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Abstract—We report a cost-effective 40-Gb/s time-division
multiplexing passive optical network (TDM-PON) downstream
link using 3-level electrical duobinary (EDB) modulation. The
transmitter consists of a compact electroabsorption-modulated
laser (EML) module. The receiver contains an avalanche photo-
diode (APD) packaged with a transimpedance amplifier (TIA),
with digitally adjustable gain and bandwidth, followed by a
duobinary decoder. Real-time eye diagram and bit-error rate
(BER) measurements were performed. At a pre-forward error
correction (FEC) BER of 10

−3, a power budget of 23.6 dB in
back-to-back conditions is demonstrated. For a dispersion range
of −215 ps/nm to 128 ps/nm, the power penalty does not exceed
3 dB.

Index Terms—passive optical network, TDM-PON, electrical
duobinary

I. INTRODUCTION

THE Full Service Access Network group [1] has decided

that Next-Generation Passive Optical Network 2 (NG-

PON2) will be a time- and wavelength-division multiplexing

passive optical network (TWDM-PON) wherein four or eight

10-Gb/s streams are stacked at different wavelengths [2].

The choice for abandoning the single-wavelength evolutionary

path in favor of TWDM-PON was motivated by the foreseen

technology limitations at that time; higher serial rate time-

division multiplexing passive optical networks (TDM-PONs)

were deemed not cost-effective [3].

However, as the demand for broadband services continued

to rise, the research community has demonstrated the feasi-

bility of serial rates beyond 10 Gb/s, showing its potential
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as a per-wavelength upgrade path for NG-PON2 [3]–[11].

Furthermore, the IEEE has not yet settled on the architecture

for Next Generation Ethernet Passive Optical Network (NG-

EPON); both single-wavelength TDM-PON and TWDM-PON

are still under consideration as viable candidates [12], [13].

The main challenges to overcome when increasing the serial

data rate beyond 10 Gb/s are decreased tolerance to chromatic

dispersion (CD) and increased bandwidth requirements on the

optical and electrical components, resulting in a reduced op-

tical power budget, fiber reach and higher overall system cost

[14]. These challenges are adressed by advanced modulation

formats beyond non-return-to-zero (NRZ); electrical duobinary

(EDB), optical duobinary (ODB) and 4-level pulse-amplitude

modulation (PAM-4). In the case of EDB, NRZ is electrically

low-pass filtered by the transmitter and/or receiver yielding

a 3-level signal at the receiver output. ODB, on the other

hand, requires modulating both optical amplitude and phase

by means of a Mach-Zehnder Modulator (MZM), giving rise

to an NRZ signal at the photodetector output. EDB, ODB,

and PAM-4 are strong candidates for high serial rate passive

optical networks due to their relative simplicity and improved

CD tolerance with respect to NRZ. Furthermore, EDB and

PAM-4 permit the use of low-bandwidth components [13].

We already demonstrated EDB detection in a 25 Gb/s TDM-

PON upstream link using a low-cost burst-mode receiver [15]

at the optical line terminal (OLT). This was later extended

in [8], which also demonstrated 50-Gb/s EDB transmission

in the downstream direction. The OLT transmitter was com-

prised of a MZM whose output power was boosted using a

semiconductor optical amplifier (SOA), whereas the optical

network unit (ONU) receiver consisted of a receiver based on

a SOA-preamplified PIN photodiode, followed by a duobinary

decoder.

This paper is an invited extension of our work presented

in [7], wherein we presented a cost-effective 40-Gb/s single-

wavelength TDM-PON downstream utilizing high-power DFB

laser integrated with an EAM, henceforth denoted as DFB-

EAM, in the OLT and an EDB receiver with an APD in the

ONU. Real-time measurements were performed in the C-band

where a loss budget margin of 20.7 dB has been achieved at

40 Gb/s in the measured dispersion range of −215 ps/nm to

128 ps/nm. To the best of our knowledge, this was the first

time a 40-Gb/s TDM-PON downstream link was achieved in
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Fig. 1. A cost-effective implementation of a 40-Gb/s TDM-PON downstream link using EDB modulation: utilizing an integrated high-power DFB-EAM
transmitter in the OLT and an APD-based 3-level detection receiver in the ONU.

real-time experiments utilizing low-cost components at both

OLT and ONU, without any offline digital signal processing. In

the present paper we report more details on the ONU receiver

through additional measurements and simulations.

