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h i g h l i g h t s

• We deal with 4-wave Hamiltonian systems in the framework of wave turbulence.
• Averaging technique based on the Feynman–Wyld diagrams.
• Kinetic limit : leading order equations for the statistics evolution are derived.
• Random-phase and random-phase and amplitude properties preserved in time.
• Powerful tool to investigate many relevant physical systems.
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a b s t r a c t

A general Hamiltonianwave systemwith quartic resonances is considered, in the standard kinetic limit of
a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the
multimode characteristic function Z is obtainedwithin an ‘‘interaction representation’’ and a perturbation
expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove
linear terms that do not appear in the 3-wave case. Feynman–Wyld diagrams are used to average over
phases, leading to a first order differential evolution equation for Z . A hierarchy of equations, analogous
to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of
randomphases and amplitudes. This amounts to a general formalism for both theN-mode and the 1-mode
PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating
intermittency. Some of the main results which are developed here in detail have been tested numerically
in a recent work.

1. Introduction

Wave Turbulence (WT) theory concerns the dynamics of dispersive waves that interact nonlinearly over a wide range of scales [1]. In

general the nonlinear interaction can be considered small, allowing a perturbative analysis and then an asymptotic closure for statistical

observables [2]. For this reason, sometimes one then talks about Weak Wave Turbulence (WWT). Until recently, most of the attention

was given to the energy spectrum, which is governed by a kinetic equation. Wave turbulence also provides exact solutions of the kinetic

equation, which are related to equipartition, Rayleigh–Jeans solution, or stationary cascade, Kolmogorov–Zakharov solutions [3]. Many

physical phenomena are studied within this general framework, for instance gravity [4–7], capillary or Alfvèn waves [8–11], non-linear

optics [12] and elastic plates [13–15]. Furthermore, applications of WT to non dispersive systems such as the acoustic waves [16,17] exist,

even though the necessary statistical closure is subtler in such cases [18,19].

In the last years, many experiments and numerical simulations were performed to verify the predictions ofWT. The picture is relatively

clear in the case of the capillarywaves on a fluid surface (water, ethanol, liquid hydrogenor liquid helium): both experiments andnumerical

simulations confirm the Kolmogorov–Zakharov spectrum predicted by WT in this case. For other cases, e.g. surface gravity waves or

waves in vibrating elastic plates, the picture is more complicated: both numerics and experiments showed deviations from theoretical
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predictions, and the presence of intermittency [20–23]. This was unexpected, sinceWT appears as a mean-field theory, based on an initial
‘‘quasi-Gaussianity’’, previously believed to prevent sensible deviations from Gaussianity.

An important step forward in this context has been the development of a more efficient formalism for non-Gaussian wavefields
[1,24–26]. In particular, these works pointed out that probability density functions (PDF) are the relevant statistical objects to be analyzed,
reviving the interest in the study of PDFs in WT, that dates back to the works of Peierls, Brout, Prigogine, Zaslavskii and Sagdeev [27–29].
These authors had consideredwaves in anharmonic crystals, which constitute a special case of 3-wave systems. In the recent developments
a diagrammatic approach was proposed [1], based on Zakharov’s pioneering work [30,31], to analytically investigate PDF equations.
Importantly, this has also clarified the role of the different assumptions needed for the statistical closure. In particular, the 3-wave resonant
systems has been studied in detail and a Peierls equation for the N-particles PDF has been proposed [1,24,25].

Nevertheless, the Peierls equation does not guarantee the strict preservation of the independence of phases and amplitudes, even
though it can be argued that the property of random phases and amplitudes (RPA) is preserved in a weaker form [1,32]. Starting from
these premises, it has been shown that a proper normalization of the wave amplitudes is necessary for 3-wave resonant systems, in order
to obtain a finite spectrum in the infinite-box limit, that leads to an amplitude density, dependent on the continuous variable k [33].
In particular, the original amplitudes must be normalized by a factor scaling as 1/V , where V is the volume of the box. Adopting such
a point of view, the Peierls equation for the multimode PDFs is not the leading-order asymptotic equation of the continuum limit of
weakly interacting, incoherent waves. In Ref. [33], then, new multimode equations were derived, that importantly have the factorized
exponential solutions excluded by the Peierls equation. This is equivalent to the preservation of the RPA property. In turn, the preservation
of exponential solutions implies a law of large numbers (LLN) for the empirical spectrum at times τ > 0, which is analogous to the
propagation of chaos of the BBGKY hierarchy in the kinetic theory of gases. This LLN implies that the empirical spectrum satisfies the
wave-kinetic closure equations for nearly every initial realization of random phases and amplitudes, without necessity of averaging. Just
as the Boltzmann hierarchy has factorized solutions for factorized initial conditions, so does the kinetic wave hierarchy for all multi-point
spectral correlation functions. An H-theorem corresponding to positive entropy variation holds as well. On the other hand, using these
multimode equations, Ref. [33] shows that the 1-mode PDF equations are not altered by the different normalization, if the modes initially
enjoy the RPA property.

The 4-wave case has not yet been dealt with, although a formal analogy has been used to propose a possible extension of the 3-wave
result to the 4-wave case [32]. Therefore, the present paper is devoted to the case of 4-wave interactions, which is of particular interest. As a
matter of fact, most of the known violations of Gaussianity arise in gravitywaves and in vibrating elastic plates, which are 4-wave resonant
systems. Following the same diagrammatic approach of Ref. [1], and using the normalization proposed in Ref. [33], we first explicitly derive
the continuous multimode equations, and then we obtain the equation for theM-mode PDF equation. These equations are different from
the Peierls equations obtained by the formal analogy of Ref. [32]; they constitute instead a direct extension of the 3-wave case treated in
Ref. [33]. The relation between the Peierls and our equations is thus discussed, showing the limit in which they coincide. Our framework
also sheds some light on the issue ofWT intermittency, as demonstrated by a companion paper [34], in which the equations obtained here
are confirmed by numerical simulations of two 4-wave resonant Hamiltonian systems.

This work is organized as follows. First, we describe ourmodel and notation, which are consistent with previous works [1,33]. Section 2
discusses the probabilistic properties of RPA fields. The main results of this paper are reported in Sections 3 and 4, where the multimode
equations are derived and discussed. In Section 3 the spectral generating functional and correlation functions are considered, while
Section 4 concerns the PDF generating function and the multipoint PDFs. Section 5 summarizes our results. Technical details are provided
in Appendix A, Appendix B, and Appendix C, in which we also briefly explain the diagrams used to calculate the averages.

1.1. Model and notation

Similarly to [33], we consider a complexwavefield u(x, t) in a d-dimensional periodic cubewith side L. This field is a linear combination
of the canonical coordinates and momenta. It is assumed that there is a maximum wavenumber kmax, to avoid ultraviolet divergences.
This can be achieved by a lattice regularization with spacing a = L/M, for some large integerM, so that kmax = π/a. The location variable
x then ranges over the physical space

ΛL = aZd
M , (1)

with the usual notation ZM for the field of integers, moduloM. This space has volume V = Ld. The dual space of wavenumbers is

Λ∗L =
2π

L
Z
d
M (2)

with kmin = 2π/L. The total number of modes is N = Md, so that V = Nad. The following index notation will be used:

uσ (x) =
{
u(x) σ = +1
u∗(x) σ = −1 (3)

for u and its complex-conjugate u∗. Likewise, we adopt the convention for (discrete) Fourier transform:

Aσ (k) =
1

N

∑

x∈ΛL

uσ (x, t) exp(−iσk · x) (4)

so that A+(k) and A−(k) are complex conjugates. This quantity converges to the continuous Fourier transform 1

Ld

∫
[0,L]d d

dx uσ (x, t)

exp(−iσk · x) in the limit a→ 0. The discrete inverse transform is

uσ (x) =
∑

k∈Λ∗
L

Aσ (k) exp(iσk · x). (5)



The dynamics is assumed to be canonical Hamiltonian, with a 4th power term in the Hamiltonian density (energy per volume) describing
4-wave interactions. As in [3] and with lattice regularization, we write:

H = H0 + δH , H0 =
1

2

∑

k∈Λ∗
ωk|Ak|2. (6)

Taking the most general Hamiltonian with any kind of 4-wave interactions, [3], one can write δH in the symmetrized compact form:

δH = ϵ
∑

1234

H
σ1σ2σ3σ4
1234 A

σ1
1 A

σ2
2 A

σ3
3 A

σ4
4 δ1234 (7)

with the coefficients satisfying the general relations:

(
H
σ1σ2σ3σ4
1234

)∗ = H
−σ1−σ2−σ3−σ4
1234 , H

σ1σ2σ3σ4
1234 = H

Π(σ1σ2σ3σ4)

Π(1234) . (8)

Π ∈ S4 represents any permutation of the four elements. Introducing further notation:

σ
.= (σ1, σ2, σ3, σ4) , k

.= (k1, k2, k3, k4) , δσ ·k,0 = δσ1k1+σ2k2+σ3k3+σ4k4,0
ω1

.= ω (k1) , A1
.= A (k1) ,

∑

1

.=
∑

σ1=±1

∑

k1∈Λ∗
(9)

the Hamiltonian can be written as:

H =
1

2

∑

1

ω1A
σ1
1 A
−σ1
1 + ϵ

∑

1234

H
σ

k A
σ1
1 A

σ2
2 A

σ3
3 A

σ4
4 δσ ·k,0 (10)

which leads to

∂Aσk
∂t
= iσωkA

σ
k + ϵ

∑

234

L
σσ2σ3σ4
k234 A

σ2
2 A

σ3
3 A

σ4
4 δ−k+σ2k2+σ3k3+σ4k4,0 (11)

where

L
σσ2σ3σ4
k234

.= 4iσH
(−σ )σ2σ3σ4
k234 . (12)

Changing k→ k1 and introducing the interaction representation1 Aσk = aσk e
iσωkt , one obtains2 :

∂a1

∂t
= ϵ

∑

234

L
+σ2σ3σ4
1234 a

σ2
2 a

σ3
3 a

σ4
4

× exp [i (−ω1 + σ2ω2 + σ3ω3 + σ4ω4) t] δ−k1+σ2k2+σ3k3+σ4k4,0. (13)

With notation [33]:

L1234
.= L
+σ2σ3σ4
1234 , ω1

234

.= −σ1ω1 + σ2ω2 + σ3ω3 + σ4ω4

δ1234
.= δ−σ1k1+σ2k2+σ3k3+σ4k4,0 (14)

the dynamical equation of motion with 4-wave interactions now reads:

ȧ1 = ϵ
∑

234

L1234a
σ2
2 a

σ3
3 a

σ4
4 exp

(
iω1

234t
)
δ1234. (15)

2. Fields with random phases and amplitudes

In derivations of wave kinetic equations, it is often assumed that initial fields have Fourier coefficients with random statistically
independent phases and amplitudes (RPA). This property is expected to be preserved in time, in some suitable sense, in the wave-kinetic
limit.

Let N complex-valued random variables ak, k ∈ Λ∗L be the Fourier coefficients of a random field:

uL(x) =
∑

k∈Λ∗
L

ak exp(ik · x). (16)

Here ak corresponds to a+k , i.e. A
+
k in the previous section (no distinction need be made between the two at time t = 0). It will be crucial

in the following to work with normalized variables

ãk =
(

L

2π

)d/2

ak (17)

1 Such a representation eliminates the fast linear oscillations, giving a variable aσk that does not oscillate on fast scales.
2 In our derivation, for simplicity and no loss of generality, we consider σ = +1. Trivially, the equations with σ = −1 are redundant, because obtained by complex

conjugation of the ones with σ = +1. From now a1 stands for a+1 .



which are assumed to remain finite in the large-box limit L→∞. This normalization is sufficient for the spectrum of the random field to
be well defined in that limit, as first pointed out in [33]. It is convenient to write the complex variables in polar coordinates (action–angle
variables, or amplitudes and phases)

ak =
√
Jke

iϕk =
√
Jkψk (18)

with normalized action defined by

J̃k =
(

L

2π

)d

Jk. (19)

We denote by sk and ξk for possible values of the random variables J̃k ∈ R
+ and ψk = eiϕk ∈ S1.

dµ(s, ξ ) =
∏

k∈Λ∗
L

dsk
|dξk|
2π

(20)

suitably normalized. The N-mode joint probability density function P (N)(s, ξ ) is defined with respect to the Liouville measure, such that
the average of the random variable fJ̃ψ (s, ξ ) is given by

⟨fJ̃ψ ⟩ =
∫

dµ(s, ξ )P (N)(s, ξ )f (s, ξ ) (21)

where the integral is over (s, ξ ) in the product space
(
R
+)N ×

(
S1
)N
.

The field uL(x) is called a random-phase field (RP) if for all k ∈ Λ∗L the ψk = eiϕk are independent and identically distributed (i.i.d.)
random variables, uniformly distributed over the unit circle S1 in the complex plane [1]. For the joint PDF, this is equivalent to:

P
(N)(s, ξ ) = P

(N)(s). (22)

Note that an RP uL(x) is a homogeneous random field on ΛL, statistically invariant under space-translations by the finite group aZd
M . In

the limit L→∞ the field uL(x) defined with appropriately chosen J̃k,L will converge to a homogeneous random field u(x) invariant under
translations by aZd. The standard definition of the spectrum n(k) = limL→∞(L/2π )d⟨|ak,L|2⟩ implies that one must choose

lim
L→∞
⟨J̃kL,L⟩ = n(k), (23)

for k ∈ Λ∗ = [−kmax,+kmax]d, where kL = kL
2π

( mod M) · 2π
L
∈ Λ∗L converges to k as L = aM → ∞ (for fixed a). So, uL(x) converges in

distribution to a homogeneous field u(x) with spectrum n(k).
Let uL(x) be a random-phase and amplitude field (RPA) if uL(x) is RP and if also J̃k are mutually independent random variables for all

k ∈ Λ∗L . This is equivalent to the factorization of the N-mode PDF into a product of 1-mode PDFs:

P
(N)(s) =

∏

k∈Λ∗
L

P(sk; k). (24)

All homogeneous Gaussian random fields are RPA. Conversely, for any sequence of RPA fields satisfying condition (23) the spatial field
uL(x) converges in distribution to the homogeneous Gaussian field with mean zero and spectrum n(k) as L→∞ [35]. Here we note only
that

uL(x) =
(
2π

L

)d/2 ∑

k∈Λ∗
L

√
J̃k,L exp(ik · x+ iϕk) (25)

is a sum of N independent variables scaled by 1/
√
N. It is important to emphasize that the Fourier coefficients ãk,L can remain far from

Gaussian in this limit. In physical space also there are non-vanishing cumulants for large but finite L.
Let us define the characteristic functional, containing information about the statistical distribution of amplitudes and phases:

ZL(λ,µ) =
⟨
exp

[∫
dk(iλkJk + iµkϕk)

]⟩
. (26)

A most important result for RPA fields is that the empirical spectrum

n̂L(k) =
(
2π

L

)d ∑

k1∈Λ∗L

J̃k1,Lδ
d(k− k1), k ∈ Λ∗ (27)

converges under the condition (23) to the deterministic spectrum n(k) with probability going to 1 in the limit L → ∞ (weak LLN). One
can show that

∫
ddk λ(k) n̂L(k) converges in probability to

∫
ddk λ(k)n(k) for every bounded, continuous λ. This is sufficient to infer that

the amplitude characteristic function defined in (26) satisfies

lim
L→∞

ZL(λ) = exp

(
i

∫
ddk λ(k)n(k)

)
(28)

with n(k) the deterministic spectrum. The LLN means that for RPA fields the empirical spectrum n̂L(k) coincides with n(k) at large L for
almost every realization of the random phases and amplitudes.



Notice that for the above result one does not actually need the full independence assumption in RPA, but it suffices that

lim
L→∞
[N (2)

L (k1, k2)− N
(1)
L (k1)N

(1)
L (k2)] = 0, (29)

where theMth order correlation functions are defined as

N
(M)
L (k1, . . . ,kM ) = ⟨̂nL(k1) · · · n̂L(kM )⟩. (30)

Property (29) is analogous to Boltzmann’s Stosszahlansatz for his kinetic equation. Under this assumption, theMth order correlations that

exist will factorize in the large-box limit [36,37]:

lim
L→∞

N
(M)
L (k1, . . ., kM ) =

M∏

m=1
n(km). (31)

Our results indicate that properties RP and (23), (29) for the initial wave field, suffice for the wave kinetic equation and for the LLN for the

empirical spectrum to hold at positive times.

