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Abstract

Ribosome biogenesis is well described in Saccharomyces cerevisiae. In contrast only very little information is available on this
pathway in plants. This study presents the characterization of five putative protein co-factors of ribosome biogenesis in
Arabidopsis thaliana, namely Rrp5, Pwp2, Nob1, Enp1 and Noc4. The characterization of the proteins in respect to
localization, enzymatic activity and association with pre-ribosomal complexes is shown. Additionally, analyses of T-DNA
insertion mutants aimed to reveal an involvement of the plant co-factors in ribosome biogenesis. The investigated proteins
localize mainly to the nucleolus or the nucleus, and atEnp1 and atNob1 co-migrate with 40S pre-ribosomal complexes. The
analysis of T-DNA insertion lines revealed that all proteins are essential in Arabidopsis thaliana and mutant plants show
alterations of rRNA intermediate abundance already in the heterozygous state. The most significant alteration was observed
in the NOB1 T-DNA insertion line where the P-A3 fragment, a 23S-like rRNA precursor, accumulated. The transmission of the
T-DNA through the male and female gametophyte was strongly inhibited indicating a high importance of ribosome co-
factor genes in the haploid stages of plant development. Additionally impaired embryogenesis was observed in some
mutant plant lines. All results support an involvement of the analyzed proteins in ribosome biogenesis but differences in
rRNA processing, gametophyte and embryo development suggested an alternative regulation in plants.
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Introduction

Ribosome biogenesis requires the coordination of roughly 200

protein co-factors that assist in 60S and 40S subunit assembly and

ribosomal RNA (rRNA) processing [1–4]. The maturation of

ribosomal subunits initiates with transcription of the 35S pre-

rRNA by RNA polymerase I in the nucleolus, which is gradually

cleaved to generate the mature 18S, 5.8S and 25S rRNAs. The 5S

rRNA associated with the 60S subunit is independently tran-

scribed by RNA polymerase III [5]. In plants, investigations of

pre-rRNA processing indicate the conservation of the overall

cleavage sites [6–9], but differences to the processing pathway in

yeast cannot be excluded since not all cleavage sites on plant

rRNA have been mapped so far.

Only few factors involved in ribosome biogenesis in plants have

been characterized. On the one hand, plant homoloques to yeast

proteins like the eukaryotic translation initiation factor 6 (eIf6), the

exoribonuclease 2 (Xrn2) or rRNA processing co-factors nucleolar

complex associated protein 1 (Noc1)/maintenance of killer 21

(Mak21) have been identified [8–11]. On the other hand, one

plant-specific protein-family was identified, for which a function in

ribosome biogenesis is suggested [12]. Domino1 homozygous

deletion mutants arrest early in embryogenesis in the globular

stage and show enlarged nucleoli in the embryo and the

endosperm. Based on this and subsequent studies it is assumed

that alterations in nucleolar structure and defects in embryogenesis

are phenotypes associated with impaired ribosome biogenesis [13–

15]. Thus, the ribosome biogenesis pathway appears to be an ideal

subject for investigation of embryogenesis and defects thereof

caused by malfunction of factors involved.

In angiosperms embryogenesis starts with the double fertiliza-

tion of the ovule with two sperm cells delivered by one pollen tube

[16–18] resulting in different copies of male and female genomes

in the cells of one seed. One sperm cell fuses with the egg cell to

form the zygote and the other merges with the diploid central cell

resulting in the formation of the endosperm which provides the

nutrients for the developing embryo. Additional maternal tissue of

the ovule surrounds the embryo and endosperm and later forms

the seed coat [19]. Due to the high impact of the maternal tissue

on embryo development [20–21] most embryo lethal phenotypes

are the consequence of defective female gametophyte development

and function [22]. Additionally a variety of mutations are known

that affect the male gametophyte [23]. These mutations mainly

lead to an inability of the pollen to form pollen tubes [24–25] or

impair meiosis and mitosis of the microspores [26–27]. The

corresponding gene products causing these defects when mutated

or missing are involved in a variety of pathways and so far no

cellular process could be identified where malfunction of all

components lead to disturbed male gametophyte development.

