all possess geometric realizations, although not necessarily with straight
edges.

We remark that all tilings are realized withfull symmetry, i.e., in such a way that all
combinatorial symmetries are isometries. It follows from a nontrivial result in geometric
topology [MS] that this is always possible for periodic tilings ofE3 with “maximal
Delaney symbols” [De].

4. Results

Using the approach indicated in the preceding section, we obtain the following result:

Theorem 4.1. There exist precisely149 topological types of semipolytopal tile-
transitive tilings of three-dimensional Euclidean space by extetrahedra of level1, of
which exactly nine are by combinatorial regular tetrahedra. Their duals are summarized
in Table2. If tilings are not required to be semipolytopal, then there exist1571further
types.

By dualization, Theorem 4 gives rise to 149 types of semipolytopal, vertex-transitive
4-regular tilings ofE3. Of the 18 uninodal networks listed in the current online version
of the Atlas of Zeolite Structure Types [OMB], 16 are carried by at least one of these
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(a) Tiling #022 (b) Tiling #028

(c) Tiling #029 (d) Tiling #037

(e) Tiling #038 (f) Tiling #044

Fig. 2
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(a) Tiling #047 (b) Tiling #048

(c) Tiling #050 (d) Tiling #057

(e) Tiling #075 (f) Tiling #076

Fig. 3
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(a) Tiling #083 (b) Tiling #088

(c) Tiling #113 (d) Tiling #128

(e) Tiling #139 (f) Tiling #149

Fig. 4



286 O. Delgado Friedrichs and D. H. Huson

Table 1. Conway’s orbifold notation (i) and the standard crystallographic
notation (ii) for crystallographic point-groups.

(i) (ii) (i) (ii) (i) (ii) (i) (ii)

1 1 2× 4̄ 432 432 ∗322 6̄2m
1∗ m 322 32 44 4 ∗33 3m
1× 1̄ 33 3 4∗ 4/m ∗332 4̄3m
22 2 332 23 622 622 ∗422 4/mmm
222 222 3∗ 3/m 66 6 ∗432 m3̄m
2∗ 2/m 3∗2 m3̄ 6∗ 6/m ∗44 4mm
2∗2 4̄2m 3× 3̄ ∗22 mm2 ∗622 6/mmm
2∗3 3̄m 422 422 ∗222 mmm ∗66 6mm

tilings, as indicated in Table 2. Tilings that carry the remaining two uninodal zeolites
ANA (Analcime) and DFT can be found among (the duals of) the 1571 additional
tilings.

Our results clearly do not give a complete classification of all semipolytopal, vertex-
transitive 4-regular tilings ofE3, as we only considered extetrahedra of level 1. By
results in combinatorial tiling theory [DHM], for any fixed levelh, there exist only a
finite number of types of tile-transitive tilings by extetrahedra of levelh. We state the
following open problem: Is there an upper bound for the possible number of additional
vertices? In other words, do there exist only finitely many types of semipolytopal, tile-
transitive tilings by extetrahedra of arbitrary level?

We depict a number of examples in Figs. 2–4. For each tiling a finite patch of tiles is
shown. Tiles are shrunk slightly toward their centers to make their faces visible. Note that
tiling number 149 (and all tilings that contain tiles of type 3k) represents the diamond
network. A complete description of our results is available on the World Wide Web at
http://www.mathematik.uni-bielefeld.de/~delgado/tilings3d .

We summarize the classification in Table 2. Each row describes one of the 149 topo-
logical types of tilings. The data in each column is:

(1) The number of the tiling.
(2) Thevertex type, i.e., the topological type of the tiles of the dual tiling, as defined

in Fig. 1. Tilings with the same vertex type are listed consecutively.
(3) The “orbifold name” [Co], [CH] of the vertex stabilizer, the group of all symme-

tries of the tiling that leave a given vertex fixed, see Table 1.
(4) A four-digit code listing the number of transitivity classes of vertices, edges,

facets and tiles.
(5) The topological types of the tiles, as defined in Fig. 5.
(6) The international number and Hermann–Mauguin name for the symmetry group

[Ha]. This refers to a representative of the topological class with maximal sym-
metry.

(7) The “fibrifold name” (in the case of reducible groups) or “Conway name” (in the
case of the 35 irreducible groups) for the symmetry group [CDHT].