RPA fields whose Fourier amplitudes possess the full independence property satisfy the even stronger LLN for the empirical 1-mode PDF

P̂L(s; k) =
(
2π

L

)d ∑

k1∈Λ∗L

δ(s− J̃k1 )δ
d(k− k1). (32)

Assume that the limiting randomvariables J̃k = limL→∞ J̃kL,L of an RPA field exist and have PDFs P(s; k) which are continuous ink. Then, the

random functions P̂L(s; k) converge to P(s; k) with probability approaching 1 as L→∞. This implies the previous LLN for the spectrum,

since n̂L(k) =
∫∞
0

ds ŝPL(s; k) and n(k) =
∫∞
0

ds sP(s; k). Although the ‘‘empirical PDF’’ defined in (32) is mathematically very convenient,

it is not a PDF for finite L. It is therefore more intuitive to use an alternative definition

P̂L(s;∆) =
1

NL(∆)

∑

k∈Λ∗
L
∩∆

δ(s− J̃k), (33)

for any open set ∆ ⊂ Λ∗ and with NL(∆) the number of elements in Λ∗L ∩ ∆. This quantity is nearly the same as 1
|∆|
∫
∆
ddk P̂L(s; k) for

large L but it has the advantage that it defines a probability measure in s for each fixed∆ and L. Definition (33) also has a simple intuitive

meaning, since it represents the instantaneous distribution of amplitudes of the large number of Fourier modes that reside in the set ∆

for large box-size L. Under the same assumptions as above, it follows with probability going to 1 that

lim
L→∞

P̂L(s;∆) =
1

|∆|

∫

∆

ddk P(s; k) ≡ P(s;∆). (34)

Strict independence is not necessary for this to hold; factorization ofmultimode PDFs for k1, . . . ,kM ∈ Λ∗ is required:

P
(M)
L (s1, . . . , sM; k1, . . . ,kM ) = ⟨δ(s1 − J̃k1,L,L) · · · δ(sM − J̃kM,L,L)⟩. (35)

The factorization property for all pairs of distinct k1, k2 ∈ Λ∗

lim
L→∞
[P (2)

L (s1, s2; k1, k2)− P
(1)
L (s1; k1)P

(1)
L (s2; k2)] = 0 (36)

suffices for the LLN for the empirical PDF and also the factorization of the multimode PDFs

lim
L→∞

P
(M)
L (s1, . . ., sM; k1, . . ., kM ) =

M∏

m=1
P(sm; km) (37)

for all integersM > 2 and distinct k1, . . . ,kM ∈ Λ∗. The asymptotic independence is considerably weaker than RPA, permitting statistical

dependence between Fourier modes at finite L. In the following, we show that properties (31), (37) are preserved by the limiting kinetic

hierarchies of WT.

3. Multimode hierarchy equations

In this section we formally derive the multimode kinetic equations for the 4-wave dynamics of our system. Our analysis differs from

those of previous works [25,32,33] mainly because of the nonlinear frequency shift, and because of the details of the L→∞ and ϵ → 0

limits.

The action–angle variables (amplitudes and phases) for linear dynamics are defined as Jk = |Aσk |
2 and ϕk = σ arg(Aσk ), so that

Aσk =
√
Jkψ

σ
k , where ψk = exp(iϕk). Then, the Liouville measure µ conserved by the Hamiltonian flow can be written as

dµ =
∏

k

dQkdPk =
∏

k

1

i
dA+k dA

−
k =

∏

k

1

i
da+k da

−
k =

∏

k

dJkdϕk. (38)

The canonical momenta and coordinates are given by real and imaginary parts of Aσk =
1√
2
(Pk + iσQk), and Aσk and aσk are linked by

the simple rotation in the complex plane used to obtain (13). Consistently with the general definition (26), the generating function of



amplitudes and phases for finite box-size L is:

ZL[λ,µ, T ]
.=
⟨
exp

⎛
⎝∑

k∈Λ∗
L

λkJk(T )

⎞
⎠ ∏

k∈Λ∗
L

ψ
µk

k (T )

⟩
(39)

λk ∈ R, µk ∈ Z ∀k ∈ Λ∗L .

3.1. Power series expansion in the dynamical equation

3.1.1. The frequency shift
Let us perturbatively expand the solution of Eq. (15) in ϵ at finite L. As explained in [1,33], we consider an intermediate time between the

‘‘linear time’’, that is thewave period, and the ‘‘nonlinear time’’ that represents the time scale of evolution of thewave amplitude statistics.
To consider the long-time behavior of the wave field expanding in ϵ the solution of the dynamical equation, we need to renormalize the
frequency [1,32]. The equation for the order zero in ϵ has a constant solution:

a
(0)
1 (T ) = a1(0). (40)

Thus, the terms like
∑

234L1234a
(0)
2 a

(0)
3 a4 exp

(
iω1

234t
)
δ1234, fork2 = k3, σ2 = −σ3 andk4 = k1, play the role of linear terms in a1, responsible

for fast oscillations. We want to remove all terms of this kind, using an interaction representation and a frequency renormalization [32]:

∑

234

∗∗ .=
∑

σ2σ3σ4

∑

k2k3k4

δσ2,σ1δσ3,−σ4δk2,k1δk3,k4 + (2↔ 3)+ (2↔ 4) (41)

∑

234

∗ .=

⎛
⎝ ∑

σ2σ3σ4

∑

k2k3k4

−
∑

234

∗∗

⎞
⎠ . (42)

Recalling Eq. (15), we can write:

ȧ1 = ϵ
(∑

234

∗
+
∑

234

∗∗
)
L
+σ2σ3σ4
1234 a

σ2
2 a

σ3
3 a

σ4
4 exp

(
iω1

234t
)
δ1234

= ϵ
∑

234

∗
L
+σ2σ3σ4
1234 a

σ2
2 a

σ3
3 a

σ4
4 exp

(
iω1

234t
)
δ1234 + iΩ1 a1 + ϵ2D1a1 (43)

where

iΩ1
.= ϵ

∑

σ2=±1

∑

k2

L
++σ2−σ2
1122

⏐⏐a(0)2

⏐⏐2 + (2↔ 3)+ (2↔ 4) (44)

and D1 = O(1). Introducing a new interaction representation with

bk = ake
−iΩkt , (45)

Eq. (43) becomes:

ḃ1 = ϵ
∑

234

∗
L
+σ2σ3σ4
1234 b

σ2
2 b

σ3
3 b

σ4
4 eiω̃

1
234

t δ1234 + ϵ2D1b1 (46)

where the renormalized frequency with a shift is given by [1,32]:

ω̃k
.= ωk +Ωk. (47)

3.1.2. 2nd order equations
Considering an intermediate time between the linear and the nonlinear time ( 2π

ω̃k
≪ T ≪ 2π

ϵ2ω̃k
), the solution of Eq. (46) to second order

in ϵ is:

bk(T ) = b
(0)

k (T )+ ϵb(1)k (T )+ ϵ2b(2)k (T )+ O(ϵ3) (48)

which implies

b
(0)
1 (T ) = b1(0) (49)

b
(1)
1 (T ) =

∑

234

∗
L1234b

(0)
2 b

(0)
3 b

(0)
4 ∆T (ω̃

1
234)δ

1
234 (50)

b
(2)
1 (T ) =

∑

234567

∗
L1234L4567 b

(0)
2 b

(0)
3 b

(0)
5 b

(0)
6 b

(0)
7 ET

(
ω̃1

23567, ω̃
1
234

)
δ1234δ

4
567

+ (4↔ 3)+ (4↔ 2)+
∫ T

0

D1b
(0)
1 dt (51)



where

∆T (x)
.=
∫ T

0

exp(ixt)dt , ET (x, y)
.=
∫ T

0

∆t (x− y) exp(iyt)dt (52)

and
∑

234567

∗∗ .=
∑

σ2σ3...σ7

∑

k2k3...k7

δσ2,σ1δσ3,−σ4δσ4,σ5δσ6,−σ7

×δk2,k1δk3,k4δk4,k5δk6,k7 + (2↔ 3)+ (2↔ 4)

+ (5↔ 6)+ (5↔ 7)+ (2↔ 3, 5↔ 6)+ (2↔ 4, 5↔ 6)

+ (2↔ 3, 5↔ 7)+ (2↔ 4, 5↔ 7) (53)

∑

234567

∗ .=

⎛
⎝ ∑

σ2σ3...σ7

∑

k2k3...k7

−
∑

234567

∗∗

⎞
⎠ (54)

D1
.=
∑

σ2=±1

∑

k2

L
++σ2−σ2
1122

(
b
(0)
2 b

(1)∗
2 + b

(1)
2 b

(0)∗
2

)
+ (2↔ 3)+ (2↔ 4). (55)

3.2. Phase averaging: Feynman–Wyld diagrams

In this section, we carry out the phase averaging using diagrammatic techniques, which are in essence those used in the 3-wave case in
Ref. [25]. However, here we describe them in detail, for completeness and also because we have introduced spin terms, σi, absent in [25].

An expansion like (48) for the original normal variables Ak may be written as

Ak(T ) = A
(0)

k (T )+ ϵA(1)

k (T )+ ϵ2A(2)

k (T )+ O(ϵ3) (56)

where:

b
(i)

k = A
(i)

k e−iω̃t , i = 0, 1, 2 (57)

and a similar expansion Eq. (56) leads to:

Jk(T ) = |Ak(T )|2 = |bk(T )|2
.= J

(0)

k + ϵJ
(1)

k + ϵ
2J

(2)

k + O(ϵ3). (58)

Definition (39) shows that ZL satisfies the symmetry:

ZL [λ,µ, T ] = Z
∗
L [λ,−µ, T ] . (59)

Therefore, writing

ZL [λ,µ, T ] = χL {λ,µ, T } + χ∗L {λ,−µ, T } (60)

one eventually gets:

χL {λ,µ, T } = χL {λ,µ, 0} +
⟨∏

k∈Λ∗
L

eλkJ
(0)
k

[
ϵJ1 + ϵ2 (J2 + J3 + J4 + J5)

]
⟩

J

(61)

where [25]:

J1
.=
⟨∏

k

ψ
(0)µk

k

∑

1

(
λ1 +

µ1

2J
(0)
1

)
b
(1)
1 b

(0)∗
1

⟩
ψ

(62)

J2
.=

1

2

⟨∏

k

ψ
(0)µk

k

∑

1

(
λ1 + λ21J

(0)
1 −

µ2
1

4J
(0)
1

)
|b(1)1 |

2
⟩
ψ

(63)

J3
.=
⟨∏

k

ψ
(0)µk

k

∑

1

(
λ1 +

µ1

2J
(0)
1

)
b
(2)
1 b

(0)∗
1

⟩
ψ

(64)

J4
.=
⟨∏

k

ψ
(0)µk

k

∑

1

(1
2
λ21 +

µ1

4J
(0)2
1

(
µ1

2
− 1)+

λ1µ1

2J
(0)
1

)
(b

(1)
1 b

(0)∗
1 )2

⟩
ψ

(65)

J5
.=

1

2

⟨∏

k

ψ
(0)µk

k

∑

1̸=2

(
λ1λ2(b

(1)
1 b

(0)∗
1 + b

(1)∗
1 b

(0)
1 )b

(1)
2 b

(0)∗
2

+ (λ1 +
µ1

4J
(0)
1

)
µ2

J
(0)
2

(b
(1)
2 b

(0)∗
2 − b

(1)∗
2 b

(0)
2 )b

(1)
1 b

(0)∗
1

)⟩
ψ . (66)

The averages over phases and amplitudes have been separated. Furthermore,

χL {λ,µ, 0}
.=
⟨∏

k

exp
[
λkJ

(0)

k

]⟩

J

. (67)



3.2.1. Rules for phase-averaging

The terms in the perturbative solution of the equation of motion can be represented by Wyld diagram expansions [32,33,38,39]. The

main rules for such diagrams and for averages over phases follow.

Rule 1 How to build the basic diagrams

The various contributions are represented by tree diagrams illustrated in Figs. 1–3, for the zeroth-, first- and second-order terms,

that we call ‘‘basic diagrams’’.

– Lines: a solid line labeled by an integer j represents factor b
(0)
j ; dashed line indicates the absence of such a factor. An arrow

added to a solid line, pointing away from j, indicates σj = +1 (source); if the arrowpoints toward j, it corresponds to σj = −1
(sink).

– Vertices: the vertex labeled 1234 representsL
σ1,σ2,σ3,σ4
1234 eω̃

1
234

tδ1234 with σ1 = +1when the arrow points out of the vertex and

σ1 = −1 when the arrow points into the vertex. The times at each vertex are ordered causally, with the latest times at the

root of the tree, labeled by 1. Integrating from time 0 to T , one gets the various contributions to the perturbative solution.

For completeness, observe that:

b
(1)
1 (T ) =

∑

234

∗
L1234b

(0)
2 b

(0)
3 b

(0)
4 ∆T (ω̃

1
234)δ

1
234 (68)

b
(2)
1 (T ) =

∑

234567

∗
L1234L4567 b

(0)
2 b

(0)
3 b

(0)
5 b

(0)
6 b

(0)
7

∫ T

0

∆t (ω̃
4
567) exp

(
iω̃1

234t
)
dtδ1234δ

4
567

+ (4←→ 3)+ (4←→ 2)+
∫ T

0

D1b
(0)
1 dt. (69)

Rule 2 How to combine basic diagrams before phase-averaging

Before averaging over phases, the various contributions (62)–(66) can be represented by diagrams (see next section), combining

the tree diagrams in Figs. 1–3. The combination of two basic diagrams graphically represents the product of the two analytical

terms to which the diagrams are associated, and this is performed by joining the trees with the same ‘‘root’’ indices, over which

there must be a sum. Each of the integer labels indicates an index to be summed over independently of the others, except for the

constraints imposed by Kronecker deltas at the vertices.

From now, we omit superscripts, as they are (0).

Rule 3 Phase-averaging: diagrams closed by internal or external couplings

The only contributions that survive the average over phases have phases summing to zero before averaging. Then, each b(0) either

pairs with another b(0) so that their phases sum to zero or belong to a set of b(0)’s that pair with a ψ
(0)µk

k making the sum of

their phases vanish. The first is an internal coupling, represented by a solid line connecting the paired indices ij that contribute

a factor δσi+σj, 0δki,kj after phase averaging. The second is an external coupling, represented by joining all solid lines with indices

i1, i2, . . . , ip to a blob • labeled a, that represents the phaseψ
(0)µka
ka

which contributes a factor δσi1+···σip+µa, 0

∏p
j=1δkj,ka after phase

averaging. We will say that the blob (Kronecker delta) makes the wavenumber kj pinned to the value ka. Conventionally, we omit

the letters labeling the blobs: factors such as δkj,kaδµa+σj,0 are denoted by δµj+σj,0, meaning that kj is constrained to the value ka

because of external coupling [25].

Call bridge the line connecting two vertices, labeled with just one number: e.g. the line labeled with 1 in presence of the factor

L
+σ2σ3σ4
1234 L

−σ5σ6σ7
1567 . We distinguish between in-internal coupling, with two lines starting from the same vertex closed together, and cross-

internal coupling, when two lines starting from two different vertices are bound. Let the number of degrees of freedom (or number of free

wavenumbers) be the number of summations over all N modes, cf. Appendix B.

Lemma. Let us assume the initial wavefield is an RP field. Consider the phase average
⟨∏

l

ψ
µl
l ψ1 · · · · · ψpψ

∗
p+1 · · · · · ψ∗q

⟩

and all the possible associated diagrams giving non-null contributions. Then, the degrees of freedom of each closed diagram are equal to the total

number of internal couplings in the diagram, no matter if ‘‘in-’’ or ‘‘cross-internal’’ couplings. No degrees of freedommust be counted for a bridge.

This implies a new rule for the phase-averaging method.

Rule 4 Distinguishing leading order graphs

The terms with a larger number of internal couplings are greater in order, so the leading contributions come from the terms with

the maximum number of internal couplings. Therefore, we can subdivide the diagrams in four different types: type 0 diagrams

with three free wavenumbers; type I diagrams two; type II diagrams with one; type III with no free wavenumbers. The leading

contributions are then given by type 0 or type I diagrams and, in some cases, by type II diagrams.

The symbol
∑∗

expresses the fact that the combinations of ki’s and σi’s giving linear terms inside the interaction term are separated.