Section II presents the investigated low-cost 40 Gb/s down-

stream link and discusses the transmitter and receiver pro-

totypes. The experimental setup and the results of bit-error

rate (BER) and eye diagram measurements are presented in

Section III.

II. LOW-COST 40 GB/S DOWNSTREAM TRANSMITTER AND

RECEIVER PROTOTYPES

The investigated low-cost 40 Gb/s EDB downstream link

is illustrated in Fig. 1. At the OLT, a compact and low-cost

integrated DFB-EAM transmitter module is modulated by an

on-off keying NRZ signal. Usage of EDB requires that the

cascade of the transmitter electro-optical response HTX(f) and

receiver opto-electrical response HRX(f) forms a baseband

cosine filter, i.e.,

|HTX(f) ·HRX(f)| =

{

cos(πfT ), |f | ≤ 1/(2T )

0, |f | > 1/(2T )
(1)

where T denotes the bit period [16]. Note that the 3-dB band-

width of this filter is 1/(4T ), which allows lower-bandwidth

optoelectronic components (e.g., electroabsorption-modulated

laser (EML) in the OLT and APD employed at the ONU),

reducing the cost and power consumption compared to NRZ

or ODB. The cosine filter response is approximated by the

use of lower-bandwidth optoelectronic components, along with

appropriate bandwidth selection of the transimpedance ampli-

fier (TIA) input stage, as will be discussed in Section II-B.

As such, the use of equalization in either OLT or ONU, and

the corresponding increase in cost and power consumption,

is avoided. Simulations indicate that the reduced bandwidth

can further improve the CD tolerance and receiver sensitivity

in high serial data rate downstream applications [17]. In the

ONU, the intensity modulated signal enters the receiver and

is converted into a 3-level EDB signal with levels −V , 0,

and+V . To avoid error propagation, a precoder is placed at

the transmitter which implements the function yk = xk⊕yk−1,

where xk is the k-th uncoded bit, yk is the k-th precoded bit,

and ⊕ represents modulo-2 addition [16]. The precoder allows

the duobinary decoder in the receiver to use symbol-by-symbol
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Fig. 2. EML optical output power versus laser bias current at 45 ◦C with
EAM unbiased.

decision [16]; the levels ±V correspond to a 1-bit whereas the

level 0 corresponds to a 0-bit.

A. OLT transmitter

The transmitter module is an EML based on an InGaAsP

DFB-EAM fabricated using the butt-joint approach, where the

EAM is obtained by epitaxial regrowth and the DFB and EAM

structures can be independently optimized [18]. The device

was optimized for high output power at 45 ◦C, resulting in

a low power consumption of the thermoelectric cooler. The

output power is an important metric of the laser as it needs to

overcome the insertion loss of the EAM, while fulfilling the

power budget requirements.

Fig. 2 shows the optical output power of the EML versus the

laser bias current, where the EAM was left unbiased and the

temperature was regulated to 45 ◦C. The optical power at the

fiber output of the EML reaches 2.4 mW at a 100-mA drive

current and can reach 3 mW when the current is increased

to 145 mA. The relative transmission curves of the EAM are

shown in Fig. 3 for various DFB laser currents. The static

extinction ratio between 0 and −3 V is approximately 14 dB,

with a modulation slope of 10 dB/V.

The whole DFB-EAM chip was integrated on a submount

and installed in a butterfly package. The electro-optical fre-

quency response and return loss of the packaged EML were



MOENECLAEY et al.: 40-Gb/s TDM-PON DOWNSTREAM LINK WITH LOW-COST EML TRANSMITTER AND APD-BASED ELECTRICAL DUOBINARY RECEIVER 3

−4 −3 −2 −1 0
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

modulator bias voltage [V]

tr
an

sm
is

si
o

n
[d

B
]

70 mA

100 mA

130 mA

Fig. 3. Transmission curves of the EML for various laser currents.
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measured at an operating temperature of 45 ◦C, a DFB laser

current of 70 mA, and an EAM bias voltage of −1.3 V. The

normalized electro-optical frequency response has a 3-dB

bandwidth exceeding 20 GHz, whereas the return loss remains

lower than −10 dB up to 20 GHz.