(8) For those tilings that carry a known zeolite, the “structure code” for the zeolite
[OMB]. The first occurrence of each zeolite is underlined.
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Fig. 5. The 149 types of tilings make use of 111 different topological types of tiles. These are all derived by
subdivision from the 37 polytopes shown here. In Table 2 each tile is identified by a number 1–37 indicating
which polytope it is derived from and a letter to distinguish it from other tiles derived from the same one.
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Table 2

(1) (2) (3) (4) (5) (6) (7) (8)
Vert. Vert. Trans- Tile Space group Fibrifold Zeolite

No. type stab. itivity types No. Name name net

1 t 2*2 1121 27a 229. Im3m 8◦:2 SOD
2 t 1* 1343 21a, 35a, 5a 225. Fm3m 2−:2
3 t 1* 1343 27a, 35a, 3a 221. Pm3m 4−:2 LTA
4 t 1* 1332 1a, 36a 229. Im3m 8◦:2
5 t 22 1242 11a, 35a 229. Im3m 8◦:2 RHO
6 t 1 1453 11a, 37a, 3a 229. Im3m 8◦:2
7 t 1 1453 27a, 34a, 6a 227. Fd3m 2+:2 FAU
8 t 1 1453 28a, 35a, 6a 229. Im3m 8◦:2 KFI
9 t 1 1442 33a, 6a 166. R3m (∗·6 312) CHA

10 t1 1 1463 25a, 6a, 6j 194. P63/mmc [∗:6·3·2] GME
11 t1 1 1463 11a, 28a, 3q 139. I4/mmm [∗·4·4:2] MER
12 t1 1 1452 17b, 6a 166. R3m (∗·6 312) CHA
13 t1 1 1452 17a, 6i 164. P3m1 (∗6·3·2) CAN
14 t1 1 1452 26a, 3o 129. P4/nmm (∗4·4·2) ATN
15 t1 1 1452 27a, 6d 166. R3m (∗·6 312) SOD
16 t1 1 1442 26a, 3o 119. I4m2 (∗4·4 21) ATN
17 t1 1 1453 11a, 27b, 6a 224. Pn3m 4+:2
18 t1 1 1453 35a, 3a, 3q 223. Pm3n 8◦

19 t1 1 1453 24a, 27c, 3a 224. Pn3m 4+:2
20 t1 1 1453 24a, 27b, 6a 224. Pn3m 4+:2
21 t1 1 1442 10a, 10i 141. I41/amd (∗414·2)
22 t1 1 1331 12a 142. I41/acd (∗414:2)
23 t1 1 1452 22a, 3r 140. I4/mcm [∗·4:4:2]
24 t1 1 1452 2f, 30a 193. P63/mcm [∗·6:3:2]
25 t1 1 1452 26a, 3r 125. P4/nbm (∗404·2)
26 t1 1 1452 2f, 32a 162. P31m (∗·6 302)
27 t1 1 1442 16a, 27d 211. I432 8+◦
28 t1 1 1441 10b 63. Cmcm [2021∗·]
29 t1 1 1441 9b 12. C2/m [20202121] ABW
30 t1 1 1431 9a 64. Cmca [2021∗:]
31 t1 1 1431 12a 68. Ccca (∗202:2:2)
32 t1 1 1431 12b 70. Fddd (2∗̄2021)

33 t1 1 1431 9c 70. Fddd (2∗̄2021)

34 t1 1 1442 23a, 3a 141. I41/amd (∗414·2)
35 t1 1 1441 9b 53. Pmna [2020∗:] ABW
36 t1 1 1431 12a 98. I4122 (∗434120)

37 t1 1 1221 18a 205. Pa3 2−/4
38 t1 22 1231 10c 141. I41/amd (∗414·2) GIS

39 t2a 1 1332 14a, 2a 212. P4332 2+/4
40 t2a 1 1332 13a, 2f 212. P4332 2+/4
41 t2a 1 1452 10a, 3p 141. I41/amd (∗414·2)
42 t2a 1 1442 10f, 3d 137. P42/nmc (∗4·4:2)
43 t2a 1 1432 12c, 3d 126. P4/nnc (∗404:2)
44 t2a 1 1432 4b, 6f 163. P31c (∗:6 302)
45 t2a 1 1443 10h, 3a, 3q 119. I4m2 (∗4·4 21) ACO
46 t2a 1 1432 12c, 3b 97. I422 (∗424021)
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Table 2 (Continued)