Then, the interaction representation (45) allows us to remove such linear terms from the interaction, implying:



Fig. 1. b
(0)+
1 and b

(0)−
1 .

Fig. 2. b
(1)+
1 and b

(1)−
1 .

Fig. 3. b
(2)+
1 and b

(2)−
1 .

Fig. 4. Diagram associated to J1 before phase-averaging.

Rule 5 Diagram ‘‘eliminated’’ by frequency renormalization
Definition (42) implies that the Kronecker delta’s inside (41) vanish in

∑∗
234 for any allowed configuration. Definition (54) implies

that the delta’s inside (53) also vanish in the term
∑∗

2...7. Thus, a diagram for b
(1)
1 implying the arguments of the delta’s inside (41)

to be simultaneously equal to zero is not contributing. The same holds for a graph for b
(2)
1 whose particular state requires null

arguments for the delta’s inside (53).

3.2.2. Contributions J1 − J5

The graph associated to J1 before phase-averaging is represented in Fig. 4, and analytically expressed by:

J1 =
⟨∏

k

ψ
µk

k

∑

1234

∗(
λ1 +

µ1

2J1

)
L
+σ2σ3σ4
1234 a−1 a

σ2
2 a

σ3
3 a

σ4
4

×∆T (−ω1 + σ2ω2 + σ3ω3 + σ4ω4) δk1,σ2k2+σ3k3+σ4k4

⟩
ψ . (70)

Substituting the action–angle variables, we have:

J1 =
∑

1234

∗(
λ1 +

µ1

2J1

)√
J1J2J3J4L

+σ2σ3σ4
1234

⟨
ψ−11 ψ

σ2
2 ψ

σ3
3 ψ

σ4
4

∏

k

ψ
µk

k

⟩
ψ

×∆T (−ω1 + σ2ω2 + σ3ω3 + σ4ω4) δk1,σ2k2+σ3k3+σ4k4 (71)



Fig. 5. Diagram 1 (type I, vanishing) and diagram 2 (type II).

Fig. 6. Diagram 3 (type II) and diagram 4 (type II, vanishing).

where only the term within angular brackets depends on phases. This term can be thought of as the sum of the contributions of all the

possible closures (Rule 3) of the diagram in Fig. 4.

1. The contribution associated with diagram 1 in Fig. 5 may be directly written as

∑

σ

∑

k

∗(
λ1 +

µ1

2J1

)√
J1J2J3J4L

+σ2σ2σ4
1234

∏

m

δµm,0 ∆T (0) δk1,k4δk2,k3 (72)

σ = (1, σ2,−σ2, 1) .

The two Kronecker delta’s of the internal couplings make the vertex delta redundant. Applying Rule 5, one sees that this kind of

graph is missing in the interaction. The physics of this diagram has already been included in the frequency renormalization and

thus it must not been considered here. This implies that this is not a leading order term in J1.

2. For diagram 2 in Fig. 5, one has the following contribution to J1:
∑

σ

∑

k

′(
λ1 +

µ1

2J1

)√
J1J2J3J4L

+σ2σ2σ4
1234 δµ1,1δµ4,1δσ2,−σ3

×
∏

m̸=1,−1
δµm,0 ∆T (−ω1 − ω−1) δk2,k3δk1,−k4 . (73)

Here σ = (1, σ2,−σ2,−1), because the internal coupling between 2 and 3 needs σ2 = −σ3 for the phase of k2 to vanish. Then,

k1 = σ4k4 = −k4, as σ4 = −1.
3. For diagram 3 in Fig. 6, the contribution to J1 reads:

∑

σ

∑

k

′(
λ1 +

µ1

2J1

)√
J1J2J3J4L

+σ2σ2σ4
1234 δµ2,−σ2δµ3,−σ2

×
∏

m̸=2,3
δµm,0 ∆T (σ2 (ω2 + ω−2)) δk2,−k3δk1,k4 (74)

and σ = (1, σ2, σ2, 1).
4. For diagram 4, the last Kronecker delta in (71), which represents momentum conservation at the vertex, implies k2 = k3 = 0. So

this diagram does not represent an effective interaction. As a matter of fact, for spatially homogeneous WT fields there must be no

couplingwith the zeromode k = 0 because such couplingwould violatemomentum conservation, cf. [1,25]. If one of the arguments

of L1234 vanishes, the matrix element is zero. That is to say that for any spatially homogeneous WT system L1234 is identically zero

if one of k1, k2, k3 or k4 is zero. The situation is analogous for graphs obtained by permutations of the indices.

5. Diagram 5 in Fig. 7 contributes as

∑

σ

∑

k,

k1=k2=k3=k4

(
λ1 +

µ1

2J1

)√
J1J2J3J4L

+σ2σ2σ4
1234 δσ2+σ3+σ4,1

∏

m

δµm,0 ∆T (0) (75)

σ = (1, σ2, σ3, σ4) .

6. All other diagrams are type III (like e.g. diagram 6 in Fig. 7) and give subleading contributions.



Fig. 7. Diagram 5 (type II) and diagram 6 (type III).

Normalization of amplitudes: Let us introduce the change of variables

Jk =
(
2π

L

)d

J̃k, λk = iλ(k). (76)

This substitution implies that the characteristic function be expressed by:

ZL[λ,µ]
.=
⟨
exp

⎛
⎝i
∑

k∈Λ∗
L

(
2π

L

)d

λ(k)J̃k

⎞
⎠ ∏

k∈Λ∗
L

ψ
µk

k

⟩
(77)

where λ(k) is a smooth test function andµk are integers. Here we keep the time dependence implicit, for sake of notation. This character-
istic function, after the transformation of the sum to an integral thanks to the large-L limit, becomes a characteristic functional [33]. The
change of variables (76) is the key to a finite, well defined expression, in the thermodynamic limit.
Main contributions to J1: Diagram 2 is the only type II diagram with mode k1 pinned to an external blob, so that µ1 ̸= 0. This graph
contributes to O(1), as it is order O(Ld) (one free wavenumber, that is an unconstrained sum)multiplied by order O(L−d) (term proportional
to µ1, see (62)). A factor 3 appears to account for the possible permutations of the indices. There is no other leading order term. The other
graphs contribute to order O(L−d) and vanish in the L→∞ limit. Summarizing, J1 may be written as:

J1 =
3

2

(
2π

L

)d∑

(1)

[√ J̃2 J̃3 J̃4

J̃1
L
+σ2σ3σ4
1234 δµ1,1δµ−1,1

∏

m̸=±1
δµm,0∆T (−(ω1 + ω−1))

]

+O
(
L−d
)
, where

∑

(1)

.=
∑

σ1=−σ4=1,
σ2=−σ3

∑

k2

. (78)

The contributions from the terms J2, . . . ,J5, are given in Appendix C.
Contribution of J2

J2 =
i

2

(
2π

L

)3d

δµ,0

{
9
∑

(2)

[
λ (k1)L

+σ2σ3σ4
1234 L

−σ5σ6σ7
1567 J̃2 J̃4 J̃5|∆T (ω̃1 + ω̃−1)|2

]

+ 6
∑

(3)

[
λ (k1) |L+σ2σ3σ41234 |2 J̃2 J̃3 J̃4|∆T

(
ω̃1

234

)
|2
]}
+ O

(
L−1
)

(79)

∑
(2)

.=
∑

σ

∑

k

′
δk4,−k1δk4,k7δk2,k3δk5,k6 , σ = (1, σ2,−σ2,−1, σ5,−σ5, 1) (80)

∑
(3)

.=
∑

σ

∑

k

′
δ1234δk2,k5δk4,k7δk3,k6 , σ = (1, σ2, σ3, σ4,−σ2,−σ3,−σ4) . (81)

Contribution of J3

J3 = 18i

(
2π

L

)3d

δµ,0

×
{∑

(4)

[
λ (k1)L

+σ2σ3σ4
1234 L

σ4σ5σ6σ7
4567 J̃1 J̃3 J̃5ET (0, σ3 (ω3 + ω−3))

]

+
1

2

∑
(5)

[
λ (k1)L

+σ2σ3σ4
1234 L

σ4σ5σ6σ7
4567 J̃1 J̃3 J̃6ET (0,− (ω̃1 + ω̃−1))

]

+
∑

(6)

[
λ (k1)L

+σ2σ3σ4
1234 L

σ4σ5σ6σ7
4567 J̃1 J̃2 J̃3ET

(
0, ω̃1

234

)]}

+ 9

(
2π

L

)2d{∑
(7)

[
L
+σ2σ3σ4
1234 L

σ4σ5σ6σ7
4567

√
J̃−1

J̃1
J̃3 J̃5

∏

m̸=1,2
δµm,0

× ET
(
− (ω̃1 + ω̃−1) ,− (ω̃1 + ω̃−1)+ σ3ω̃3 + σ4ω̃4

)]



+
1

2

∑
(8)

[
L
+σ2σ3σ4
1234 L

σ4σ5σ6σ7
4567

√
J̃7

J̃1
J̃3 J̃5

∏

m̸=1,7
δµm,0

× ET
(
− (ω̃1 + σ4ω̃4) ,− (ω̃1 + σ4ω̃4)

)]

+
∑

(9)

[
L
+σ2σ3σ4
1234 L

σ4σ5σ6σ7
4567

√
J̃−1

J̃1
J̃3 J̃5

∏

m̸=1,6
δµm,0

× ET
(
− (ω̃1 + ω̃−1) , ω̃1

234

)]}
+ O

(
L−1
)

(82)

where
∑

(4)

.=
∑

σ ,k

′
δk4,−k3δk1,k2δk3,k7δk5,k6 , σ = (1, 1, σ3, σ3, σ5,−σ5,−σ3)

∑
(5)

.=
∑

σ ,k

′
δk1,−k4δk1,k5δk3,k2δk6,k7 , σ = (1, σ2,−σ2,−1, 1, σ6,−σ6)

∑
(6)

.=
∑

σ ,k

′
δ1234δk1,k6δk3,k7δk5,k2 , σ = (1, σ2, σ3, σ4,−σ2, 1,−σ3)

∑
(7)

.=
∑

σ ,k

′
δ−σ4k4,σ3k3δk1,−k2δk3,k7δk5,k6 , σ = (1,−1, σ3, σ4, σ5,−σ5,−σ3)

∑
(8)

.=
∑

σ ,k

′
δk1,σ4k4δk1,σ7k7δk3,k2δk5,k6 , σ = (1, σ2,−σ2, σ4, σ5,−σ5, σ7)

∑
(9)

.=
∑

σ ,k

′
δ1234δk1,−k6δk3,k7δk5,k2 , σ = (1, σ2, σ3, σ4,−σ2,−1,−σ3) . (83)

Contribution of J4

One finds that J4 = O
(
L−d
)
, so it represents a subleading contribution.

Contribution of J5

J5 = 3

(
2π

L

)2d∑

(10)

µ1µ2

4J1J2
L
+σ3σ4σ5
1345 L

+σ6σ7σ8
2678

√
J1J2J3J4J5J6J7J8

× δµ1,1δµ2,1

∏

m̸=1,2
δµm,0∆T

(
ω̃1

345

)
∆T

(
ω̃(−1)345)

+ 9

(
2π

L

)2d∑

(11)

µ1µ2

4J1J2
L
+σ3σ4σ5
1345 L

+σ6σ7σ8
2678

√
J1J2J3J4J5J6J7J8

× δµ1,2δµ2,2

∏

m̸=1,2
δµm,0∆T

(
ω̃1

(−1)44
)
∆T

(
ω̃(−1)177)+ O

(
L−d
)

(84)

∑

(10)

.=
∑

σ

∑

k

′
δk1,−k2δk3,k6δk4,k7δk5,k8δ

1
345, σ = (1, 1, σ3, σ4, σ5,−σ3,−σ4,−σ5)

∑

(11)

.=
∑

σ

∑

k

′
δk1,−k2δk1,−k3δk1,k6δk4,k5δk7,k8 , σ = (1, 1,−1, σ4,−σ4,−1, σ7,−σ7) . (85)

3.3. Dynamical multi-mode equation

In this section we turn Eq. (61) into a dynamical equation for the characteristic functional Z taking the L −→ ∞ and ϵ −→ 0 limits.

The two limits do not commute: the large-box limit must be taken first, the weak-nonlinearity limit after. The physical meaning of this

operation is that there is a vast number of quasi-resonances (introduced by the large box limit, which leads to a continuousk-space sending

Λ∗L −→ Λ∗), each of which is as important as the exact resonances [1].

3.3.1. Large-box limit

Let us introduce the large-L asymptotics standard substitutions, and

(
2π

L

)d∑

k

H⇒
∫

ddk ,

(
L

2π

)d

δk,k′ H⇒ δd(k− k′). (86)



Recalling Eq. (60), using (78), (79), (82) and (84), and neglecting O
(
L−d
)
corrections, we can eventually write:

⟨
exp

[
i

∫
ddkλ(k)J̃k

]{
6iϵ

(∑

k1

δµ1,1δµ−1,1

∏

m̸=±1
δµm,0

)

×
∑

σ2

∫
ddk2 J̃2

√
J̃−1

J̃1
H
−σ2(−σ2)−
1224 ∆T

(
− (ω̃1 + ω̃−1)

)

+ 8iϵ2δµ,0

[
9
∑

σ2,σ5

∫
ddk1d

dk2d
dk5λ (k1)H

−σ2(−σ2)−
122(−1)

×H
+σ5(−σ5)+
155(−1) J̃−1 J̃2 J̃5|∆T (ω̃1 + ω̃−1)|2

+ 6
∑

σ2,σ3,σ4

∫
ddk1d

dk2d
dk3d

dk4λ (k1) |H−σ2σ3σ41234 |2 J̃2 J̃3 J̃4|∆T

(
ω̃1

234

)
|2δ1234

]

+288iϵ2δµ,0
[∑

σ4,σ5

∫
ddk1d

dk4d
dk5 (−σ4) λ (k1)H

−+σ4σ4
11(−4)4

×H
(−σ4)σ5(−σ5)(−σ4)
455(−4) J̃1 J̃4 J̃5ET (0, σ4 (ω4 + ω−4))

+
1

2

∑

σ2,σ6

∫
ddk1d

dk2d
dk6λ (k1)H

−σ2(−σ2)−
122(−1)

×H
++σ6−(σ6)
(−1)166 J̃1 J̃2 J̃6ET (0,− (ω̃1 + ω̃−1))

+
∑

σ2,σ3,σ4

∫
ddk1d

dk2d
dk3d

dk4 (−σ4) λ (k1) |H−σ2σ3σ41234 |2 J̃1 J̃2 J̃3ET
(
0, ω̃1

234

)
δ1234

]

+144ϵ2
[(∑

k1

δµ1,1δµ−1,1

∏

m̸=±1
δµm,0

) ∑

σ3,σ4,σ5

∫
ddk3d

dk4d
dk5

× (−σ4)H−−σ3σ41(−1)34L
(−σ4)σ5(−σ3)(−σ5)
4535

√
J̃−1

J̃1
J̃3 J̃5 δ (σ3k3 + σ4k4)

× ET
(
− (ω̃1 + ω̃−1) ,− (ω̃1 + ω̃−1)+ σ3ω̃3 + σ4ω̃4

)

+
1

2

∑

σ2,σ4,σ5,σ7

(∑

k1

δµ1,1

∑

k7

δµ7,−σ7

∏

m̸=1,7
δµm,0

)

×
∫

ddk2d
dk4d

dk5d
dk7 (−σ4)H−σ2(−σ2)σ41224 H

(−σ4)σ5(−σ5)σ7
4557

√
J̃7

J̃1
J̃3 J̃5

× ET
(
− (ω̃1 + σ4ω̃4) ,− (ω̃1 + σ4ω̃4)

)
δ(k1 − σ4k4)δ(k1 − σ7k7)

+
(∑

k1

δµ1,1δµ−1,1

∏

m̸=±1
δµm,0

) ∑

σ2,σ3,σ4

∫
ddk2d

dk3d
dk4

× (−σ4)H−σ2σ3σ41234 H
(−σ4)(−σ2)−(−σ3)
42(−1)3

√
J̃−1

J̃1
J̃2 J̃3ET

(
− (ω̃1 + ω̃−1) , ω̃1

234

)
δ1234

]

−12ϵ2
(∑

k1

δµ1,1δµ−1,1

∏

m̸=±1
δµm,0

) ∑

σ3,σ4,σ5

×
∫

ddk3d
dk4d

dk5H
−σ3σ4σ5
1345 H

−(−σ3)(−σ4)(−σ5)
(−1)345

J̃3 J̃4 J̃5√
J̃1 J̃−1

∆T

(
ω̃1

345

)
∆T

(
ω̃(−1)345)δ1345

− 36ϵ2
(∑

k1

δµ1,2δµ−1,2

∏

m̸=±1
δµm,0

)∑

σ3,σ4

∫
ddk3d

dk4H
−−σ3(−σ3)
1(−1)33 H

−−σ4(−σ4)
(−1)144 J̃3 J̃4

× J̃3 J̃4∆T

(
ω̃1

(−1)33
)
∆T

(
ω̃(−1)144)

}⟩

J

. (87)



3.3.2. Weak-nonlinearity limit
Recall that in Section 3.1.2, we took 2π

ω̃k
≪ T ≪ 2π

ϵ2ω̃k
, with T between the wave period and the nonlinear time. We can now take

T ∼ 2π
ϵω̃k

, so that limϵ→0T = ∞. Then, in (87) we must take the T → ∞ limit, consistently with the large-T asymptotics of ∆T and

ET [33,40]:

∆T (x) ∼ ∆̃(x) = πδ(x)+ iP

(
1

x

)
, ET (x; y) ∼ ∆T (x)∆T (y) ∼ ∆̃(x)∆̃(y),

|∆T (x)|2 ∼ 2πTδ(x)+ 2P

(
1

x

)
∂

∂x
, ET (x; 0) ∼ ∆̃(x)

(
T − i

∂

∂x

)
. (88)

Some considerations are in order.