B. ONU receiver

The ONU receiver is comprised of a linear APD-based

TIA, installed in a butterfly package, followed by a 3-level

EDB decoder. Due to the nature of the investigated 3-level

EDB modulation scheme, a linear TIA front-end is required to

preserve vertical eye openings, while providing sufficient gain

to ease further signal handling in the subsequent decoder.

The photodiode is a back-side illuminated AlInAs/GaInAs

APD fabricated using a highly reliable planar junction process

carried out by Zn diffusion. Fig. 4 shows the high-frequency

response of the APD versus avalanche gain M , while the

avalanche gain M is plotted versus the APD reverse voltage

VAPD in Fig. 5. A 3-dB bandwidth between 18 GHz and

20 GHz is achieved for avalanche gains between 2 and 8, and

the extrapolated gain-bandwidth product is about 220 GHz.
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Fig. 5. APD avalanche gain M vs APD reverse voltage VAPD.
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Fig. 6. TIA architecture block diagram.

Fig. 6 shows a simplified block diagram of the TIA. The

datapath consists of a single-ended shunt-feedback TIA input

stage, followed by a differential main amplifier and output

stage. The balancing error integrator closes a feedback loop

which removes the dc-offset between both output signals by

adjusting the dc-voltage at the inverting input of the main

amplifier. The built-in controller allows to digitally vary the

gain and associated linearity of the data path, as well as its

3-dB bandwidth. The transimpedance gain and bandwidth of

the input stage can be set by modifying the feedback resistor

RF and the amplifier gain A. This is discussed in detail below.

Furthermore, the gain of the main amplifier and output stage

can be changed as well by modifying the emitter degeneration

in each stage, such that the output signal swing can be kept

at a reasonable level for varying optical input powers. The

TIA runs off a 2.5 V supply and consumes 150 mW. The chip

was manufactured in a 0.13 µm SiGe BiCMOS process and

its die micrograph is shown in Fig. 7. The total chip area is

2200 µm× 1000 µm.

Fig. 8 shows a simplified circuit diagram of the TIA input

stage. The design is a shunt-shunt feedback amplifier, based

on [19], and features a variable feedback resistor RF and

emitter degeneration resistor RE in order to manipulate the

transimpedance gain as well as the bandwidth of the input

stage. This enables optimization of the TIA for either NRZ or

EDB reception. Both variable resistors are implemented as n-

channel metal-oxide-semiconductor transistor arrays biased in
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Fig. 7. Die micrograph of the TIA.
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Fig. 8. Simplified circuit diagram of the transimpedance input stage.

the linear region. As such, they can be controlled digitally by

selectively enabling individual transistors: RF = 1.1 kΩ/N
with N = 1, 2, . . . 16 and RE = 24Ω/M with M =
1, 2, . . . 16. The forward path consists of a common-emitter

amplifier where Q0 is degenerated by RE which controls the

voltage gain of said amplifier. Current source I1 provides

a supply-independent bias current to the amplifier and is

decoupled by capacitor CX which is dimensioned such that the

current source is effectively short-circuited for the frequencies

of interest [19].

The transimpedance gain is in large part controlled by the

feedback resistor RF . However, RF also affects the dominant

pole in the loop gain, which can be counteracted by modifying

the voltage gain of the common-emitter amplifier by means of

RE . As the dominant pole is increased and approaches the

non-dominant poles, the phase margin is reduced, the closed

loop transfer function exhibits peaking and can eventually

become unstable. This is illustrated in Fig. 9 which shows a

contour plot of the transimpedance gain and 3-dB bandwidth,

obtained using AC analysis simulations on the input stage.

The portion of the (RF , RE) space for which the peaking was

larger than 1 dB is also annotated in the figure. As indicated

by Fig. 9, the TIA input stage supports a wide range of

transimpedance gains (150Ω to 300Ω for a 20 GHz 3-dB

bandwidth) and 3-dB bandwidths (wider than the range from

10 GHz to 30 GHz for a 200Ω transimpedance gain).

The EDB decoder [20] combines a 3-level signal decoding

function and a 1 ÷ 4 deserializer. The TIA output signal is

compared to two configurable threshold levels. The two com-

parator outputs are then processed by a high-speed XOR gate

20
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Fig. 9. Contour plot of the TIA input stage transimpedance and 3-dB
bandwidth versus feedback resistance RF and emitter degeneration resistance
RE .
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Fig. 10. Experimental setup for BER and eye diagram measurements. For
EDB BER measurements (dashed lines), the differential TIA outputs are con-
nected to the duobinary decoder, of which one 1/4 rate output is connected to
the error analyzer. NRZ BER measurements (dotted lines) directly connect the
differential TIA outputs to the error analyzer. For eye diagram measurements
(dash-dot lines), the differential TIA outputs are directly connected to an
oscilloscope.

and deserialized into 4 outputs for interfacing with lower-speed

off-chip components, e.g., field-programmable gate arrays.