PLOS ONE | www.plosone.org 1 January 2013 | Volume 8 | Issue 1 | e54084



Female and male gametophyte phenotypes are similar in

reduced transmission of the mutated allele. In fully-penetrating

female gametophyte-specific mutations no transmission through

the female gametophyte takes place and therefore the sporophytic

generation cannot be homozygous [28]. These aberrant transmis-

sion rates do not follow Mendelian segregation patterns, as

observed by backcrossing of a heterozygous female with a WT

male or vice versa [28]. Apart from an aberrant segregation the

homozygous individuals can be arrested in different stages of

embryo development [29].

To initiate the analysis of the relation between embryogenesis

and ribosome biogenesis we have chosen A. thaliana proteins with

similarity to the yeast proteins rRNA processing 5 (Rrp5,

YMR229C), periodic tryptophan (W) protein 2 (Pwp2,

YRC057C), Nin1 (one) binding protein 1 (Nob1, YOR056C),

essential nuclear protein 1 (Enp1, YBR247C) and nucleOlar

complex associated 4 (Noc4, YPR144C) which are involved in the

maturation of the 40S ribosomal subunit (Fig. 1A). Rrp5 is a

protein of 190 kDa for which a two domain structure is predicted

consisting of twelve tandem S1 RNA binding domains at the N-

terminus and six C-terminal tertratricopeptide repeats (TPR) [30].

Yeast Rrp5p acts in the early maturation of ribosomal subunits

and its depletion results in the inhibition of the A0, A1, A2, or A3

cleavages [31–32]. Pwp2 is also a component of the 90s pre-

ribosomal particle in yeast [33]. Depletion of the protein blocks the

interaction of the U3 small nucleolar ribonucleoprotein (U3

snoRNP) with the 35S pre-rRNA resulting in an inhibition of the

A0-A1-A2 cleavage and leads to a decrease in the level of 18S

rRNA and 40S subunits [34]. Nob1 is an endonuclease essential

for cleavage at site D [35–37]. It contains a PIN (PilT N-terminus)

domain that is found in nucleases like yeast Rrp44 [38] or human

SMG5/6 [39]. For Enp1 and Noc4, however, only limited

information is available [40]. Both proteins are discussed to be

involved in the maturation of the 40S subunit. Noc4 is part of the

small ribosomal subunit (SSU) processome and a component of

the 90S pre-ribosomal particle [41]. A depletion of this protein

leads to elevated levels of 35S and 23S (pre)-rRNAs and a

reduction in 20S and 27S pre-rRNA [42].

In Saccharomyces cerevisiae scNob1 was intensively characterized

and the function as an endonuclease was confirmed [35–37]. In

contrast, no clear function for the other proteins could be

identified so far. In localization and pulldown experiments the

localization and association with pre-ribosomal complexes was

proven for all yeast co-factors and the effect of the depletion of a

certain factor on rRNA processing is known. We were interested, if

the Arabidopsis (Arabidopsis thaliana) orthologs show the same

localization and if an effect on rRNA processing in T-DNA

insertion mutants can be observed. The aim of this study was to

gain first insights into ribosome biogenesis in plants using co-

factors participating in the whole 40S maturation pathway.

Additionally the influence of a knock-out in ribosome biogenesis

related genes on plant development was investigated as former

studies suggest a relation between gametophyte and embryo

development and functional ribosome maturation [10,43].

Materials and Methods

Plant Material, Growth Conditions and Yeast
Complementation
The search for similar Arabidopsis thaliana sequences to the yeast

sequences was performed with blast [44]. The Arabidopsis

sequences with the highest similarity were used to search for T-

DNA insertion lines either from Gabi-KAT (GK_834C08,

GK_481E08, GK_092G08, GK_053G09, GK_332H07, http://

www.gabi-kat.de) or from the Nottingham Arabidopsis Stock

Centre (NASC, SA_013032, SA_088516, SA_021098, http://

www.arabidopsis.info). As a control the segregated wild-type from

the respective T-DNA insertion lines was used. All plants were

grown in climate chambers (Percival Scientific Inc.) at a 14 h

photoperiod at 120 mmol m22s21 and 21uC at day and 18uC at

night. For phenotypic and segregation analysis, seeds were sow out

on MS plates containing the selective antibiotic. For yeast

complementation Saccharomyces cerevisiae BY4741 strains were

transformed with vectors for constitutive expression of the proteins

used for complementation. Depletion of the yeast protein was

induced with Doxycyline at 0 hours to deplete the yeast protein.