(1) (2) (3) (4) (5) (6) (7) (8)
Vert. Vert. Trans- Tile Space group Fibrifold Zeolite

No. type stab. itivity types No. Name name net

47 t2a 1 1432 4b, 6c 182. P6322 (∗633021)

48 t2a 1 1332 15a, 1a 230. Ia3d 8◦/4
49 t2a 1 1452 10i, 3c 141. I41/amd (∗414·2)
50 t2a 1 1332 17c, 1d 230. Ia3d 8◦/4
51 t2a 1 1442 31a, 6l 166. R3m (∗·6 312)
52 t2a 1 1431 24c 167. R3c (∗:6 312)
53 t2a 1 1431 10g 68. Ccca (∗202:2:2)
54 t2a 1 1431 10d 70. Fddd (2∗̄2021)

55 t2a 1 1431 10d 68. Ccca (∗202:2:2)
56 t2a 1 1442 6b, 6i 166. R3m (∗·6 312) ATO

57 t2b 1 1344 21a, 21a, 3o, 3r 226. Fm3c 4−−
58 t2b 1 1331 8a 102. P42nm (42∗·2)
59 t2b 1 1442 6b, 6i 166. R3m (∗·6 312) ATO
60 t2b 1 1331 4d 199. I213 2◦/4
61 t2b 1 1322 4a, 4c 167. R3c (∗:6 312)
62 t2b 1 1222 4c, 4e 205. Pa3 2−/4
63 t2b 1 1322 4b, 6f 148. R3 (6 312)
64 t2b 1 1322 4b, 6c 167. R3c (∗:6 312)
65 t2b 1 1331 10e 86. P42/n (4 422)
66 t2b 1 1331 7a 86. P42/n (4 422)
67 t2b 1 1431 21b 167. R3c (∗:6 312)
68 t2b 1 1431 19a 167. R3c (∗:6 312)
69 t2b 22 1241 6d 166. R3m (∗·6 312) SOD
70 t2b 22 1242 21a, 3q 223. Pm3n 8◦
71 t2b 22 1232 5a, 5e 210. F4132 2+
72 t2b 22 1232 21a, 3r 211. I432 8+◦
73 t2b 22 1221 4a 155. R32 (∗303132)

74 t2b 22 1221 4c 167. R3c (∗:6 312)
75 t2b 22 1221 6e 167. R3c (∗:6 312)
76 t2b 22 1121 4b 206. Ia3 4−/4

77 t3a 1 1231 20b 148. R3 (6 312)
78 t3a 1 1431 20c 212. P4332 2+/4
79 t3a 1 1331 20a 167. R3c (∗:6 312)
80 t3a 1 1453 3d, 3o, 3r 125. P4/nbm (∗404·2)
81 t3a 1 1453 2f, 3d, 6i 162. P31m (∗·6 302)
82 t3a 1 1431 3k 52. Pnna (202∗̄1)
83 t3a 1 1333 1d, 5e, 6e 228. Fd3c 4++
84 t3a 1 1343 2f, 2f, 6c 176. P63/m [633021]
85 t3a 1 1343 2f, 2f, 6f 163. P31c (∗:6 302)
86 t3a 1 1332 2f, 6f 148. R3 (6 312)
87 t3a 1 1332 2f, 6c 167. R3c (∗:6 312)
88 t3a 1 1333 1b, 5e, 6e 201. Pn3 4◦+

89 t3a 1 1232 2f, 4b 205. Pa3 2−/4
90 t3a 1 1232 2e, 4c 205. Pa3 2−/4

(continued)
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Table 2 (Continued)

(1) (2) (3) (4) (5) (6) (7) (8)
Vert. Vert. Trans- Tile Space group Fibrifold Zeolite

No. type stab. itivity types No. Name name net

91 t3a 1 1342 3d, 3n 58. Pnnm [2020×1]
92 t3a 1 1331 3e 62. Pnma (212∗̄·)
93 t3a 1 1331 3e 40. Ama2 (2021∗·)
94 t3a 1 1321 3k 152/154. P3121 (31∗31)

95 t3a 1 1331 3k 15. C2/c (20212 2)
96 t3a 1 1321 3e 178/179. P6122 (∗613121)

97 t3a 1 1331 3l 56. Pccn (2∗̄:2:2)
98 t3a 22 1232 3d, 3o 119. I4m2 (∗4·4 21)