III. EXPERIMENTAL SETUP AND RESULTS

In this section, we present BER and eye diagram measure-

ment results for both EDB and NRZ modulation formats. Fig-

ure 10 depicts the experimental setup used for these measure-

ments. The transmitter was driven by a 27 − 1 pseudorandom

binary sequence (PRBS) full-rate NRZ signal originating from

a pattern generator. The DFB laser current was set to 150 mA,

whereas the EAM was biased with a voltage of −1.55 V.

With a thermoelectric cooler regulating the EML temperature

at 25 ◦C, the average transmitted optical output power was

4 dBm at a central wavelength of 1557 nm. The extinction

ratio was approximately 13 dB. The modulated light passes

through a variable optical attenuator and finally reaches the

APD through the pigtail connector on the receiver module.

The APD was biased with a reverse voltage of VAPD = 21V.

For EDB BER measurements, the differential TIA outputs

were connected to the duobinary decoder, which fed one of its

four demultiplexed 1/4-rate outputs to the error analyzer. For

NRZ BER measurements, on the other hand, the duobinary

decoder was omitted and the differential TIA outputs were
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(a) 20 Gb/s NRZ (b) 25 Gb/s NRZ

(c) 30 Gb/s NRZ (d) 35 Gb/s NRZ

Fig. 11. Measured eye diagrams of the differential TIA output voltage in back-
to-back conditions for (a) 20 Gb/s, (b) 25 Gb/s, (c) 30 Gb/s, and (d) 35 Gb/s
NRZ.
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Fig. 12. Measured NRZ BER curves in back-to-back conditions for 20 Gb/s,
25 Gb/s, 30 Gb/s and 35 Gb/s.

directly connected to error analyzer. Finally, eye diagrams

were measured by connecting the differential TIA outputs

directly to an oscilloscope. To compare the performance of

NRZ and EDB, the TIA settings were optimized for the

corresponding modulation scheme. Note from Fig. 10 that the

duobinary precoder is omitted from the experimental setup,

not only when using the NRZ modulation format, but also in

the case of EDB; this is because the precoder operating on

the PRBS signal yields a delayed version of the PRBS signal

[20]. As such, the precoder can be simply removed when using

PRBS data [4]–[8], [20].

Fig. 11 shows the eye diagrams obtained for NRZ signaling

rates from 20 Gb/s to 35 Gb/s, whereas Fig. 12 presents the

corresponding BERs, measured at the TIA output, versus the

average received optical power. The NRZ eye diagrams for bit

rates up to 30 Gb/s show sufficient horizontal and vertical eye

opening. For 35 Gb/s, however, the bandwidth of the receiver is

insufficient, resulting in considerable intersymbol interference

reducing the eye opening. This is also observed in the 35 Gb/s

BER curve in Fig. 12, showing a deteriorated sensitivity of

−17.3 dBm at the pre-forward error correction (FEC) BER

threshold of 10−3 as well as a BER floor slightly below 10−5.

Fig. 13 shows the measured 40 Gb/s 3-level EDB eye

diagram of the differential TIA output voltage, exhibiting

Fig. 13. Measured eye diagram of the differential TIA output voltage in
back-to-back conditions for 40 Gb/s EDB.
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Fig. 14. Measured 40 Gb/s EDB BER curves in back-to-back conditions for
different APD voltages.

sufficient opening in both eyes. The effect of the APD reverse

voltage VAPD and consequently the avalanche gain M was

investigated by measuring the BER curves for VAPD =
21 V, 21.5 V and 22 V. These curves, along with the BER

curve for 35 Gb/s NRZ are shown in Fig. 14. The best

EDB sensitivity is obtained for VAPD = 21.5V, yielding

a BER = 10−3 pre-FEC sensitivity of −19.6 dBm; this

constitutes a 2.3 dB improvement with respect to 35 Gb/s

NRZ transmission. Further increasing the APD bias voltage

reduces the receiver bandwidth, introducing more intersymbol

interference resulting in a deteriorated sensitivity. With the

EDB sensitivity at −19.6 dBm and the transmitter average

launched output power at 4 dBm, the power budget equals

23.6 dB in back-to-back conditions.