T-DNA Mapping
For verification of the genotype and mapping of the T-DNA

position on the genome of mutant plants, genomic DNA from

leaves was prepared as described [45]. For higher purity the DNA

was treated with RNase A and Proteinase K treatment, extracted

with Phenol/Chloroform and precipitated with NaOAc/EtOH.

T-DNA insertions were mapped as established [46]. The linker for

ligation was generated from a plasmid (pRS415) by digestion with

BfaI and PvuII. Ligation products were amplified by nested-PCR

using linker-specific and T-DNA left border primers. PCR

products were excised from agarose gel, purified (PureLinkTM

Quick Gel Extraction Kit, InvitrogenTM) and sequenced.

Segregation Analysis
For genotypic analysis seeds of T-DNA insertion lines were

sown on MS plates containing the selective antibiotic. After three

weeks the plants were transferred to soil. The genotypes of the

surviving plants were confirmed by PCR with a T-DNA primer

and a left and right border genomic primer. To analyze the

transmission of the T-DNA through the male and female

gametophyte, flowers of insertion lines were emasculated and

pollen from WT was laid on the pistil (female backcrossing). The

procedure was repeated vice versa for male backcrossing. For each

crossing experiment siliques from three independent plants were

crossed. The transmission rate was calculated by dividing the

number of resistant and sensitive seedlings from one silique. For

statistical evaluation of the distribution of transmission rates p-

values were determined (Table S4).

Generation of Transgenic Plant Lines
For the generation of transgenic plant lines, the wild type coding

sequence of atNOB1was fused with a C-terminal HTP(6xHis-

TEV-ZZ)-tag and transformed into the Agrobacterium tumefaciens

strain GV3101::pMP90 using the freeze-thaw-method [47]. The

transfection of wild type Arabidopsis plants with the Agrobacter-

ium strain carrying the fusion construct was carried out via the

floral-dip-method as previously described [48]. Because the

recommended Silwet L-77 was not available we modified the

infiltration medium by adding 0.01% Tween 20. The selection for

positive transformed plants was done with BastaH (Bayer

CrobScience). A positive expression of the construct in the

selected plant lines was verified by western blot analysis using

the goat anti-rabbit IgG peroxidase antibody (aHTP, Sigma

Aldrich). For analysis of expression, co-suppression and rRNA

processing the T3 generation after transformation was used.

RNA Isolation and Northern Blotting
RNA was isolated using the NUCLEOSPINH RNA II kit

(Macherey-Nagel). RNA from seeds, siliques and roots was isolated

as described [49] and further purified by NUCLEOSPINH RNA

Ribosome Biogenesis in Arabidopsis thaliana
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II columns. Northern transfer and hybridization were performed

as described [50]. Hybridization probes are listed in Table S3.

cDNA Synthesis and Quantitative RT-PCR Analysis
First-strand cDNA was synthesized using the M-MuLV reverse

transcriptase (Fermentas) following the manufacturers protocol.

An oligo-dT primer (Table S2) was used for reverse transcription.

For the determination of the relative expression level of all

investigated genes in wild-type and mutant plants RNA from

leaves of three individual plants was isolated. For each primer pairs

standard curves were made to determine the optimal cDNA

dilution. For each cDNA synthesis 1 mg of RNA was reverse

transcribed. The cDNA was diluted 1:6 before quantification of

transcript levels. The qRT-PCR was performed as described [51].

The Ct values of the genes of interest were normalized to the

expression level of atACT2 and the ratios were calculated using the

formula: relative expression level ~ 2{(DCtACT2(WT){DCtGENE(WT)

2{(DCtACT2(MUT){DCtGENE(MUT). For

the relative expression level of the investigated genes in different

developmental stages and tissues three biological replicates were

used. The reverse transcription was done using 400 ng of RNA for

each sample. The cDNA again was diluted 1:6 and the qRT-PCR

was done as described [51]. The Ct values of the genes of interest

were normalized to the expression level of atUBI3 and the relative

expression level was calculated using the formula: relative

expression level ~2{(DCtGENE{DCtUBI3).