99 t3a 22 1221 3l 70. Fddd (2∗̄2021)

100 t3b 1 1442 24b, 3s 141. I41/amd (∗414·2)
101 t3b 1 1332 1b, 29b 201. Pn3 4◦+
102 t3b 1 1322 1b, 29a 197. I23 4◦◦
103 t3b 1 1431 11b 142. I41/acd (∗414:2)
104 t3b 1 1463 3c, 3q, 3r 140. I4/mcm [∗·4:4:2]
105 t3b 1 1463 2f, 3c, 6j 193. P63/mcm [∗·6:3:2]
106 t3b 1 1453 3d, 3o, 3r 125. P4/nbm (∗404·2)
107 t3b 1 1453 2f, 3d, 6i 162. P31m (∗·6 302)
108 t3b 1 1462 3c, 3p 141. I41/amd (∗414·2)
109 t3b 1 1441 3f 64. Cmca [2021∗:]
110 t3b 1 1431 3l 54. Pcca (202∗̄0)
111 t3b 1 1441 3j 98. I4122 (∗434120)

112 t3b 1 1331 3l 91/95. P4122 (∗414121)

113 t3b 1 1321 3i 152/154. P3121 (31∗31)

114 t3b 1 1453 2f, 3b, 6k 192. P6/mcc [∗:6:3:2] AFI
115 t3b 1 1453 2f, 3d, 6k 177. P622 (∗603020)

116 t3b 1 1341 3j 142. I41/acd (∗414:2)
117 t3b 1 1452 3c, 3p 63. Cmcm [2021∗·]
118 t3b 1 1431 3e 57. Pbcm (202∗̄·)
119 t3b 1 1442 3d, 3n 12. C2/m [20202121]
120 t3b 1 1441 3g 64. Cmca [2021∗:]
121 t3b 1 1322 1d, 5c 88. I41/a (4 412)
122 t3b 1 1431 3l 13. P2/c (20202 2)
123 t3b 1 1431 3l 54. Pcca (202∗̄0)
124 t3b 1 1441 3j 68. Ccca (∗202:2:2)
125 t3b 1* 1343 2a, 2d, 6j 194. P63/mmc [∗:6·3·2]
126 t3b 1* 1332 2b, 6i 164. P3m1 (∗6·3·2)
127 t3b 1* 1332 3d, 3o 129. P4/nmm (∗4·4·2)
128 t3b 1* 1322 1b, 5b 141. I41/amd (∗414·2) MON
129 t3b 1* 1321 3e 63. Cmcm [2021∗·]
130 t3b 1* 1332 3b, 3r 140. I4/mcm [∗·4:4:2]
131 t3b 1* 1332 2f, 6c 193. P63/mcm [∗·6:3:2]
132 t3b 1* 1332 3d, 3r 125. P4/nbm (∗404·2)
133 t3b 1* 1332 2f, 6f 162. P31m (∗·6 302)
134 t3b 1* 1331 3h 74. Imma (∗212·2·2) ABW
135 t3b 1* 1321 3k 53. Pmna [2020∗:]
136 t3b *33 1222 3a, 3q 229. Im3m 8◦:2 ACO
137 t3b *33 1222 1a, 5d 227. Fd3m 2+:2
138 t3b *33 1211 3k 166. R3m (∗·6 312)
139 t3b 33 1211 3m 206. Ia3 4−/4
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Table 2 (Continued)

(1) (2) (3) (4) (5) (6) (7) (8)
Vert. Vert. Trans- Tile Space group Fibrifold Zeolite

No. type stab. itivity types No. Name name net

140 t3c 1 1432 1b, 6h 180/181. P6222 (∗623220)

141 t3c 1 1342 2f, 6g 230. Ia3d 8◦/4
142 t3c 33 1211 3k 212/213. P4332 2+/4

143 t4a 1 1432 1e, 6f 167. R3c (∗:6 312)
144 t4a 1 1432 1c, 6k 167. R3c (∗:6 312)

145 t4b 22 1221 4f 212. P4332 2+/4
146 t4b 2x 1121 2f 230. Ia3d 8◦/4

147 t5 1 1432 1g, 2c 142. I41/acd (∗414:2)
148 t5 1* 1332 1b, 2g 141. I41/amd (∗414·2) MON

149 t6 *332 1111 1f 227. Fd3m 2+:2
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