Next, we have evaluated the 40 Gb/s 3-level EDB link

as a function of dispersion. The measured power penalties

versus various dispersion values are shown in Fig. 15 together

with simulated results for 40 Gb/s NRZ and EDB obtained

in [17]. The positive dispersion points were measured with

various lengths of standard single-mode fiber (SSMF), while

the negative dispersion points were measured with a tunable

dispersion emulator. We also cross-checked the results of pos-

itive dispersion using both the SSMF and the dispersion emu-

lator, and both measurements gave comparable power penalty.

The resulting maximal power penalty compared to back-to-

back conditions was 2.9 dB in the range from −215 ps/nm to

128 ps/nm. Hence, with appropriate dispersion compensation,

the proposed EDB TDM-PON downstream link supports a dif-

ferential reach of 20 km SSMF (assuming a dispersion value of

17 ps/(nm km)) and a 20.7 dB power budget. As such, it meets
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Fig. 15. Measured 40 Gb/s EDB power penalty due to chromatic dispersion
compared with simulation results for 40 Gb/s NRZ and EDB.

the legacy power budget and differential reach requirements of

Gigabit-capable Passive Optical Network (GPON) class A [21]

and 10 Gb/s Ethernet Passive Optical Network (10G-EPON)

classes PRX10 and PR10 [22].

IV. CONCLUSIONS

We have investigated a low-cost 40 Gb/s TDM-PON down-

stream link using EDB modulation. At the OLT, the transmitter

is comprised of a DFB-EAM modulated by an NRZ signal.

The ONU receiver consists of an APD-based TIA followed

by a 3-level duobinary decoder. The TIA transimpedance

gain and associated linearity as well as its bandwidth can be

digitally varied, enabling optimization for either NRZ or EDB

reception. For the first time, real-time measurements using

40 Gb/s downstream EDB transmission were performed with

compact and low-cost components in both the OLT and ONU.

A high power budget of 23.6 dB has been achieved in back-to-

back conditions. The measured power penalty remained below

3 dB for the dispersion range from −215 ps/nm to 128 ps/nm.

REFERENCES

[1] Full Service Access Network (FSAN), 2016. [Online]. Available:
http://www.fsan.org/

[2] ITU-T G.989.1, “40-Gigabit-capable passive optical networks (NG-
PON2): General requirements,” 2013.

[3] V. Houtsma and D. van Veen, “Demonstration of symmetrical 25 Gbps
TDM-PON with 31.5 dB optical power budget using only 10 Gbps
optical components,” in Eur. Conf. Opt. Commun., 2015.

[4] V. Houtsma, D. van Veen, A. Gnauck, and P. Iannone, “APD-Based
DuoBinary Direct Detection Receivers for 40 Gbps TDM-PON,” in Opt.

Fiber Commun. Conf., 2015, p. Th4H.1.

[5] D. T. van Veen and V. E. Houtsma, “Symmetrical 25-Gb/s TDM-PON
With 31.5-dB Optical Power Budget Using Only Off-the-Shelf 10-Gb/s
Optical Components,” J. Lightw. Technol., vol. 34, no. 7, pp. 1636–1642,
apr 2016.

[6] D. T. Van Veen, V. E. Houtsma, A. H. Gnauck, and P. Iannone,
“Demonstration of 40-Gb/s TDM-PON Over 42-km With 31 dB Optical
Power Budget Using an APD-Based Receiver,” J. Lightw. Technol.,
vol. 33, no. 8, pp. 1675–1680, apr 2015.

[7] X. Yin et al., “40-Gb/s TDM-PON Downstream with Low-Cost EML
Transmitter and 3-Level Detection APD Receiver,” in Opt. Fiber Com-

mun. Conf., 2016.

[8] ——, “An Asymmetric High Serial Rate TDM-PON With Single Carrier
25 Gb/s Upstream and 50 Gb/s Downstream,” J. Lightw. Technol.,
vol. 34, no. 2, pp. 819–825, jan 2016.