Antibody Generation
Peptide antibodies against atRrp5 and atPwp2 were generated

by immunization of guinea pigs with two peptides for each protein

(PSL, Heidelberg). Antibodies were purified by incubation of the

sera with peptide coupled iodoacetyl-activated agarose beads

(SulfoLink Columns, Thermo Scientific) following the manufac-

turers protocol (PSL, Heidelberg). The coding sequence of atNob1

and atEnp1 were cloned into pQE80 (Qiagen) to create N-

Terminal 21xHis-TEV fusion construct for expression in E.coli

BL21 Star pRosetta at 18uC for 16–20 h after induction with

0.25 mM IPTG. After purified over NiNTA (Qiagen) the proteins

were used for antibody generation by immunization of rabbits (Dr.

Pineda, Berlin). For antibody purification from serum the proteins

were further cleaved by GST-TEV protease and purified over

Glutathion-Sepharose and a sephacryl S-200 column before

coupling to activated CNBr-Sepharose (GE Healthcare) according

to the manufacturers protocol. Serum was incubated with the

matrix and specific antibodies eluted using 0.2 M glycine pH 2.2,

neutralized and precipitated with saturated ammonium sulfate.

Light and Fluorescence Microscopy
To visualize the embryo development, seeds were dissected

from siliques and bleached in Hoyers’ solution [52] for 3 h or

overnight (Olympus CKX41). For GFP-fluorescence measure-

ments, the coding sequences of atNob1, atNoc4 and atEnp1 were

cloned into the pRT-vector to generate C-terminal GFP fusions

under control of a double 35S promoter. As a nucleolar

localization control atFIB2 (At4g25630) was cloned in front of

mCherry into the same vector and co-transformed with the GFP-

fusion constructs. Arabidopsis leaf mesophyll protoplasts were

isolated, transformed and visualized as described [53]. To analyze

the localization of atPwp2 and atRrp5 indirect immunofluores-

cence in Arabidopsis root tips was performed as described [54].

Briefly, three to five day old seedlings were fixed with 4%

paraformaldehyde, laid on SuperFrostHPlus glass slides (VWR)

and digested with driselase (Sigma). The root tips were blocked

with 3% BSA and incubated with the primary antibody overnight

at 4uC. Primary antibodies against Fib (Fibrillarin monoclonal

antibody 38F3, Thermo Scientific), atRrp5 and atPwp2 were

diluted 1:50. Secondary Cy2-conjugated antibody (goat a-mouse

or a-guinnea pig IgM-Cy2, Dianova) was diluted 1:500. The

fluorescence was visualized by CLSM with a TCS SP5 (Leica).

Sucrose Gradients and rRNA Cleavage Assay
For sucrose density centrifugation cell extract from Arabidopsis

cell culture [55] was prepared by grinding in liquid nitrogen

followed by resuspension in 5 volumes of extraction buffer (50 mM

Tris pH 7.5, 100 mM NaCl, 5 mM MgCl2, 1 mM DTT, 1% NP-

40 supplemented with 10 mM ribonucleoside-vanadyl complex

[NEB] and 1% plant protease inhibitor cocktail from Sigma).

Centrifugation was carried out as described [51]. Fractions were

precipitated with MetOH/Chloroform and subjected to SDS-

PAGE and Western Blotting with indicated antibodies. RNA was

isolated as described [51] and mature rRNAs analyzed in 8%

polyacrylamide/8 M Urea after ethidium bromide (EtBr) staining.

The Nob1 cleavage assays were performed as described [56].

Results

Ribosome Biogenesis Co-factors are Conserved in Plants
We have selected five proteins from yeast which cover the whole

40S biogenesis pathway and for which an association with pre-

ribosomal subunits was experimentally confirmed e.g. by pull-

down analysis. We have searched for orthologs in Arabidopsis
thaliana and named the identified factors according to the yeast