1. In Eq. (87), only the terms containing |∆T (x)|2, ET (x; 0) or ET (0; y) give secular contributions (proportional to T ); the non-secular
contributions are irrelevant in the T →∞ (ϵ → 0) limit. Thus, only the terms with δµ,0 survive the weak-nonlinearity assumption,
while those with δµ1,1 etc. are subleading.

2. The µ-dependent part of Z is constrained to be 1 by δµ,0. Then, using (76), switching to iλ(k) and taking the large-box limit leads
to the functional derivative

(
L

2π

)d
∂

∂λk
H⇒ −i

δ

δλ(k)
. (89)

3. Replace (Z[T ] − Z[0])/T with the time derivative Ż . This can be done ([1], pg. 81) because time T is small compared to the
characteristic time of averaged quantities such as Z (nonlinear time). Indeed, the instantaneous time derivative can be of same
order or even greater than the rate of change described by our substitution, but such rapid changes are oscillatory and they drop
out.

4. We introduce a new time variable τ
.= ϵ2T .

5. Renaming indices, we split the integral with 4 wavenumbers into identical contributions

dZ[λ,µ, τ ]
dτ

= −192πδµ,0
∑

σ=(1,σ2,σ3,σ4)

∫
ddk1d

dk2d
dk3d

dk4λ (k1) |H−σ2σ3σ41234 |2

× δ
(
ω̃1

234

)
δ1234

(
δ3Z

δλ(k2)δλ(k3)δλ(k4)
− σ2

δ3Z

δλ(k1)δλ(k3)δλ(k4)

− σ3
δ3Z

δλ(k1)δλ(k2)δλ(k4)
− σ4

δ3Z

δλ(k1)δλ(k2)δλ(k3)

)

− 288πδµ,0
∑

σ=(1,σ2,σ3)

∫
ddk1d

dk2d
dk3λ (k1)

×
[
H
−−σ2(−σ2)
1(−1)22 H

++σ3(−σ3)
1(−1)33 δ (ω̃1 + ω̃−1)

×
∑

σ=±1

δ3Z

δλ(σk1)δλ(k2)δλ(k3)
− 2σ2H

σ2σ2+−
2(−2)11

H
(−σ2)(−σ2)σ3(−σ3)
2(−2)33 δ (ω̃2 + ω̃−2)

δ3Z

δλ(k1)δλ(k2)δλ(k3)

]
. (90)

3.3.3. Resonance condition
Recall definition ω̃k

.= ωk +Ωk. The definition ofΩk (44) and the thermodynamic limit imply:

Ω1
L→∞−→ 24ϵ

∫

Λ∗
ddk2H

+−+−
1122 J̃

(0)
2 , Ω−1 = 24ϵ

∫

Λ∗
ddk2H

+−+−
(−1)(−1)22 J̃

(0)
2 . (91)

Note: each component of k2, defined in the dual spaceΛ∗, ranges in the interval [−kmax, kmax] and space isotropy implies that our system
is symmetric under the k→−k transformation. Therefore:

Ω−1 = 24ϵ

∫

(−Λ∗)
dd(−k2)H+−+−11(−2)(−2) J̃

(0)
−2 (92)

where (−Λ∗) means that we are integrating over each component of k2 from+kmax to−kmax and not from−kmax to+kmax as it would be
forΛ∗. However, the integration over−k2 ∈ (−Λ∗) is equivalent to the integration over the variable k3 ∈ Λ∗, and this leads to:

Ω−1 = 24ϵ

∫

Λ∗
dd(k3)H

+−+−
1133 J̃

(0)
3 ≡ Ω1. (93)

Space isotropy also implies that ωk = ω−k (ωk is positive for all k ∈ Λ∗) and then:

ω̃k + ω̃−k = ωk +Ωk + ω−k +Ω−k = 2(ωk +Ωk). (94)



Thus, the condition to fulfill for the resonance in the second term (last four lines) of Eq. (90) reads:

ωk +Ωk = 0. (95)

Also, J̃
(0)
2 is positive, whereas the sign ofH+−+−1122 implies that it is impossible to generalize without looking at the specific problemwewant

to describe.
If we take as a paradigmatic example a relatively simple, 4-wave resonant system, namely the Nonlinear Klein Gordon system, we easily

notice that the Hamiltonian coefficients are strictly positive, see also [41]. A more accurate analysis is needed in other cases, such as the
deep water gravity waves, whose effective coefficients have been derived in [3]. If the Hamiltonian coefficients are positive, then Ωk is
positive too.

Actually, many of the physical systems one usually considers have positive Hamiltonian coefficients. Furthermore, this last condition
is even not necessary to satisfy our weaker conditionΩk ≥ 0, ∀k ∈ Λ∗. The reason to rely on such a condition is justified by the fact that
those systems enjoy the property:

ω̃k = ωk +Ωk ≥ 0,∀k ∈ Λ∗. (96)

Thus, condition (95) is never fulfilled, implying that the arguments of the two Dirac delta’s δ (ω̃1 + ω̃−1) and δ (ω̃2 + ω̃−2) in Eq. (90)
cannot vanish for any value of k except from k = 0, but in that case the Hamiltonian coefficients are identically null. As a consequence,
for ‘‘positive renormalized frequency’’ systems (i.e. satisfying (96)) the last four lines of Eq. (90) give zero identically and the dynamical
multi-mode equation reduces to the really compact form (97) given below. Let us also note that the frequency Ωk, Eq. (44), contains a
factor ϵ and that the sum in (44) is expected to converge if the energy of the system is finite, thenΩk is of order O(ϵ). Therefore,Ωk ≪ ωk.
As a matter of fact, even for a system where Ωk can be negative, Ωk does not nullify the frequency ωk. Thus, the relevant equation for
4-wave resonant systems is:

dZ[λ,µ, τ ]
dτ

= −192πδµ,0
∑

σ=(1,σ2,σ3,σ4)

∫
ddk1d

dk2d
dk3d

dk4λ (k1) |H−σ2σ3σ41234 |2

× δ
(
ω̃1

234

)
δ1234

(
δ3Z

δλ(k2)δλ(k3)δλ(k4)
− σ2

δ3Z

δλ(k1)δλ(k3)δλ(k4)

− σ3
δ3Z

δλ(k1)δλ(k2)δλ(k4)
− σ4

δ3Z

δλ(k1)δλ(k2)δλ(k3)

)
(97)

which is a natural generalization to the 4-wave case of Eq. (94) in [33]. It is worth emphasizing that this equation has been obtained with
the RP assumption but not with the RPA.

3.4. Derivation of the spectral hierarchy

We may now consider the characteristic functional of amplitudes only3 :

ZL[λ, T ]
.=
⟨
exp

(∑

k∈Λ∗
L

λkJk(T )

)⟩
. (98)

In analogy to [33], from (97) we derive a hierarchy of evolution equations for theM-mode spectral correlation functions defined in (30),
in the kinetic limit:

N
(M)(k1, . . . ,kM , τ ) = lim

ϵ→0
lim
L→∞

N
(M)
L,ϵ (k1, . . ., kM , ϵ

−2τ ). (99)

The hierarchy is easy to derive knowing the relation

N
(M)(k1, . . . ,kM , τ ) = (−i)M

δMZ[λ, τ ]
δλ(k1) · · · δλ(kM )

⏐⏐⏐⏐
λ=0

. (100)

By takingM functional derivatives of (97) and setting λ ≡ 0, one obtains:

Ṅ
(M)(k1, . . . ,kM , τ ) = 192π

M∑

j=1

∑

σ

∫
ddk2d

dk3d
dk4δ

(
ω̃1

234

)
δ1234|H

σ

kj
|2

[
N

(M+2)(k1, . . . ,kj−1, kj+1, . . . ,kM , k2, k3, k4, τ )− σ2N (M+2)(k1, . . . ,kM , k3, k4, τ )

− σ3N (M+2)(k1, . . . ,kM , k2, k4, τ )− σ4N (M+2)(k1, . . . ,kM , k2, k3, τ )
]
. (101)

We shall refer to this set of equations as to the spectral hierarchy of kinetic wave turbulence. It is exactly analogous to the hierarchy derived
by Lanford from the BBGKY hierarchy in the low-density limit [36,37]. If the spectral correlation functions satisfy bounds on their growth
for large orders M that allow them to uniquely characterize the distribution of the empirical spectrum, then the spectral hierarchy (101)
is not only a consequence of Eq. (97) but is in fact equivalent to that equation. If the initial functional Z[λ, 0] is of exponential form (28),
as follows for an initial RP field with uncorrelated amplitudes, an exact solution of (97) is given by:

Z[λ, τ ] = exp
(
i

∫
ddk λ(k)n(k, τ )

)
, (102)

3 Then, we can consider Eq. (97) without the δµ,0 term.



where n(k, τ ) satisfies the standard wave kinetic equation with initial condition n(k, 0) = n(k). Equivalently, factorized Mth-order

correlation functions (31) as initial data, entail a factorized solution of the spectral hierarchy (101):

N
(M)(k1, . . . ,kM , τ ) =

M∏

m=1
n(km, τ ). (103)

Under suitable conditions [33] this is analogous to the propagation of chaos of Boltzmann’s Stosszahlansatz [36,37]. The results above have

an important implication. As follows from our discussion in section 2, the conditions (102) or (103) imply a law of large numbers for the

empirical spectrum at positive times. That is, with probability going to 1 in the kinetic limit (first L→∞, then ϵ → 0), it follows that

n̂L(k, ϵ
−2τ ) ≃ n(k, τ ), τ > 0 (104)

where n(k, τ ) is the solution of the wave kinetic equation. An interesting implication for laboratory and numerical experiments is that

the wave kinetic equations hold for typical initial amplitudes and phases chosen from an RPA ensemble. Some technical comments are in

order. As explained in Section 2, the very definition of our generating function (26) entails that, in the thermodynamic limit, the solution

has the form (28) if the initial field is RPA. It is important to remark that this is an exact solution of Eq. (97), which has been derived

asymptotically under the sole RP assumption. Therefore, the result is not trivial, besides constituting a consistency check.

4. Derivation of the PDF equation

With respect to Section 3, we now consider a second possible limit involving only a fixed number of modes km, m = 1, 2, . . . ,M , as
the total number N →∞. As before, one must keep J̃k = O(1) for all modes. We thus define the joint characteristic function:

Z
(M)
L (λ1, . . . , λM , µ1, . . . , T ; k1, . . .)

.=
⟨
exp

[
i

M∑

m=1
λm J̃kM (T )

]
M∏

m=1
ψ
µm

km
(T )

⟩
. (105)

This is the characteristic function (110) of [33],which corresponds to the generating function (68) of [25] butwithλkm = i
(

L
2π

)d
λm, Jkm =(

2π
L

)d
J̃km , m = 1, . . . ,M , and for all the other modes λk = 0. It also corresponds to the generating functional (5.15) of [1], with same λm

and J̃m, but with an imaginary unit in the exponent, and with a finite numberM of nonzero arguments.
The reason why λm is finite and λkm is not is that the exponent of (105) contains finitely many terms λm J̃km , each of which is finite.

Then, as J̃km must be finite as L→∞, the same holds for λm.

We use the symbol Z
(M)
L (λ,µ, T ) when there is no possibility of confusion, and we use the perturbation expansion in ϵ giving (60) for

the generating functions (∀M), with the definitions (61) of χL(λ,µ, T ) and (62)–(66) of the J ’s. As λm is finite, different relations hold for

the orders of the prefactors in the J ’s. In particular, for J1, J2, J3 we have:

λk1 +
µk1

2J̃k1

, λk1 + λ
2
k1
J̃k1 −

µ2
k1

4J̃k1

= O
(
Ld
)

(106)

and for J4, J5 we have:

1

2
λ2k1 +

µk1

4J̃2k1

(µk1

2
− 1

)
+
λk1µk1

2J̃k1

, λk1λk2 ,

(
λk1 +

µk1

4J̃k1

)
µk2

J̃k2

= O
(
L2d
)
. (107)

To calculate the leading order contributions, one must note that some wavenumbers are discrete and take onlyM values (mode 1 for J1 -

J4, modes 1 and 2 for J5), whereas all the others are continuous in the infinite-box limit. This is important to distinguish O(Ld) from O(M)

terms.

4.1. Derivation of the PDF hierarchy

Collecting the contributions of the J1 − J5 terms enumerated in Appendix D.1, we can neglect nonsecular terms. Furthermore,

ω̃k + ω̃−k = 0 is never fulfilled, so we ignore the non-resonant terms with a δ(ω̃k + ω̃−k) contribution. The two remaining contributions

contain δµ,0, hence we can write:

δµ,0⟨J̃je
∑

m iλm J̃m⟩J = −iδµ,0
∂

∂λj
Z

(M) (108)

for wavenumber kj, j = 1, . . . ,M . Similarly, for mode k ̸= km,∀m = 0, . . . ,M we have:

δµ,0i⟨J̃ke
∑

m iλm J̃m⟩J = δµ,0
∂

∂λk
Z

(M+1)
⏐⏐⏐⏐
λk=0

. (109)

Subsequently, we consider an intermediate time between the linear time and the nonlinear time, cf. Section 3.3.2, T ∼ 1
ϵ
, and we

take the ϵ → 0 limit. Because Z(M)(λ,µ, T ) = χ (M)(λ,µ, T ) + χ (M)∗(−λ,−µ, T ), while χ (M)(λ,µ, T ) = χ (M)∗(−λ,−µ, T ) and

Z(M)(λ,µ, T ) = 2χ (M)(λ,µ, T ), we get:

Z(M)(T )− Z(M)(0)

ϵ2T
∼
∂Z(M)

ϵ2∂T
(λ,µ, T ) =

∂Z(M)

∂τ
(λ,µ, τ ) (110)



where τ = ϵ2T is the nonlinear time. This leads to4 :

∂Z(M)

∂τ
(λ,µ, τ ) = −192πδµ,0

×
M∑

j=1

∑

(1,σ2,σ3,σ4)

∫
ddk2d

dk3d
dk4δ

j
234δ

(
ω̃

j
234

) ⏐⏐H−σ2σ3σ4j234

⏐⏐2

×
{(
λj + λ2j

∂

∂λj

) ∂3Z(M+3)

∂λ2∂λ3∂λ4

⏐⏐⏐⏐
λ2=λ3=λ4=0

− σ2λj
∂3Z(M+2)

∂λj∂λ3∂λ4

⏐⏐⏐⏐
λ3=λ4=0

− σ3λj
∂3Z(M+2)

∂λj∂λ2∂λ4

⏐⏐⏐⏐
λ2=λ4=0

− σ4λj
∂3Z(M+2)

∂λj∂λ2∂λ3

⏐⏐⏐⏐
λ2=λ3=0

}
(111)

for M = 1, 2, 3, . . .. An important fact is that δµ,0 implies that the RP property of the initial wavefield is preserved in time. By Fourier
transformation in the λ variables, one can obtain an equivalent hierarchy of equations for the joint PDFs P (M)(s1, . . . , sM , τ ; k1, . . . ,kM ),

which appears more practical to implement boundary conditions on the amplitudes.