[9] Z. Zhou, M. Bi, S. Xiao, Y. Zhang, and W. Hu, “Experimental Demon-
stration of Symmetric 100-Gb/s DML-Based TWDM-PON System,”
IEEE Photon. Technol. Lett., vol. 27, no. 5, pp. 470–473, mar 2015.

[10] H. Zhang, S. Fu, J. Man, W. Chen, X. Song, and L. Zeng, “30km
Downstream Transmission Using 425Gb/s 4-PAM Modulation with
Commercial 10Gbps TOSA and ROSA for 100Gb/s-PON,” in Opt. Fiber

Commun. Conf., 2014.
[11] Z. Ye, S. Li, N. Cheng, and X. Liu, “Demonstration of high-performance

cost-effective 100-Gb/s TWDM-PON using 4x25-Gb/s optical duobinary
channels with 16-GHz APD and receiver-side post-equalization,” in Eur.

Conf. Opt. Commun., sep 2015.
[12] IEEE 802.3 Ethernet Working Group Communication, “IEEE

802.3 Industry Connections Feasibility Assessment for the
Next Generation of EPON,” 2015. [Online]. Available:
http://www.ieee802.org/3/ad hoc/ngepon/ng epon report.pdf

[13] P. P. Iannone, A. H. Gnauck, D. T. van Veen, and V. E. Houtsma,
“Increasing TDM Rates for Access Systems Beyond NG-PON2,” J.

Lightw. Technol., vol. 34, no. 6, pp. 1545–1550, mar 2016.
[14] D. Van Veen and V. Houtsma, “High speed TDM PON beyond 10G,”

in Opt. Fiber Commun. Conf., 2016.
[15] X. Yin et al., “25Gb/s 3-level burst-mode receiver for high serial rate

TDM-PONs,” in Opt. Fiber Commun. Conf., 2015.
[16] I. A. Glover and P. M. Grant, Digital communications. Pearson

Education, 2010.
[17] X. Yin et al., “Performance evaluation of single carrier 40-Gbit/s

downstream for long-reach passive optical networks,” in Int. Conf. Opt.

Network Design and Modeling, 2014.
[18] G. Ghione, Semiconductor Devices for High-speed Optoelectronics.

Cambridge University Press, 2009.
[19] B. Moeneclaey et al., “A 40-Gb/s Transimpedance Amplifier for Optical

Links,” IEEE Photon. Technol. Lett., vol. 27, no. 13, pp. 1375–1378, jul
2015.

[20] T. De Keulenaer et al., “84 Gbit/s SiGe BiCMOS duobinary serial
data link including Serialiser/Deserialiser (SERDES) and 5-tap FFE,”
Electronics Letters, vol. 51, no. 4, pp. 343–345, feb 2015.

[21] ITU-T G.984.2, “Gigabit-capable Passive Optical Networks (GPON):
Physical Media Dependent (PMD) layer specification,” 2003.

[22] IEEE Std 802.3av-2009, “IEEE Standard for Information technology–
Local and metropolitan area networks– Specific requirements– Part 3:
CSMA/CD Access Method and Physical Layer Specifications Amend-
ment 1: Physical Layer Specifications and Management Parameters for
10 Gb/s Passive Optical Networks,” 2009.

Bart Moeneclaey (M’14) was born in Ghent, Belgium, in 1988. He received
the engineering degree in applied electronics from Ghent University, Ghent,
Belgium, in 2011 where he is currently working toward the Ph.D. degree.
He has been a Research Assistant in the INTEC design laboratory, Ghent
University, since 2011. His research is focused on amplifier circuit design for
high-speed optical communication systems.

Fabrice Blache received the Ph.D. degree in electronics from the University
of Limoges, Limoges, France, in 1995. He is currently a Research Engineer
with the III-V Lab, Marcoussis, France, a joint laboratory of Alcatel-Lucent
Bell Labs France, Thales Research & Technology, and CEA-Leti, where his
main expertises are in the field of high-frequency designs for optoelectronic
modules. He is currently leading research activities for 100-Gb/s applications.