standard name. For all five factors only one homolog was

identified in the genome of A. thaliana, namely atRrp5

(At3g11964), atPwp2 (At1g15440), atNob1 (At5g41190), atEnp1

(At1g31660) and atNoc4 (At2g17250). The selected factors are

generally conserved between mammals, fungi and plants (Fig. 1B),

and Nob1 is even present in archaea [56]. The similarity of the

plant proteins to their fungal counterparts varies. While Pwp2,

Rrp5 and Enp1 exhibit the highest conservation, the similarity is

lowest for Nob1 (Fig. 1B, Fig. S1). To test the functional

conservation of the Arabidopsis proteins we analyzed the growth

of yeast depletion strains expressing either the yeast protein or the

respective Arabidopsis homolog (Fig. 1C). Unexpectedly from the

conservation profile, only using atNob1 a partial complementation

was observed, while the other Arabidopsis proteins did not

complement the yeast depletion phenotype. The growth analysis

of the Rrp5 depletion strain expressing atRrp5 could not be

carried out due to the size of the RRP5 gene. The expression of the

Arabidopsis proteins atEnp1 and atNob1 was verified by western

blot analysis (Fig. S2). However, based on sequence similarity we

assume that the selected plant factors are also involved in ribosome

Figure 1. Evolutionary distribution and functional conservation of selected factors. A, Ribosome biogenesis starts with a 90S precursor
which is processed to the 40S and 60S subunit. Association of the proteins during maturation of the 40S is indicated. B, The yeast factors were used as
bait to perform a forward and reversed Blast search. The S. cerevisiae sequences were compared with the H. sapiens (red), A. thaliana (green), P.
hirokoshii (blue) and E. coli (grey). Values for identity and similarity (in percentage; i and s, respectively) between bait and sequence identified in the
corresponding species (indicated by color as in the phylogenetic scheme), and the e-value of the Blast search is given (e). A dash indicates that no
sequence was identified fulfilling the criteria. C, Growth curve of Saccharomyces cerevisiae determined by the measurement of the optical density at
600nm is shown of one representative experiment (n.3).
doi:10.1371/journal.pone.0054084.g001
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biogenesis although the Arabidopsis proteins could not complement

yeast depletion phenotypes.

The Putative Ribosome Biogenesis Co-factors Show
Distinct Expression Patterns
We determined the relative expression levels of the genes coding

for the selected factors in different tissues and at different

developmental stages of A. thaliana by quantitative RT-PCR

(qRT-PCR, Fig. 2A). The transcripts of all genes are present in all

investigated stages (Fig. 2A), but differences between the expres-

sion patterns of the different genes exist. For ENP1, NOB1, RRP5

and NOC4 a higher expression in flowers compared to all other

tissues was observed. While expression of ENP1 and NOB1 is

comparable in all developmental stages and tissues (apart from

flowers) analyzed, the expression of RRP5 and NOC4 was also

higher in 8 to 25 day old plants (Fig. 2A). Thus, the correlation of

the expression patterns was the highest between NOC4 and RRP5

(Fig. 2B). The expression pattern of PWP2 showed the lowest

correlation to all other ribosome biogenesis co-factors, as the

expression of PWP2 was equal in all investigated developmental

stages and tissues.

As the expression of the reference gene UBIQUITIN 3 (UBI3) is

not equal in all probes tested (Fig. S3A), we also evaluated the

expression pattern and correlation with normalization to amounts

of RNA used for reverse transcription (see methods part). Again a

high expression in flowers and young plants was observed and the

correlation profile determined did not change drastically, e.g. the

expression pattern of PWP2 shows the least correlation to the

expression of other factors (Fig. S3B). We further compared the

expression pattern based on data deposited in genevestigator

(https://www.genevestigator.com/gv/plant.jsp). Consistent with

the qRT-PCR data presented in here, the highest expression

was reported in reproductive and strongly dividing tissues (flowers,

roots, cell culture; Fig. S4).

In summary, the genes investigated are predominantly ex-

pressed in reproductive or strongly dividing tissue. This result is

consistent with previous findings, where genes related to ribosome

biogenesis are highly expressed in tissues with a high demand on

ribosomes [43,57].

The Localization of the Putative Ribosome Biogenesis Co-
factors in Arabidopsis
Having established the expression of the identified genes, we

analyzed the cellular localization of the encoded proteins. We

generated expression constructs of full length atNoc4, atEnp1 and

atNob1 as C-terminal GFP fusions (Fig. 3A), which were expressed

in A. thaliana protoplasts (Fig. 3B). In addition, we co-transformed

the protoplasts with a FIBRILLARIN2 (Fib2)-mCherry construct

(Fig. 3A, F-Cherry) as nucleolar marker. Consistent with the

assignment to the ribosome biogenesis pathway based on the yeast

homologue (Fig. 1) we observed exclusively nucleolar localization

for atNoc4 (Fig. 3A) and nucleolar and nucleoplasmic localization

for atEnp1. For atNob1 most of the GFP fluorescence was

observed in the cytoplasm and only a minor signal was detected in

the nucleoplasm (Fig. 3A). This is consistent with the function of

scNob1, which cleaves 20S pre-rRNA in the cytoplasm.