4.2. The M-mode PDF equations

From the definition of the joint characteristic function of amplitudes, one has:

Z
(M)(λ1, . . . , λM ) =

⟨
e
∑

m iλmsm

⟩
J

=
∫

ds1 . . . dsMe
∑

m iλmsmP
(M)(s1, . . . , sM ) (112)

P (M) is the Fourier transform of Z(M), so that:

P
(M)(s1, . . . , sM ) =

1

2π

∫
dλ1 . . . dλMe−

∑
m iλmsmZ

(M)(λ1, . . . , λM ). (113)

A straightforward Fourier transformation yields the following continuity equation:

Ṗ
(M) +

M∑

m=1

∂

∂sm
F

(M)
m = 0, (114)

F
(M)
m =− 192πsm

∑

σ=(1,σ2,σ3,σ4)

∫
ddk2d

dk3d
dk4δ

m
234δ

(
ω̃m

234

) ⏐⏐H−σ2σ3σ4m234

⏐⏐2

×
[ ∫

ds2ds3ds4s2s3s4
∂P (M+3)

∂sm
+ σ2

∫
ds3ds4s3s4P

(M+2)

+ σ3

∫
ds2ds4s2s4P

(M+2) + σ4
∫

ds2ds3s2s3P
(M+2)

]
. (115)

This is not a closed equation for P (M), as it contains P (M+2) and P (M+3), forM = 1, 2, 3, . . ..

4.3. Relation with Peierls equation

As recalled above, a similar diagrammatic calculation for the 3-wave case was performed in Ref. [25]. Starting from the same definition

of generating function adopted here, the authors derived the canonical Peierls equation, in their version of the thermodynamic limit [1,25].

Later, it was shown that certain terms contributing to the Peierls equation are actually negligible, if the variables are normalized so that

the characteristic functional remains finite in the thermodynamic limit [33]. Consequently, an equation that at the leading order differs

from the Peierls equation was derived in Ref. [33].

Because the PDF, rather than the generating function, is the object of physical interest, in this subsection we investigate the relation

between the two asymptotic equations for the PDF, and we show that under two assumptions the Peierls equation reduces to the other

leading order equation.We compare our PDF equations (114), (115), that follows from the leading-order Eq. (111), with the 4-wave Peierls

PDF equation, Eq. (6.120) of Ref. [1], that has been derived taking the Laplace transform of the generating function equation, obtained in

the thermodynamic limit, in formal analogy with the 3-wave case. Such a PDF equation, that takes the form:

Ṗ = πϵ4
∫
|W ij

nm|
2
δ(ωij)δijnm

[
δ

δsj
+

δ

δsl
−

δ

δsm
−

δ

δsn

]

×
(
sjslsmsn

[
δ

δsj
+

δ

δsl
−

δ

δsm
−

δ

δsn

]
P

)
dkjdkldkmdkn (116)

4 The continuous quantities are identified by a bar, and symmetrization is made in the three continuous modes k2 , k3 , k4 .



is meant to describe the behavior of an infinite set of modes. Unlike our case, there are no spins in Eq. (116), but this is irrelevant for the
following discussion. Eq. (116) can also be written as a continuity equation, which reads:

Ṗ +
∫

∂

∂sj
Fjdkj = 0, (117)

Fj = −4πϵ4sj
∫
|W lj

nm|
2
δ(ωlj)δljnmsjslsmsn

[
δ

δsj
+

δ

δsl
−

δ

δsm
−

δ

δsn

]
P dkldkmdkn. (118)

To compare with our M-mode equation, let us assume that the Peierls equation holds with same form also in the case of large but finite
N, so that we can write:

Ṗ
(N) +

N∑

j=1

∂

∂sj
F

(N)
j = 0, (119)

F
(N)
j = −4πϵ

4sj

(
2π

L

)3d N∑

l,m,n=1
|W lj

nm|
2
δ(ωlj)δljnmsjslsmsn

[
δ

δsj
+

δ

δsl
−

δ

δsm
−

δ

δsn

]
P

(N). (120)

This is tantamount to commute the thermodynamic limit and the T ∼ 1/ϵ → ∞ limit with the Laplace transform, if the N → ∞ limit
can be taken without further specifications.5 Now, one can integrate out N −M variables, as in the standard BBGKY procedure, to obtain

Ṗ
(M) +

M∑

j=1

∂

∂sj
F

(M)
j = 0, (121)

with the flux given by

F
(M)
j =− 4πϵ4

(
2π

L

)3d

×
{

N∑

l,m,n=M+1
|W lj

nm|
2
δ(ωlj)δljnm

(∫
slsmsn

∂PM+3

∂sj
dsldsmdsn

−
∫

smsnP
M+2dsmdsn + 2

∫
smslP

M+2dsmdsl

)

+
M∑

m,n=1

N∑

l=M+1
|W lj

nm|
2
δ(ωlj)δljnm

[
−sjsmsn

(
P

M +
∂

∂sj

∫
dslslP

M+1
)]

+
M∑

l=1

N∑

m,n=M+1
|W lj

nm|
2
δ(ωlj)δljnm2

(∫
slsmsn

∂PM+2

∂sj
dsmdsn +

∫
slsmP

M+1dsm

)}
. (122)

Analogously to the analysis of Ref. [33] for the 3-wave case, we note that this flux contains more terms than the leading order (114)–(115).
Nonetheless, taking N ≫ M , and assuming that all the terms are individually of the same size, one may obtain the leading order only from
the sum having all three indices l,m, n in [N −M,N]. The remaining terms can be neglected simply because they constitute a negligibly
small set compared to the others. Under this assumption, the last two lines of Eq. (123) can be discarded, and the flux can be written as:

F
(M)
j =− 4πϵ4

(
2π

L

)3d N∑

l,m,n=1
|W lj

nm|
2
δ(ωlj)δljnm

{(∫
slsmsn

∂PM+3

∂sj
dsldsmdsn

−
∫

smsnP
M+2dsmdsn + 2

∫
smslP

M+2dsmdsl

)
. (123)

Then, taking the thermodynamic limit (N, L→∞) leads to our Eq. (115).
In summary, the procedure based on the Peierls equation leads to our same results, provided: (i) the thermodynamic limit is not

singular; (ii) the wave modes in the first M modes can be neglected, compared to all the others.

4.4. The 1-mode PDF equation

It is interesting to note that factorized initial conditions (which is equivalent to RPA property at the initial time) imply factorized
solutions for Eq. (115), ∀τ ≥ 0:

Z
(M)(λ1, . . . , λM , τ ; k1, . . . ,kM ) =

M∏

m=1
Z(λm, τ ; km), τ ≥ 0 (124)

5 Strictly speaking, here the derivative is only a finite difference.



with each Z(λk, τ ; k) satisfying
∂Z(λk, τ ; k)

∂τ
= iηkλk

(
1+ λk

∂

∂λk

)
Z(λk, τ ; k)− γkλk

∂Z

∂λk
(λk, τ ; k) (125)

where

ηk
.= 192π

∑

σ

∫
ddk2d

dk3d
dk4δ

k
234δ

(
ω̃k

234

) ⏐⏐H−σ2σ3σ4k234

⏐⏐2n(k2)n(k3)n(k4) ≥ 0, (126)

γk
.= 192π

∑

σ

∫
ddk2d

dk3d
dk4δ

k
234δ

(
ω̃k

234

) ⏐⏐H−σ2σ3σ4k234

⏐⏐2

×
[
σ2n(k3)n(k4)+ σ3n(k2)n(k3)+ σ4n(k2)n(k3)

]
. (127)

For the PDF hierarchy an analogous result holds. Substituting a factorized solution into Eq. (114) we get the equation for the 1-mode PDF:

P
(M)(s1, . . . , sM , τ ; k1, . . . ,kM ) =

M∏

m=1
P(sm, τ ; km)

.=
M∏

m=1
Pm, τ ≥ 0. (128)

Eq. (114) transforms into:

∏

m̸=1
Pm
∂P1

∂τ
+
∏

m̸=2
Pm
∂P2

∂τ
· · · =

∂

∂s1

{
192πs1

∑

σ

∫
ddk2d

dk3d
dk4δ

1
234δ

(
ω̃1

234

)

×
⏐⏐H−σ2σ3σ41234

⏐⏐2 ∏

m̸=1
Pm

[
∂P1

∂s1

∫
ds2s2P2

∫
ds3s3P3

∫
ds4s4P4

+
(
σ2P1

∫
ds3s3P3

∫
ds4s4P4 + (2↔ 3)+ (2↔ 4)

)]
+ · · ·

}
. (129)

Recall that
∫
dsisiP(si, τ ; ki) = n(ki, τ ), because of the definition of the wave spectrum. Eq. (129) is made ofM independent parts, each of

which can be written in the continuity equation form:

∂P

∂τ
=
∂

∂s

[
s
(
ηk
∂P

∂s
+ γkP

)]
(130)

where ηk and γk are the same defined in (126) and (127). These are nonlinear Markov evolution equations in the sense of McKean, since
the solutions satisfy the set of self-consistency conditions:

n(k, τ ) =
∫

ds sP(s, τ ; k) (131)

where n(k, τ ) is the same spectrum that appears in the formulas for the coefficients (126) and (127).
These equations are the exact solutions of a model of ‘‘self-consistent Langevin equations’’. Here, the model equations take the form of

the stochastic differential equations

dsk = (ηk − γksk)dτ +
√
2ηkskdWk, (132)

interpreted in the Ito sense, with self-consistency determination of n(k, τ ) via (131). This generalizes the 3-wave case of Ref. [33] where,
P(s, τ ; k) relaxes to

Q (s, τ ; k) =
1

n(k, τ )
exp(−s/n(k, τ )), (133)

which corresponds to a Gaussian distribution of the canonical variable b̃ =
(
2π
L

)d/2
b. For any solution n(k, τ ) of the wave kinetic equation,

Q (s, τ ; k) solves the 1-mode PDF equation (130). Also, the relaxation of a general solution P to Q is indicated by an H-theorem for the
relative entropy

H(P|Q ) =
∫

ds P(s) ln

(
P(s)

Q (s)

)
=
∫

ds P(s) ln P(s)+ ln n+ 1. (134)

This is a convex function of P, non-negative, and vanishing only for P = Q . Taking the time-derivative using (130), it is straightforward to
derive

d

dτ
H(P(τ )|Q (τ )) = −η

∫
ds

s|∂sP(s, τ )|2

P(s, τ )
+

η

n(τ )
, (135)

where∫
−s∂sP(s, τ ) ds =

∫
P(s, τ ) ds = 1 (136)

is used to cancel terms involving γ . The self-consistency condition n(τ ) =
∫
s P(s, τ ) ds implies

d

dτ
H(P(τ )|Q (τ )) = −η

(∫
ds

s|∂sP(s, τ )|2

P(s, τ )
−

1∫
s P(s, τ ) ds

)
≤ 0. (137)



The inequality follows from the Cauchy–Schwarz inequality applied to (136)

1 =
∫ √

sP ·
√

s

P
(−∂sP) ds ≤

√∫
sP(s) ds ·

∫
s|∂sP|2

P
ds. (138)

Equality holds and relative entropy production vanishes if and only if
√
sP = c

√
s
P
(−∂sP), or P = −c∂sP for some c. The solution of this

latter equation gives P = Q with n = c. Then, P(τ ) relaxes to Q (τ ) as τ increases, assuming that kinetic theory holds over the entire

amplitudes range s ∈ (0,∞).

5. Conclusions

1. We have worked within the framework of WWT. We have considered a Hamiltonian system in d dimensions, with a quartic

small perturbation implying 4-wave interactions. From Hamilton equations, we have derived the equations of motion expressed

in canonical normal variables.

2. To reach a closure for the problem, we have assumed that the canonical wavefield has the RP property at the initial time, allowing

a statistical description of the field through its modes. We have averaged over phases using a method based on the Feynman–Wyld

diagrams.

3. For the large-box limit,wehave normalized the amplitudes to keep thewave spectrum finite,which is crucial for a correct evaluation

of the contributions of the different diagrams [33]. The result differs significantly from the previous approach of Ref. [1], but it has

been shown that the approach of Ref. [1] is equivalent to ours, under two technical assumptions.

4. We have formally taken the large-box (thermodynamic) limit, followed by the small nonlinearity limit, obtaining the following

closed equation:

dZ[λ,µ, τ ]
dτ

= −192πδµ,0
∑

σ

∫
ddk1d

dk2d
dk3d

dk4λ (k1) |H−σ2σ3σ41234 |2δ(ω̃1
234)

× δ1234
(

δ3Z

δλ(k2)δλ(k3)δλ(k4)
− σ2

δ3Z

δλ(k1)δλ(k3)δλ(k4)
+

− σ3
δ3Z

δλ(k1)δλ(k2)δλ(k4)
− σ4

δ3Z

δλ(k1)δλ(k2)δλ(k3)

)
(139)

where τ is the nonlinear time. Note that:

• Due to the δµ,0 factor, the RP property of the initial field is preserved as time goes on. This fact is crucial as it ensures the

validity of the equation itself at τ > 0.

• The stricter initial RPA property for the wavefield, and thus a factorized form for Z[λ,µ, 0], entails a solution preserving the

factorized form in time.

• Differentiating the characteristic functional in the variables λk’s, one obtains the spectral hierarchy, which is analogous to

the BBGKY hierarchy of Kinetic Theory. Assuming RPA for the initial field, the hierarchy is closed obtaining the kinetic wave

equation for the spectrum. This connects our work, that gives for the first time the general derivation for the 4-wave case,

with the existing literature.

5. We have defined a different characteristic function, for a finite number of modes M , and derived a hierarchy of equations for its time

evolution for any value ofM , which reads:

∂Z(M)

∂τ
(λ,µ, τ ) = −192πδµ,0

×
M∑

j=1

∑

(1,σ2,σ3,σ4)

∫
ddk2d

dk3d
dk4δ

j
234δ

(
ω̃

j
234

) ⏐⏐H−σ2σ3σ4j234

⏐⏐2

×
{(
λj + λ2j

∂

∂λj

) ∂3Z(M+3)

∂λ2∂λ3∂λ4

⏐⏐⏐⏐
λ2=λ3=λ4=0

− σ2λj
∂3Z(M+2)

∂λj∂λ3∂λ4

⏐⏐⏐⏐
λ3=λ4=0

− σ3λj
∂3Z(M+2)

∂λj∂λ2∂λ4

⏐⏐⏐⏐
λ2=λ4=0

− σ4λj
∂3Z(M+2)

∂λj∂λ2∂λ3

⏐⏐⏐⏐
λ2=λ3=0

}
. (140)

6. By taking the Fourier transform of Eq. (140), we have derived a hierarchy for the M-mode joint PDFs, which can be written in

continuity equation form:

Ṗ
(M) +

M∑

m=1

∂

∂sm
F

(M)
m = 0, (141)

F
(M)
m =− 192πsm

∑

σ=(1,σ2,σ3,σ4)

∫
ddk2d

dk3d
dk4δ

m
234δ

(
ω̃m

234

) ⏐⏐H−σ2σ3σ4m234

⏐⏐2

×
[ ∫

ds2ds3ds4s2s3s4
∂P (M+3)

∂sm
+ σ2

∫
ds3ds4s3s4P

(M+2)



+ σ3

∫
ds2ds4s2s4P

(M+2) + σ4
∫

ds2ds3s2s3P
(M+2)

]

where F
(M)
m is the flux for one of theM modes. As in the case of Eq. (139) we have:

• RP property for the wavefield at τ = 0 remains fulfilled for the field at τ > 0. So, Eq. (140) is valid for any nonlinear time
τ ≥ 0.
• An initial RPA field remains RPA under the evolution of Eq. (141).
• Under RPA, the hierarchy (141) can be closed to yield the 1-mode PDF equation:

∂P

∂τ
=
∂

∂s

[
s
(
ηk
∂P

∂s
+ γkP

)]
, (142)

ηk
.= 192π

∑

σ

∫
ddk2d

dk3d
dk4δ

k
234δ

(
ω̃k

234

) ⏐⏐H−σ2σ3σ4k234

⏐⏐2

× n(k2)n(k3)n(k4) ≥ 0, (143)

γk
.= 192π

∑

σ

∫
ddk2d

dk3d
dk4δ

k
234δ

(
ω̃k

234

) ⏐⏐H−σ2σ3σ4k234

⏐⏐2

×
[
σ2n(k3)n(k4)+ σ3n(k2)n(k3)+ σ4n(k2)n(k3)

]
(144)

that can be efficiently treated numerically. The spectrum n(k) in ηk and γk can be determined using the kinetic equation.
• Our Eq. (142) is more general than Eq. (6.51) of [1], as it contains all interactions, not only the ‘‘2 waves → 2 waves’’

interactions.6

• An important solution to (145) is represented by the Rayleigh distribution:

Q (s, τ ; k) =
1

n(k, τ )
e−s/n(k,τ ) (145)

corresponding to equilibrium. In absence of forcing and damping, P tends to the Rayleigh form (145) for any typical initial
condition. This was tested numerically in [34].