Joris Van Kerrebrouck was born in Ghent, Belgium in 1989. He received
the master degree in applied electrical engineering from Ghent University,
Belgium, in 2014. In that year, he joined the INTEC Design laboratory part
of the department of information technology at Ghent University, where he
pursues the Ph.D. degree, working on high speed electrical transceivers. His
current fields of interest are high-speed SiGe BiCMOS analog circuits.



MOENECLAEY et al.: 40-Gb/s TDM-PON DOWNSTREAM LINK WITH LOW-COST EML TRANSMITTER AND APD-BASED ELECTRICAL DUOBINARY RECEIVER 7

Romain Brenot was born in LHay-Les-Roses, France, in 1972. He entered
Ecole Normale Superieure, Paris, France in 1992. He received the Ph.D.
degree in solid state physics from Ecole Poly-technique, Palaiseau, France
in 2000 for works on transport properties of microcrystalline silicon. Since
2000, he has been with Alcatel Research and Innovation, Alcatel-Thales III-V
Laboratories, Marcoussis Cedex, France, and has been involved in designing
InP-based opto- electronic devices.

Gertjan Coudyzer was born in 1990 in Ronse, Belgium. After receiving
the master degree in electrical engineering, he joined the INTEC Design
laboratory as part of the department of information technology at Ghent
University. There, he is currently working towards the Ph.D. degree in
electrical engineering. His research is focused on the development of high-
speed continuous and burst-mode electrical receivers.

Mohand Achouche received the Ph.D. degree from Paris Diderot University
(Jussieu), Paris, France, in 1996. His research activities started in 1993 at
the National Centre of Telecommunication Research (CNET, Laboratoire de
Bagneux) on the fabrication and characterization of high-electron-mobility
transistor tran- sistors for high-speed circuits. During 1997-2000, he was with
Ferdinand Braun Institute (FBH-Berlin) working on power amplifiers based
on GaAs heterojunction bipolar transistors for mobile communications. In
2000, he joined Alcatel Research and Innovation, where he was first involved
in 40 Gb/s photodiodes. In 2004, he was in charge of a research team
on photoreceivers for high-speed optical communication systems, microwave
photonics links, and sensors. In 2011, he was in charge of Photonic integrated
Circuit Department working on transmitter- and receiver-based integrated
photonic circuits. Since 2013, he has been in charge of Opto-Electronic
Integrated Circuits OEIC Department.

Xing-Zhi Qiu (M’98) received the Ph.D. degree in applied sciences, elec-
tronics from Ghent University, Ghent, Belgium, in 1993. She joined the
Department of information technology (INTEC) of Ghent University in 1986.
She is currently a Group Leader of INTEC design laboratory, an associated
laboratory of IMEC, Belgium, and a Professor at INTEC Department of
Ghent University. She gained 26 years R&D experience within INTEC design
laboratory in the field of high speed O/E/O front-ends and physical layer
hardware design for broadband optical networks in general and burst-mode
receiver/transmitter technologies for passive optical networks in particular.
She is author or co-author of more than 150 publications and six patents on
ASIC and telecom system designs.

Johan Bauwelinck (M’02) was born in Sint-Niklaas, Belgium, in 1977. He
received the engineering degree in applied electronics and the Ph.D. degree in
applied sciences, electronics from Ghent University, Ghent, Belgium, in 2000
and 2005, respectively. He has been a Research Assistant in the INTEC design
laboratory, Ghent University, since 2000, and he is currently a full-Time
Tenure Track Professor. His research focuses on high-speed, high-frequency
(opto-) electronic circuits and systems and he is a member of the ECOC
technical program committee.

Xin Yin (M’06) was born in Chongqing, China, in 1977. He received the
B.E. and M.Sc. degrees in electronics engineering from the Fudan University,
Shanghai, China, in 1999 and 2002, respectively, and the Ph.D. degree in
applied sciences, electronics from Ghent University, Ghent, Belgium, in 2009.
Since 2007, he has been a Researcher in IMEC-INTEC/Ghent University. He
is also collaborating in European and international projects such as DISCUS,
Phoxtrot, MIRAGE and GreenTouch consortium. His current research interests
include high-speed opto-electronic circuits and subsystems, with emphasis on
burst-mode receiver and CDR/EDC for optical access networks, and low-
power mixed-signal integrated circuit design for telecommunication applica-
tions. He is author or co-author of more than 50 national and international
publications, both in journals and in proceedings of conferences.