Unfortunately, atPwp2 and atRrp5 transiently expressed in

protoplasts were degraded (atPwp2) or not expressed (atRrp5).

Thus, we generated peptide antibodies against these proteins, and

analyzed the protein localization in root tissues by immunofluo-

rescence (Fig. 3C). The specificity of the peptide antibodies was

tested by western blot analysis using A. thaliana cell culture extracts

(Fig. 3D). We observed an exclusively nucleolar signal for the Rrp5

and Pwp2 antibody in Arabidopsis roots (Fig. 3C). The localization

of the nucleus within the cell was visualized with DAPI staining.

To verify the localization of the nucleolus we used a Fib antibody

(Fig. 3D). The fluorescence signal could be clearly localized to the

nucleolus because this structure shows a weak DAPI stain and the

characteristic central cavity termed ‘‘nucleolar vacuole’’ is

observed [58]. Unfortunately, the antibodies against atNob1 and

atEnp1 raised from recombinant protein were not suitable for

immunofluorescence in Arabidopsis roots. Nevertheless, the ob-

served localization by fusion protein analysis or immunofluores-

cence of the plant proteins is in agreement with the localization of

the five ribosome biogenesis co-factors in yeast.

AtNob1 is an Endonuclease Cleaving Pre-rRNA at Site D
For atNob1 we mainly observed cytoplasmic localization (Fig. 3),

although in yeast Nob1p associates with pre-ribosomal complexes

already in the nucleolus [59]. To support a functional relation of

atNob1 to ribosome biogenesis we lysed A. thaliana cell culture cells

and fractionated pre-ribosomal complexes by sucrose density

centrifugation (Fig. 4A). The fractions were collected and the

migration of atNob1 was visualized by western blot analysis.

Additionally, the migration of atEnp1 was tested. The specificity of

the generated antibodies was verified prior to the experiment (Fig.

S5). For the remaining proteins, atRrp5, atPwp2 and atNoc4, no

association with pre-ribosomal complexes could be analyzed,

because the available peptide antibodies were either not affine

enough to detect low amounts of protein in the gradient fractions

(Rrp5, Pwp2) or no antibody for the protein was at hand (Noc4).

Additionally, the verification of the 90S or 40S co-migration by

immunodecoration for atPwp2, atRrp5 and atNoc4 was difficult

because we were not able to extract all early pre-ribosomal

particles by lysis of the nucleolus. For the cytoplasmic atNob1 and

the nuclear atEnp1 high amounts were found in the top fractions

of the gradient (Fig. 4A, fraction 1–4), representing non-associated

factors. However, both proteins were also enriched in fraction 11

and 12, which contain (pre-)40S subunits as judged from the

absorption profile and the presence of the mature 18S (Fig. 4A,

lower panel). Consistently, ateIf6-2 which is associated with the

pre-60S subunit [60] was observed in fractions 14–17 representing

the 60S complexes based on the absorption profile (Fig. 4A). The

migration of the pre- and mature 60S particle was further verified

by the detection of 7S/6S and 25S/5S/5.8S in northern blot

analysis (Fig. 4A, lower panel). The major pre-rRNAs for pre-40S

(20S or P-A3)) and pre-60S (27S) were also detected in fractions

11/12 and 14–17, but both showed strong degradation.

Nob1 is involved in the D-cleavage of the rRNA in yeast and

archeae and thus we tested whether the recombinantly produced

atNob1 can catalyze the same process. A RNA fragment

containing the sequence of the D cleavage site of the A. thaliana

rRNA (Fig. 4B) was radiolabeled and incubated with purified

recombinant atNob1 (Fig. 4C). We observed a protein concentra-

tion dependent accumulation of the two expected rRNA cleavage

products (lane 1–3). These products were specific for functional

atNob1, because atNob1 with the exchange of the essential

aspartic acid [37], atNob1-D50N, did not possess the catalytic

activity (lane 5). Unfortunately, the yield for the recombinant

mutant of Nob1 was very low that a maximal concentration of 4.5

mM could be tested. However, the same concentration of wild-type

protein yielded a clear cleavage product, while the mutant Nob1

shows no activity. Thus, the association with the pre-ribosomal

complexes and the observed activity of Nob1 supports a function

of atNob1 as endonuclease involved in 40S maturation. For

atEnp1 an 40S association was also observed suggesting an

involvement in ribosome biogenesis as well. For all other plant

Ribosome Biogenesis in Arabidopsis thaliana
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proteins the localization gives a hint to a participation in ribosomal

subunit assembly but an association with pre-ribosomal subunits

could not be experimentally confirmed.