7. In themost general case, Eqs. (139)–(141)would have some supplementary terms (see Eq. (90)). However, as argued in Section 3.3.3,
we think they are irrelevant for the known physical systems of wave turbulence, since the resonant condition is never fulfilled.

8. For any system where the leading nonlinear phenomena are N-wave resonances, our results suggest the conjecture that the
coefficient preceding the right-hand side in Eq. (139) equals 12i2−NAN , where AN is a number and A3 = 3, A4 = 16. Integration
over the N wavenumber variables, on which also the Hamiltonian coefficients and the two delta’s depend yields:

(
δN−1Z

δλ(k2)δλ(k3) . . . δλ(kN )
−

N∑

i=2
σi

δN−1Z∏
j̸=i δλ(ki)

)
. (146)

9. We conclude noting that our derivation of the wave kinetics is not mathematically rigorous, as is common in the specialized
literature. In particular, analogously to Ref. [33] for 3-wave systems, we have not shown that O(ϵ3) terms are negligible in the
perturbation expansion (48). The kinetic limit consists indeed of a delicate combination of large box and small nonlinearity
limits [43], whereas rigorous proofs based on asymptotic methods are problematic and presently limited to particular systems,
see e.g. Ref. [44]. At the same time, treating a discrete system in a finite volume and successively taking a suitable large system
limit makes physical sense: the various quantities are well defined, classical mechanics issues are naturally cast in a discrete
formalism, and splitting schemes can bemathematically justified in a variety of circumstances, including kinetic equations [45–47].
Furthermore, this approach allows us to identify and test the properties of the leading order equations of the 4-wave dynamics. As
a matter of fact, the recent work [34] has demonstrated the agreement of part of our results with the kinetic equation in [42], that
had been derived through asymptotic methods [41]. Ref. [34] also shows the agreement of the predictions of the PDF equation with
direct numerical simulations of relevant 4-wave systems. This further vindicates the approach developed in the present paper.
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Appendix A. Consistency with Choi et al. 2005 [32]

Let us assess the consistency of Eq. (50) with Eq. (3) in [32], which only concerns ‘‘2 waves → 2 waves’’ interactions. If Eq. (50) is to
describe that particular case, the following factor has to be added:

(
δσ2,1δσ3,1δσ4,−1 + δσ2,1δσ3,−1δσ4,1 + δσ2,−1δσ3,1δσ4,1

)
(A.1)

6 Remarkably, see the system of vibrating elastic plates treated in [42].



turning (50) into7 :

b
(1)+
1 (T ) =

∑

k2k3k4

∗
L
+++−
1234 b+2 b

+
3 b
−
4 ∆T (ω̃

12
34)δ

12
34 + (2↔ 4)+ (3↔ 4)

= 12i
∑

k2k3k4

H
−++−
1234 b+2 b

+
3 b
−
4 ∆T (ω̃

12
34)δ

12
34

− 6
∑

k3

L
+++−
1133 |b3|

2∆Tb
+
1 . (A.2)

We used Eq. (42) and definition (12). Then, definition (44) yields:

ib
(1)+
1 (T ) = −12

∑

k2k3k4

H
−−++
1234 b−2 b

+
3 b
+
4 ∆T (ω̃

12
34)δ

12
34 +

Ω1

ϵ
b+1 T . (A.3)

This can be compared with Eq. (3) of [32], which in our notation writes:

ib
(1)+
1 (T ) =

∑

k2k3k4

W
12
34b
−
2 b
+
3 b
+
4 ∆T (ω̃

34
12)δ

34
12 −

Ω1

ϵ
b+1 T . (A.4)

1. The two equations differ by a sign. This is due to a different definition of the initial field Ak
.= 1√

2
(pk + iqk), defined as 1√

2
(qk + ipk)

in [32]. This also explains why in Eq. (A.4) there are the factors∆T (ω̃
34
12) δ

34
12 instead of our∆T (ω̃

12
34) δ

12
34 in (A.3).

2. Recall that H−−++1234 = 1
24
W12

34 , where W

4
instead of W

2
[32]. So, writing

H
−−++
1234

.=
1

2

1

3

1

2
W

12
34 =

1

12
W

12
34 (A.5)

one obtains

12 H
−−++
1234 = W

12
34 . (A.6)

Therefore, the first two terms in the right handside of Eqs. (A.3) and (A.4) are consistent.
3. In [32] the linear terms inside the interaction term are grouped inΩ1 this way8 :

Ω1
.= 2ϵ

∑

k2

W
12
12 |A2(0)|2 = 2ϵ

∑

k2

W
12
12 |b2|2. (A.7)

Then, from definition (44) and using (12) again, ourΩ1 obeys:

Ω1
.= 24ϵ

∑

k3

H
−++−
1133 |b3|

2. (A.8)

Replacing 12 H
−++−
1133 = 12 H

−−++
1313 with W13

13 using (A.6) again, we obtain:

Ω1 = 2ϵ
∑

k3

W
13
13 |b3|2 (A.9)

which is identical to (A.7).

We can thus state that Eqs. (A.3) and (A.4) are consistent, where (A.3) results from Eq. (50) for a Hamiltonian like the one of Ref. [32],
containing only (2 → 2) interactions. In other words, Eq. (3) of Ref. [32] is obtained as a particular case of our evolution Eq. (50) for the
first-order term. This result is a check meant to assess the agreement of the formalism used in this paper with how 4-wave systems have
already been treated in the past.

Appendix B. Proof of the lemma in Section 3.2.1

• Role of couplings
The initial wavefield is an RP field and let us assume the ki’s are distinct. Then:

⟨∏

i

ψ
pi
i

⟩
ψ
=
∏

i

δpi,0.

So, the phase average
⟨∏

l

ψ
µl
l ψ1 · · · · · ψpψ

∗
p+1 · · · · · ψ∗q

⟩

is the sum of products of Kronecker delta’s. Before phase-averaging each ki ∈ Λ∗L , i = 1, . . . , q carries an independent degree of
freedom. Each delta other than δµl,0 would cause the degrees of freedom to drop by one. The phase average is zero, unless either
ψk’s and ψ

∗
m’s cancel each other (internal coupling) or they cancel with ψ

µl
l (external coupling).

7 In this paragraph we omit the superscript (0) to simplify the notation.
8 We recall that at time t = 0 the fields Ak , ak and bk are equal, because they differ by an exponential factor with t in the exponent, which gives 1 at the initial time.



Every external coupling concerning ki would lead to a Kronecker delta δµi,−1 or δµi,+1, which would cause the degrees of freedom
to drop by one. Every internal coupling of pair ki, kj (with σi = +1, σj = −1), would lead to a Kronecker delta δki,kj which would
cause the degrees of freedom to drop by one.
Suppose a term has m internal couplings, so that 2m wavenumbers are internally coupled (each internal coupling concerns a pair
of wavenumbers). Then, the term is non-zero only if the remaining q − 2m wavenumbers are externally coupled. Thus, the term
totally drops by m + (q − 2m) = q − m degrees of freedom, that is the non-null contribution of the term is given by a product of
q−m Kronecker delta’s different from δµl,0.
Therefore, a diagram hasm free wavenumbers, wherem is the number of internal couplings.
• Role of vertices

Consider the role of the momentum conservation delta’s at the vertices and how they act with respect to the degrees of freedom.

– Diagrams with one vertex
The Kronecker delta of momentum conservation does not lower the degrees of freedom of the graph:

1. if there are four external couplings there are no more degrees of freedom to reduce;
2. if there are one internal coupling and two external couplings there is one degree of freedom, but in the momentum

conservation delta the two internally coupled terms delete each other and thus one wavenumber remains free;
3. if there are two internal couplings, two pairs of two wavenumbers delete each other in the momentum conservation

delta, and then two free wavenumbers are preserved.

– Diagrams with two vertices
The bridge has initially one degree of freedom. Let us consider the three wavenumbers on one side of the bridge.

1. No cross-internal couplings

∗ If those three wavenumbers are pinned to a blob, the momentum conservation delta fixes the bridge to a value so
that it does not bring any degree of freedom to the diagram;
∗ if one is pinned to a blob and two are in-internally coupled, themomentum conservation delta fixes the bridge to the

value of the pinned wavenumber, because in the condition of the delta the two in-internally coupled wavenumbers
delete each other.

2. One cross-internal coupling
If only one wavenumber is cross-internally coupled with a wavenumber on the other side of the bridge, the two
momentum conservation delta’s (one is redundant) reduce from two to one the degrees of freedom of the bridge and
the cross-internal coupling.

3. Two cross-internal couplings
If two wavenumbers on one side are internally coupled with two wavenumbers on the other side (so the other two
wavenumbers, one for each side, are externally coupled), the two delta’s, giving the same condition, reduce the degrees
of freedom of the bridge and the two cross-internal couplings from three to two.

4. Three cross-internal couplings
If all the three wavenumbers on one side are cross-internally coupled with the other side, the two delta’s reduce the total
degrees of freedom from four to three.

In these four cases, with the only purpose of counting the degrees of freedom, it is as if the bridge never brings any degree
of freedom to the diagram and each cross-internal coupling brings one, as a normal internal coupling.

We conclude, both for one vertex and two vertices diagrams, that the momentum conservation delta’s only delete one degree of
freedom when a bridge is present.

Collecting the contributions of the couplings and of the vertices, the lemma is proved.

Appendix C. Phase averaging with Feynman–Wyld diagrams

The expression of J2 in action–angle variables, changing variables in (63), is the following (see Fig. C.8):

J2 =
1

2

∑

1

∑

234

∗∑

567

∗(
λ1 + λ21J1 −

µ2
1

4J1

)
L
+σ2σ3σ4
1234 L

−σ5σ6σ7
1567

√
J2J3J4J5J6J7

×
⟨
ψ
σ2
2 ψ

σ3
3 ψ

σ4
4 ψ

σ5
5 ψ

σ6
6 ψ

σ7
7

∏

k

ψ
µk

k

⟩
ψ
∆T

(
ω̃1

234

)
∆T (ω̃1567) δ

1
234δ1567. (C.1)

• Type 0 diagrams: having three free wavenumbers, these are the best candidates for the leading contributions to J2.

1. The contribution associated with diagram 1 in Fig. C.9 is the following:

1

2

∑

1

∑

234

∗′∑

567

∗′(
λ1 + λ21J1 −

µ2
1

4J1

)
L
+σ2σ3σ4
1234 L

−σ5σ6σ7
1567

√
J2J3J4J5J6J7

×
∏

m

δµm,0∆T (σ4ω̃4 − ω̃1)∆T (ω̃1 − σ4ω̃4) δk1,σ4k4δk2,k3δk4,k7δk5,k6 (C.2)

σ = (1, σ2,−σ2, σ4, σ5,−σ5,−σ4) .



Fig. C.8. Diagram associated to J2 before phase averaging.

Fig. C.9. Diagrams 1 and 2 (type 0 diagrams).

The internal coupling between 2 and 3 and between 5 and 6 leads to∆T ’s and vertices δ’s with just two terms each. Then, the

δk1,σ4k4 term (left vertex) is the only independent vertex condition, due to the internal coupling between 4 and 7. In turn, the∏
mδµm,0 factor is due to the absence of external couplings. However, this graph does not entirely contribute to J2. Applying

Rule 5 one finds two cases in graph 1 (Fig. C.9):

– k1 = k4 H⇒ σ4 = 1 This term has been excluded from the interaction when frequency renormalization was done.

– k1 = −k4 H⇒ σ4 = −1 Now, neither the left vertex nor the right one (k7 = −k1) are in the configurations giving linear

terms. We may conclude that this second case is effectively contributing to J2, so that diagram 1 finally gives:

1

2

∑

σ

∑

k

′(
λ1 + λ21J1 −

µ2
1

4J1

)
L
+σ2σ3σ4
1234 L

−σ5σ6σ7
1567

√
J2J3J4J5J6J7 δµ,0

×∆T (−ω̃1 − ω̃−1)∆T (ω̃1 + ω̃−1) δk4,−k1δk4,k7δk2,k3δk5,k6 (C.3)

σ = (1, σ2,−σ2,−1, σ5,−σ5, 1)

k = (k1, k2, k3, k4, k5, k6, k7) .

2. The contribution to J2 of diagram 2 in Fig. C.9 is the following:

1

2

∑

σ

∑

k

′(
λ1 + λ21J1 −

µ2
1

4J1

)
L
+σ2σ3σ4
1234 L

−σ5σ6σ7
1567

√
J2J3J4J5J6J7

×
∏

m

δµm,0∆T

(
ω̃1

234

)
∆T

(
ω̃234

1

)
δ1234δk2,k5δk4,k7δk3,k6 (C.4)

σ = (1, σ2, σ3, σ4,−σ2,−σ3,−σ4) .

The Kronecker δ of the right vertex is redundant, the conditions of Rule 5 for a graph to contribute are met, so there are no

more simplifications in this case (we omit ∗ on the sums).

• Type I diagrams: diagrams such as 3 and 4 in Fig. C.10 have two free wavenumbers, hence two unconstrained sums and, besides

type 0 graphs, they represent the second choice for the leading order terms in J2. Together with those with permuted indices, they

represent all type I diagrams.

Main contributions to J2. If present, the terms proportional to µ2
1 carry a factor O(L−2d) and are greater in order than the terms

proportional to λ(k1), which have a factor O(L−3d).



Fig. C.10. Diagrams 3 and 4 (type I diagrams).

Fig. C.11. Diagram associated to J3 before phase averaging.

• Type 0 diagrams: the contributions of diagrams 1 and 2 are of order O
(
L−3d

)
because k1 is not pinned and so the average over

phases gives a factor δµ,0, implying µ1 is identically zero. These diagrams have three free summations, so they are of order

O
(
L−3d

)
O
(
L3d
)
= O(1). In total, there are 9 graphs similar to 1, because as far as the left vertex is concerned, the role of k4 can

be played by k2, k3 and k4, and, as far as the right vertex is concerned, the role of k7 can be played by k5, k6 and k7. So there are
3× 3 possibilities. There are 6 graphs similar to 2: one configuration has k2 coupled with one of the three different wavenumbers
on the right side. In turn, k3 can be coupled with one of the two remaining wavenumbers and k4 has no more freedom to make a
choice. So, there are 3× 2× 1 different ways to ‘‘close’’ J2 with the shape of diagram 2.
• Type I diagrams: note that neither 3 nor 4 (our type I graphs) have k1 pinned. Thanks to an argument similar to the one used above,
µ1 is null because of the presence of the δµ,0. Thus, the two free summations of these graphs make their total contribution at most

of order O
(
L−3d

)
O
(
L2d
)
= O

(
L−d
)
, which is subleading with respect to the O(1) terms.

• All the other types of diagrams represent subleading contributions.

Just keeping the terms of order O(1), J2 takes the form of Eq. (79).9

Calculation of J3. Substituting the action–angle variables into the expression of J3 (64), we obtain

J3 =
∑

1

[ ∑

234567

∗(
λ1 +

µ1

2J1

)
L
+σ2σ3σ4
1234 L

σ4σ5σ6σ7
4567

√
J1J2J3J5J6J7 (C.5)

×
⟨
ψ−1 ψ

σ2
2 ψ

σ3
3 ψ

σ5
5 ψ

σ6
6 ψ

σ7
7

∏

k

ψ
µk

k

⟩
ψ
ET
(
ω̃1

23567, ω̃
1
234

)
δ1234δ

4
567

+ (4←→ 2)+ (4←→ 3)+
∫ T

0

D1b1dt
]
. (C.6)

This equation is represented by the diagram shown in Fig. C.11. We start by taking into account the diagrams associated to J3, without
the last term containing D1. Later, we will separately consider this term and its contribution. The first diagrams we consider are the type
0 diagrams (3 free wavenumbers).

1. Diagram 1 in Fig. C.12 contributes to J3 as:

∑

1

∑

234567

∗′(
λ1 +

µ1

2J1

)
L
+σ2σ3σ4
1234 L

σ4σ5σ6σ7
4567

√
J1J2J3J5J6J7

∏

m

δµm,0

× ET (0, σ3ω̃3 + σ4ω̃4) δσ4k4,−σ3k3δk1,k2δk3,k7δk5,k6 (C.7)

σ = (1, 1, σ3, σ4, σ5,−σ5,−σ3) .
The internal couplings between 1 and 2, between 5 and 6 and between 3, 4 and 7 result into a great simplification inside the
arguments of ET and the vertices delta’s (both of which give the same condition). The term

∏
mδµm,0 is due to the fact that there are

no external couplings. Similarly to the case of graph 1 of J2 (Fig. C.9), this graph is not entirely contributing to J3. Applying Rule 5
of our phase-averaging method, in graph 1 there are two cases:

9 Remember that these summations have to be intended with ki ̸= kj , i ̸= j, except when there is explicitly one δki,kj term.



Fig. C.12. Diagrams 1 and 2 (type 0 diagrams).

• k3 = k4 = k7 H⇒ σ3 = −σ4 = −σ7, non contributing;
• k4 = −k3 = −k7 H⇒ σ4 = σ3 = −σ7, contributing and giving:

18
∑

σ

∑

k

′(
λ1 +

µ1

2J1

)
L
+σ2σ3σ4
1234 L

σ4σ5σ6σ7
4567

√
J1J2J3J5J6J7

∏

m

δµm,0

× ET (0, σ3 (ω3 + ω−3)) δk4,−k3δk1,k2δk3,k7δk5,k6 (C.8)

σ = (1, 1, σ3, σ3, σ5,−σ5,−σ3)

k = (k1, k2, k3, k4, k5, k6, k7) .

As amatter of fact, there are 18 graphs similar to 1, because the role of k4 can be played by k2, k3 and k4, and they all give equivalent
results.

2. The contribution to J3 of diagram 2 in Fig. C.12 is the following:

∑

1

∑

234567

∗′(
λ1 +

µ1

2J1

)
L
+σ2σ3σ4
1234 L

σ4σ5σ6σ7
4567

√
J1J2J3J5J6J7

∏

m

δµm,0

× ET (0,−ω̃1 + σ4ω̃4) δk1,σ4k4δk2,k3δk1,k5δk6,k7 (C.9)

σ = (1, σ2,−σ2, σ4, 1, σ6,−σ6) .
The proof of the above expression is analogous to diagram 1, with two cases:

• k1 = k4 = k5 H⇒ σ4 = 1 = σ5, non contributing;
• k4 = −k1 = −k5 H⇒ σ4 = −1 = −σ5, contributing and giving:

9
∑

σ

∑

k

′(
λ1 +

µ1

2J1

)
L
+σ2σ3σ4
1234 L

σ4σ5σ6σ7
4567

√
J1J2J3J5J6J7

∏

m

δµm,0

× ET (0,− (ω̃1 + ω̃−1)) δk1,−k4δk2,k3δk1,k5δk6,k7 (C.10)

σ = (1, σ2,−σ2,−1, 1, σ6,−σ6) .
3. The contribution to J3 of diagram 3 in Fig. C.13 is the following:

18
∑

σ

∑

k

′(
λ1 +

µ1

2J1

)
L
+σ2σ3σ4
1234 L

σ4σ5σ6σ7
4567

√
J1J2J3J5J6J7

∏

m

δµm,0

× ET
(
0, ω̃1

234

)
δ1234δk2,k5δk1,k6δk3,k7 (C.11)

σ = (1, σ2, σ3, σ4,−σ2, 1,−σ3) .
In this case, the pinning between wavenumbers of the same vertex is not done. So, with the condition that the wavenumbers of
each vertex are different from each other (

∑′
), this graph does not vanish because of Rule 5. Multiplicity is 18 also here.

4. From graph 4 (Fig. C.14), we analyze type I diagrams,10 to write the contribution to J3. The right-vertex δ becomes δσ4k4,σ7k7 H⇒
δσ4k4,−σ3k3 . In the left-vertex condition, this yields δk1,σ2k2 ; but k1 ̸= k2 in this graph, so k1 = −k2 and σ2 = −1. Considering the
number of equivalent diagrams obtained by permutation of the indices, this contribution writes:

18
∑

σ

∑

k

′(
λ1 +

µ1

2J1

)
L
+σ2σ3σ4
1234 L

σ4σ5σ6σ7
4567

√
J1J2J3J5J6J7 δµ1,1δµ2,−σ2

×
∏

m̸=1,2
δµm,0ET

(
− (ω̃1 + ω̃−1) ,− (ω̃1 + ω̃−1)+ σ3ω̃3 + σ4ω̃4

)

× δk1,−k2δ−σ3k3,σ4k4δk3,k7δk5,k6 (C.12)

σ = (1,−1, σ3, σ4, σ5,−σ5,−σ3) .

10 We only draw the type I diagrams with k1 pinned, knowing that they give a leading contribution as L→∞, since they allow µ1 ̸= 0 and so they get an extra factor Ld

with respect to the other graphs.



Fig. C.13. Diagram 3 (type 0).

Fig. C.14. Diagrams 4 and 5 (type I diagrams).

Fig. C.15. Diagram 6 (type I).

5. Diagram 5 in Fig. C.14 gives this contribution to J3 (proof similar to above):

9
∑

σ

∑

k

′(
λ1 +

µ1

2J1

)
L
+σ2σ3σ4
1234 L

σ4σ5σ6σ7
4567

√
J1J2J3J5J6J7 δµ1,1δµ7,−σ7

×
∏

m̸=1,7
δµm,0ET

(
− (ω̃1 + σ4ω̃4) ,− (ω̃1 + σ4ω̃4)

)
δk1,σ4k4δk1,σ7k7δk2,k3δk5,k6

σ = (1, σ2,−σ2, σ4, σ5,−σ5, σ7) . (C.13)

6. The contribution to J3 of diagram 6 (Fig. C.15) is:

18
∑

σ

∑

k

′(
λ1 +

µ1

2J1

)
L
+σ2σ3σ4
1234 L

σ4σ5σ6σ7
4567

√
J1J2J3J5J6J7 δµ1,1δµ6,−σ6

∏

m̸=1,6
δµm,0ET

(
− (ω̃1 + ω̃−1) ,−ω̃1 + σ2ω̃2 + σ3ω̃3 + σ4ω̃4

)

× δk1,σ2k2+σ3k3+σ4k4δk1,−k6δk2,k5δk3,k7 (C.14)

σ = (1, σ2, σ3, σ4,−σ2,−1,−σ3) .

Calculation of diagrams corresponding to
∫ T

0
D1b1dt . Starting from definition (55), such term can be written in the equivalent form:

∫ T

0

D1b1dt = 3
∑

σ3=±1

∑

k2k3k4

∑

567

∗(
λ1 +

µ1

2J1

)
L
++σ3−σ3
1234 L

σ3σ5σ6σ7
3567

× b+2 b
−σ3
4 b

σ5
5 b

σ6
6 b

σ7
7 ∆T

(
ω̃3

567

)
δ3567δk1,k2δk3,k4 . (C.15)

The diagram associated to this expression before phase averaging is given in Fig. C.16, with the constraint k3 = k4 to keep inmind, because
it cannot be represented in the graph.

7. The graph in Fig. C.16 is closed preserving the maximum number of free wavenumbers as in diagram 7 in Fig. C.17. However, δk5,k3
and δk6,k7 imply that such diagram does not contribute.

Other two type I graphs (8 and 9, Fig. C.18) are obtained closing the diagram in Fig. C.16 with two external pinnings. These diagrams
have two freewavenumbers, but k1 is not pinned so they vanish identically because of the δµ1,0. Then, the termwithD1 insideJ3 (Eq. (C.6))
can be neglected.



Fig. C.16. Diagram associated to
∫ T

0
D1b1dt , with the condition that k3 = k4 .

Fig. C.17. Diagram 7 (type 0 diagram, vanishing).

Fig. C.18. Diagrams 8 and 9 (type I diagrams), but without k1 pinned to an external blob.

Fig. C.19. Diagram associated to J4 before phase averaging.

Main contributions to J3. If present, the terms proportional to µ1 carry a factor O(L−2d) and are greater in order than the terms
proportional to λ(k1), which are of order O(L−3d). As usual, we must be careful when a δµ,0 is present, since that implies the terms in

µ1 to identically vanish. Among type 0 diagrams, the contributions of diagrams 1, 2 and 3 take with them an O
(
L−3d

)
because k1 is not

pinned and so the average over phases gives a factor δµ,0, implying µ1 to be identically zero. These diagrams have 3 free summations, so

the resulting terms turn out to be of order O
(
L−3d

)
O
(
L3d
)
= O(1). As far as type I diagrams are concerned, thanks to the external coupling

of k1, diagrams 4, 5 and 6 have µ1 constrained to the value 1. Their leading contribution brings an O
(
L−2d

)
and therefore their two free

summations are sufficient to make the total contribution O(1). The other type I diagrams contribute with an O
(
L−d
)
and so are neglected

in our work. All the other diagrams (type II and type III) represent subleading contributions.
Calculation of J4.

J4 =
∑

1

(1
2
λ21 +

µ1

4J21

(µ1

2
− 1

)
+
λ1µ1

2J1

)∑

234

∗∑

567

∗
L
+σ2σ3σ4
1234 L

+σ5σ6σ7
1567

× J1
√
J2J3J4J5J6J7

⟨
ψ−21 ψ

σ2
2 ψ

σ3
3 ψ

σ4
4 ψ

σ5
5 ψ

σ6
6 ψ

σ7
7

∏

k

ψ
µk

k

⟩
ψ

×∆T

(
ω̃1

234

)
∆T

(
ω̃1

567

)
δ1234δ

1
567. (C.16)

k1 must be pinned to a blob so that µ1 − 2 = 0. Let us begin with type I diagrams, with two free wavenumbers.

1. (Fig. C.20) The two conditions at the vertices imply k1 = k−1 = 0, so the contribution to J4 is null. Due to the internal coupling
between wavenumbers, we have:

k1 = σ2k2 + σ3k3 + σ4k4 , k1 = −σ2k2 − σ3k3 − σ4k4. (C.17)



Fig. C.20. Diagrams 1 and 2 (type I diagrams).

Fig. C.21. Diagrams 3 and 4 (type I diagrams).

2. (Fig. C.20) As for the previous graph, the two conditions at the vertices imply k1 = k−1 = 0, so also this contribution to J4 is null.
Due to the internal coupling between wavenumbers, we have

k1 = σ4k4 , k1 = −σ4k4

and k1 = 0 follows.
3. (Fig. C.21) This diagram gives one of the non-zero leading contributions toJ4 andwe keep inmind that it has two freewavenumbers

implying two free sums.

k1 = σ4k4 , k1 = σ7k7 , H⇒ σ4 = −σ7, k4 = −k7 (C.18)

because k4 must be different from k7.
4. (Fig. C.21) Diagram 4 gives the other non-zero leading contribution to J4 and it implies two free sums too, σ4 = σ7, k4 = k7.

Main contributions to J4. The term 1

J2
1

has a
(
µ1
2
− 1

)
factor which vanishes with µ1 pinned to the value µ1 = 2. The term 1

J1
gives the

leading contribution, O(L−3d), coming from the Ji’s. This can at most reach order O(L−d) thanks to the two free sums of graphs 3 and 4. Type
II and type III graphs cannot give larger contributions, having at most one free summation. Finally, J4 is of order O(L−d) for large L, and
hence negligible with respect to J2 and J3.
Calculation of J5. Before starting, here, we remark that k2 has to be treated like k1

11 ; so, as for k1 there is no σ2 degeneration in the
following formulas. Let us rewrite (66) in the form:

J5 =
1

2

∑

k1 ̸=k2

[
λ1λ2(B1 + B2)+

(λ1µ2

J2
+
µ1µ2

4J1J2

)
(B1 − B3)

]
(C.19)

where, substituting the action–angle variables, (66) gives

B1 =
∑

345

∗∑

678

∗
L
+σ3σ4σ5
1345 L

+σ6σ7σ8
2678

√
J1J2J3J4J5J6J7J8

⟨
ψ−1 ψ

−
2 ψ

σ3
3 ψ

σ4
4

×ψσ5
5 ψ

σ6
6 ψ

σ7
7 ψ

σ8
8

∏

k

ψ
µk

k

⟩
ψ∆T

(
ω̃1

345

)
∆T

(
ω̃2

678

)
δ1345δ

2
678 (C.20)

B2 =
∑

345

∗∑

678

∗
L
−σ3σ4σ5
1345 L

+σ6σ7σ8
2678

√
J1J2J3J4J5J6J7J8

⟨
ψ+1 ψ

−
2 ψ

σ3
3 ψ

σ4
4

×ψσ5
5 ψ

σ6
6 ψ

σ7
7 ψ

σ8
8

∏

k

ψ
µk

k

⟩
ψ∆T (ω̃1345)∆T

(
ω̃2

678

)
δ1345δ

2
678 (C.21)

B3 =
∑

345

∗∑

678

∗
L
+σ3σ4σ5
1345 L

−σ6σ7σ8
2678

√
J1J2J3J4J5J6J7J8

⟨
ψ−1 ψ

+
2 ψ

σ3
3 ψ

σ4
4

×ψσ5
5 ψ

σ6
6 ψ

σ7
7 ψ

σ8
8

∏

k

ψ
µk

k

⟩
ψ∆T

(
ω̃1

345

)
∆T (ω̃2678) δ

1
345δ2678. (C.22)

The three Bi’s can be drawn like in Figs. C.22–C.24. Then, B2 and B3 have the same diagram under permutation (1, 3, 4, 5)↔ (2, 6, 7, 8).

Consider type 0 diagrams with 3 free wavenumbers.

11 We can see this looking back to (66).



Fig. C.22. Diagram associated to B1 .

Fig. C.23. Diagram associated to B2 .

Fig. C.24. Diagram associated to B3 .

1. (Fig. C.25) This graph and similar ones for B2 and B3 (with k1 coupled with k6 too) contribute, but they imply µ1 = µ2 = 0, so they
are subleading.

2. (Fig. C.25) This graph and a similar one for B3 (with k1 coupled with k2) are not allowed due to the condition k1 ̸= k2 in (C.19).
Such a diagram for B1 is not allowed because the internal coupling between k1 and k2 would lead to σ1 = −σ2, but B1 already has
σ1 = σ2.

Consider type I diagrams, illustrated in Figs. C.26 and C.27.

3. (Fig. C.26) The internal couplings yield: k3 = k6, k4 = k7, k5 = k8, σ3 = −σ6, σ4 = −σ7, σ5 = −σ8. The two deltas at the vertices
imply the conditions

k1 = σ3k3 + σ4k4 + σ5k5 ; k2 = σ6k6 + σ7k7 + σ8k8

H⇒ k2 = −σ3k3 − σ4k4 − σ5k5 and so k2 = −k1.

This holds for B1, because for B2 and B3 the δ’s at the vertices would lead to k1 = k2, which is forbidden by (C.19). The contribution
of diagram 3 to J5 (only due to 1

2

∑
1̸=2(. . .)B1) reads:

1

2

∑

σ

∑

k

′
(. . .)L

+σ3σ4σ5
1345 L

+σ6σ7σ8
2678

√
J1J2J3J4J5J6J7J8 δµ1,1δµ2,1

×
∏

m̸=1,2
δµm,0 δk1,−k2δk3,k6δk4,k7δk5,k8δ

1
345∆T

(
ω̃1

345

)
∆T

(
ω̃(−1)345) (C.23)

σ = (1, 1, σ3, σ4, σ5,−σ3,−σ4,−σ5) .



Fig. C.25. Diagram 1 (for B1) and diagram 2 (for B2); both are type 0 diagrams.

Fig. C.26. Diagram 3 and diagram 4 (both for B1 and both type I).

Fig. C.27. Diagram 5 (for B1); type I diagram.

Fig. C.28. Diagram 6 (for B1); type I diagram.

4. (Fig. C.26) For the same reason as above, this kind of contribution is only present for B1. The left-vertex condition gives k1 = σ3k3;

the right-vertex condition gives k2 = −σ3k3. So, k2 = −k1. Due to Rule 5, the right-vertex here is null and then the contribution

vanishes. So, finally diagram 4 does not contribute to J5.

5. (Fig. C.27) An analogous kind of graph also exists for B2 and B3. There are two free wavenumbers; however, µ1 = 0 identically and

then, as we are going to see, the contribution to J5 is not leading order. Similar graphs with k2 internally coupled are possible, but

with µ2 = 0 their contributions to J5 are even smaller.

6. (Fig. C.28) One last contribution comes from the type I graph referred to B1.

σ6 = −1, σ3 = −1, k1 = −k3, k1 = k6, k2 = σ6k6 = −k1.

The contribution of diagram 6 to J5 (only due to 1
2

∑
1̸=2(. . .)B1) is the following:

1

2

∑

σ

∑

k

′
(. . .)L

+σ3σ4σ5
1345 L

+σ6σ7σ8
2678

√
J1J2J3J4J5J6J7J8 δµ1,2δµ2,2

∏

m̸=1,2
δµm,0

× δk1,−k2δk1,−k3δk1,k6δk4,k5δk7,k8∆T

(
ω̃1

(−1)44
)
∆T

(
ω̃(−1)177) (C.24)

σ = (1, 1,−1, σ4,−σ4,−1, σ7,−σ7) .

Type II diagrams (with one free wavenumber) and type III (with no free wavenumbers) certainly give subleading contributions and so

it is not worth looking at them in detail.
Main contributions to J5. Consider the order of the various terms for growing L, using the variables J̃k and λ(k), cf. Eq. (76).



• For 1
2

∑
1̸=2λ1λ2 (B1 + B2), the leading contribution is of order O

(
L−d
)
= O

(
L3d
)
O
(
L−4d

)
(3 free sums and 8 factors

√
J).

• For 1
2

∑
1̸=2

λ1µ2
J2
(B1 − B3), the leading contribution is of order O

(
L−d
)
= O

(
L2d
)
O
(
L−4d

)
O
(
Ld
)
(2 free sums, 8 factors

√
J and J2 at

denominator).

• For 1
2

∑
1̸=2

µ1µ2
4J1J2

B1, graph 3 contribution (Fig. C.26) is of order O
(
L2d
)
O
(
L−4d

)
O
(
L2d
)
(2 free sums, 8 factors

√
J and J1J2 at

denominator). This graph has multiplicity 6. Graph 6 in Fig. C.28 and permutations contribute to same order. The multiplicity is

18.

• For 1
2

∑
1̸=2

µ1µ2
4J1J2

B3, the leading contribution is given by type II diagrams (type I do not exist for B3, cf. diagram 3, Fig. C.25) and is of

order O
(
L−d
)
= O

(
Ld
)
O
(
L−4d

)
O
(
L2d
)
(1 free sum, 8 factors

√
J and J1J2 at denominator).

The final expression of J5 is the one given in Eq. (84).

Appendix D. The PDF hierarchy

D.1. The five contributions J1 − J5

• J1 As seen in Section 3.2.2, the leading order graph is diagram 2 (Fig. 5), a type II diagram with one free wavenumber. This free

wavenumber is continuous, as resulting from the internal coupling of k2 and k3; so, it brings an O
(
Ld
)
factor. Then, we have an

O
(
Ld
)
from the prefactor and an O

(
L−2d

)
from the factor

√
J1 . . . J4. Thus, the contribution is O(1) and it looks like (78):

⟨
e
∑

k iλkJkJ1

⟩
J
∼
(
2π

L

)d∑

(1)

⟨[
iλj

√
J̃j +

1

2

√
J̃j

]√
J̃2 J̃3 J̃4e

∑M
m=1 iλm J̃m

⟩
J

× L
+σ2σ2−
j22(−j) δµj,1δµ−j,1

∏

m̸=±j
δµm,0∆T

(
−2(ω̃j + ω̃−j)

) ]
(D.1)

with
∑

(1)

.=
M∑

j=1

∑

σ2=±1

∑

k2

. (D.2)

• J2 The prefactor O
(
Ld
)
and the

√
J1 . . . term (O

(
L−3d

)
) give O

(
L−2d

)
. The leading order graphs are diagrams 1 and 2 in Fig. C.9

(type 0).

– In diagram 1 we have three free wavenumbers, but the one given by k1 (and consequently by k4 and k7, dependent on k1) is

discrete. So, the total contribution is O(1).

– In diagram 2 the situation is similar: k1 is discrete and the δ1234 allows other two wavenumbers to be continuous, so it is O(1)

too.

– Diagrams 3 and 4 (type I) in Fig. C.10 only have one continuous free wavenumber and thus they are subleading (of order

O
(
L−d
)
).

The total contribution to J2 reads:

⟨
e
∑

k iλkJkJ2

⟩
J
∼

1

2
δµ,0

{
9
∑

(2)

(
2π

L

)2d⟨[
iλj − λ2j J̃j

]
J̃2 J̃5 J̃−je

∑
m iλm J̃m

⟩
J

× L
+σ2(−σ2)−
j22(−j) L

−σ5(−σ5)+
j55(−j) |∆T (ω̃1 + ω̃−1)|2

+ 6
∑

(3)

(
2π

L

)2d⟨[
iλj − λ2j J̃j

]
J̃2 J̃3 J̃4e

∑
m iλm J̃m

⟩
J

× L
+σ2σ3σ4
j234 L

−(−σ2)(−σ3)(−σ4)
j234

⏐⏐∆T

(
ω̃1

234

)⏐⏐2
}

(D.3)

where similar definitions to those given in Section 3.2.2 hold:

∑
(2)

.=
M∑

j=1

∑

σ=(1,σ2,−σ2,−1,σ5,−σ5,1)

∑

k2...k7

′
δk4,−k1δk4,k7δk2,k3δk5,k6 (D.4)

∑
(3)

.=
M∑

j=1

∑

σ=(1,σ2,σ3,σ4,−σ2,−σ3,−σ4)

∑

k2...k7

′
δ1234δk2,k5δk4,k7δk3,k6 . (D.5)

• J3 The prefactor is O(Ld) and the
√
J1 . . . term is O

(
L−3d

)
. The leading order graphs are diagrams 1, 2, 3, 4, 5 and 6.

– In diagrams 1, 2 and 3 we have three free wavenumbers, but k1 is discrete and so there are two free wavenumbers, making

the contributions O(1).

– In diagrams 4, 5 and 6 k1 is discrete too but it is pinned. Two degrees of freedom remain, due to two free continuous

wavenumbers.

– All the other graphs are subleading.



The following contributions for J3 result:

⟨
e
∑

k iλkJkJ3

⟩
J ∼

(
2π

L

)2d

δµ,0

×
{
18
∑

(4)

⟨
iλj J̃j J̃3 J̃5e

∑
...
⟩
J
L
++σ3σ3
jj3(−3) L

σ3σ5(−σ5)(−σ3)
(−3)553 ET (0, σ3(ω̃3 + ω̃−3))

+ 9
∑

(5)

⟨
iλj J̃j J̃3 J̃6e

∑
...
⟩
J
L
+σ2(−σ2)−
j22(−j) L

−+σ6(−σ6)
(−j)j66 ET

(
0,−(ω̃j + ω̃−j)

)

+ 18
∑

(6)

⟨
iλj J̃j J̃2 J̃3e

∑
...
⟩
J
L
+σ2σ3σ4
j234 L

σ4(−σ2)+(−σ3)
42j3 ET

(
0, ω̃

j
234

)}

+
(
2π

L

)2d{
18
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(7)

⟨[
iλj +

1

2J̃j

]√
J̃j J̃−j J̃3 J̃5e

∑
...
⟩
J
L
+−σ3σ4
j(−j)34

× L
σ4σ5(−σ5)(−σ3)
4553

∏

m̸=±j
δµm,0δµj,1δµ−j,1δµ7,−σ7

× ET
(
−(ω̃j + ω̃−j,−(ω̃j + ω̃−j + σ3ω̃3 + σ4ω̃4))

)

+ 9
∑

(8)

⟨[
iλj +

1

2J̃j

]√
J̃7 J̃j J̃3 J̃5e

∑
...
⟩
J
L
+σ2(−σ2)σ4
j224

× L
σ4σ5(−σ5)σ7
4557

∏

m̸=j,7
δµm,0δµj,1δµ7,−σ7

× ET
(
−ω̃j + σ4ω̃4,−σ4ω̃4 + σ7ω̃7

)

+ 18
∑

(9)

⟨[
iλj +

1

2J̃j

]√
J̃j J̃−j J̃3 J̃5e

∑
...
⟩
J
L
+σ2σ3σ4
j234

× L
σ4(−σ2)−(−σ3)
42(−j)3

∏

m̸=±j
δµm,0δµj,1δµ−j,1

× ET
(
−(ω̃j + ω̃−j,−σ4ω̃4 + σ7ω̃7)

) }
(D.6)

where the definitions given in Section 3.2.2 still hold for the summations, with slight variation:

∑
(4)

.=
M∑

j=1

∑

σ=(1,1,σ3,σ3,σ5,−σ5,−σ3)

∑

k2...k7

′
δk4,−k3δkj,k2δk3,k7δk5,k6

∑
(5)

.=
M∑

j=1

∑

σ=(1,σ2,−σ2,−1,1,σ6,−σ6)

∑

k2...k7

′
δkj,−k4δkj,k5δk3,k2δk6,k7

∑
(6)

.=
M∑

j=1

∑

σ=(1,σ2,σ3,σ4,−σ2,1,−σ3)

∑

k2...k7

′
δ
j
234δkj,k6δk3,k7δk5,k2

∑
(7)

.=
M∑

j=1

∑

σ=(1,−1,σ3,σ4,σ5,−σ5,−σ3)

∑

k2...k7

′
δ−σ4k4,σ3k3δkj,−k2δk3,k7δk5,k6

∑
(8)

.=
M∑

j=1

∑

σ=(1,σ2,−σ2,σ4,σ5,−σ5,σ7)

∑

k2...k7

′
δkj,σ4k4δkj,σ7k7δk3,k2δk5,k6
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(9)

.=
M∑

j=1

∑

σ=(1,σ2,σ3,σ4,−σ2,−1,−σ3)

∑

k2...k7

′
δ
j
234δkj,−k6δk3,k7δk5,k2 . (D.7)

• J4 The prefactor is of orderO(L
2d) and

√
J1 . . . isO

(
L−4d

)
. One needs at least a type I diagramwith two continuous freewavenumbers

to make J4 order O(1). All other diagrams are subleading. In the graph of J4 in Fig. C.19, k1 is pinned to an external blob (µ1 = 2).

The leading order diagrams are type I, with two free wavenumbers (Figs. C.20 and C.21).

– Diagrams 1 and 2 in Fig. C.20 are vanishing, as already shown.

– Diagrams 3 and 4 (Fig. C.21) have two free continuous wavenumbers, responsible for two degrees of freedom. Considering
the prefactor ( 1

2
λ21 +

λ1µ1

2J̃1
, because here

µ1
2
− 1 = 0), the

√
J1 . . . term and the two free sums, both diagrams give an O(1)

contribution to J4.



Diagram 3: k1 = σ2k2 + σ3k3 + σ4k4, k2 = k3, σ3 = −σ2 ⇒ k1 = σ4k4, k1 = σ7k7 ⇒ σ4k4 = σ7k7,
k4 = k7, σ4 = σ7. If σ4 = +1, then k1 = k4. Because of Rule 5, the left vertex is vanishing and so the diagram is

not contributing. If σ4 = −1, then k4 = −k1, σ7 = −1 and k7 = k4 = −k1. There are 9 graphs equivalent to diagram 3,
obtained substituting 4 with 2 and 3 and substituting 7 with 5 and 6, cf. (D.8).
Diagram 4. If σ4 = −1, then k4 = −k1, σ7 = 1 and k7 = k1. Because of Rule 5, the right vertex is vanishing and the diagram
does not contribute. If σ4 = +1, then k4 = k1. The left vertex vanishes. Therefore, this graph does not contribute. Therefore:

⟨
e
∑

k iλkJkJ4

⟩
J
∼
(
2π

L

)2d

9
∑

(10)

⟨[
−

1

2
λ2j + i

λj

J̃j

]
J̃j J̃−j J̃2 J̃5e

∑
m iλm J̃m

⟩
J

× L
+σ2σ3σ4
j234 L

+σ5σ6σ7
j567 δµj,2δµ−j,2

∏

m̸=±j
δµ,0

× ∆T

(
−ω̃j − ω̃−j

)
∆T

(
−ω̃j − ω̃−j

)
(D.8)

∑
(10)

.=
M∑

j=1

∑

σ=(1,σ2,−σ2,−1,σ5,−σ5,−1)

∑

k2...k7

′
δk1,−k4δk4,k7δk5,k6δk2,k3 . (D.9)

• J5 The order O(L2d) from the prefactor and the O
(
L−4d

)
from the

√
J1 . . . term lead to a global O

(
L−2d

)
. So, we have to seek graphs

with two free continuous wavenumbers, cf. (D.10).

– Diagram 1 in Fig. C.25 (for B1) and a similar one for B2, with the arrow referred to 1 reversed, have two free discrete
wavenumbers. µ1 and µ2 are identically null due to the internal couplings of k1 and k2. At each vertex, the sum of the two
discretewavenumbers is discrete. Then, because of the vertex condition (‘‘momentumconservation’’) only one continuous free
wavenumber remains (so as in one dimension, if the sum of the discrete wavenumbers is an integer n, the two continuous
wavenumbers can be chosen as a real x and the constrained−n− x, so that n+ x+ (−n− x) = 0). Thus, diagram 1 does not
contribute to the leading order of J5.

– Diagram 3 in Fig. C.26 (referred to B1) has two continuous free wavenumbers (in one dimension, the three continuous
wavenumbers are x, y,−x− y− n, if the discrete wavenumber is n, so that n+ x+ y+ (−x− y− n) = 0 at each vertex). This
diagram is leading order and its multiplicity is 6.

– Let us turn our attention to diagram 5 in Fig. C.27. The condition of the left vertex delta gives k1 = σ3k3. There are two cases:
if σ3 = +1 ⇒ k1 = k3, because of Rule 5 this contribution is vanishing;
if σ3 = −1 ⇒ k1 = −k3, k1 = k6, σ6 = +1, the right vertex conditions says: k2 = σ6k6 = −k6 = −k1. This is forbidden
by the condition on the sum, stating that k1 ̸= k2. Thus, this graph does not represent any physical interaction.

– A diagram analogous to 5 in Fig. C.27, but with the ‘‘1’’ arrow reversed, is possible for B2. One has that−k1 = σ3k3.
If σ3 = −1: k1 = k3, σ3 = −1, we have a vanishing contribution;
If σ3 = +1: k3 = −k1, k6 = k1, σ6 = −1. The right vertex condition gives: k1 = σ6k6 ⇒ k2 = −k6 = −k1 (̸= k1). We
notice that k2 = k3, and k2 is a sink while k3 is a source. The total momentum is conserved. The multiplicity of such a graph
is 9.

– A graph analogous to 5 in Fig. C.27 is also possible for B3, if one reverses the ‘‘2’’ arrow.
The case σ3 = +1 requires k1 = k3, we have a vanishing contribution;
If σ3 = −1, k3 = −k1, k6 = k1,
σ6 = 1, σ6k6 = −k2 ⇒ k2 = −k6 (̸= k1). We have that k2 = k3, but now k2 is the source and k3 is the sink. It is the
symmetric of the situation previously described for B2. The multiplicity of this contribution is 9.

– One more contribution comes from a graph analogous to diagram 5 in Fig. C.27 but with 1 and 2 exchanged. In such a case
µ2 = 0, so it is useless to compute the contribution from B3. Then, one can easily notice that the contribution from B2 is
exactly the same as that just calculated for B3 at the previous point, but permuting 1 with 2 and using the right prefactor. The
multiplicity of this graph is 9 too.

– The last non-zero contribution comes from diagram 6 in Fig. C.28. Here, σ6 = −1, σ3 = −1, k1 = −k3, k6 = k1 and
k2 = σ6k6 = −k1. There is also an identical contribution permuting 1 with 2, so we add a factor 2 to the multiplicity, which
become equal to 18.

Finally, the J5 total contribution is the following:

⟨
e
∑

k iλkJkJ5

⟩
J ∼

1

2

(
2π
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×
{
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∑
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