The Putative Ribosome Biogenesis Co-factors are
Essential in Arabidopsis
The functional relevance of the factors was subsequently

explored by analyzing corresponding T-DNA insertion lines

(Fig. 5A). Two T-DNA insertion lines were available for atRRP5,

atPWP2 and atENP1 (rrp5.1, SA_013032; rrp5.2, GK_834C08;

pwp2.1, GK_481E08; pwp2.2, GK_092G08; enp1.1, GK_053G09;

enp1.2, GK_332H07). Unfortunately, only one suitable T-DNA

insertion line exists for the other two factors (noc4, SA_088516;

nob1, SA_021098).

We confirm the position of the T-DNA given by the border

sequences deposited in the databases by genomic mapping [46].

The border sequences of the T-DNAs were determined by

sequencing of PCR products which contain the left border

genomic sequence (Table S1). For all GABI-Kat lines we found

the same base pair position as provided by the stock center

(Fig. 5A), while SALK T-DNA insertion borders are distinct of

those deposited in the database (Table S1). For four of the seven

lines we observed a back-to-back insertion of two T-DNAs

(Fig. 5A). Further, with the exception of the enp1.2 line we did not

observe additional T-DNA insertions in the genome of the

different lines. For enp1.2 we observed a second position of T-DNA

insertion. To isolate plants with single T-DNA insertion, enp1.2

line was backcrossed with wild-type. We have screened approx-

imately 120 plants of the second generation after backcrossing, but

we were unable to separate the two insertions. Thus, we excluded

this line from further analysis.

Figure 2. Developmental stage and tissue dependent mRNA abundance. A, Relative expression levels of the mRNAs are depicted in
different shades of green. Error bars illustrate standard deviation of at least three independent results. The age of the investigated tissues is indicated
with 48 and 66 (days) on the x-axis below the corresponding samples. The significance of changes was determined by a two-tailed paired Student’s t-
test for developmental stages from day 8 to 25 in comparison to day 3 and for different tissues at day 48 or 66 normalized to values for rosette
(indicated by grey lines and grey asterisks or plus). In addition, the change of expression in a specific tissue between day 48 and day 66 was analyzed
(green brackets, green asterisk or plus). A plus indicates p-values below 0.005, one asterisk indicates p-values below a= 0.001 and two asterisk a p-
value below a= 0.0001 B, The correlation of the expression profiles of the investigated factors. The color indicates the correlation factor and the two
asterisks again a p-value below a= 0.0001. The p-values are related to the correlations and roughly indicates the probability of an uncorrelated
system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.
doi:10.1371/journal.pone.0054084.g002
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Figure 3. Cellular localization of ribosome biogenesis co-factors. A, Arabidopsis mesophyll protoplasts were co-transformed with C-terminal
GFP fusion constructs indicated (left) and atFib2-mCherry (nucleolar marker). Cherry- (red), GFP- (green), chlorophyll auto-fluorescence (grey, in
overlay) and DIC image is shown. Scale bar = 10 mm. B, Arabidopsis mesophyll protoplasts transformed with C-terminal GFP fusion constructs were
lysed, subjected to SDS-PAGE and immunodecorated with GFP. C, Arabidopsis root tip cells were incubated with primary antibodies (left) and
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All lines revealed a heterozygous status based on the amplifi-

cation of the wild-type gene (Fig. 5B, lane KO, 3). To justify the

use of the different insertion lines we determined the transcript

level in heterozygous plants by qRT-PCR with primers amplifying

a 100 bp fragment from the 39 end of the coding sequence. The

primers cover an exon-exon boundary to exclude genomic DNA

contamination (Fig. 5C). For rrp5.2+/2, pwp2.2+/2, noc4+/2 and

enp1+/2 we observed the expected transcript reduction of around

50% as compared to wild-type. The reduction in expression was

even more drastic in pwp2.1+/2 where only 10% of the transcript

could be detected. In contrast, the transcript level of atRRP5 in

rrp5.1+/2 plants was only slightly reduced when compared to

wild-type. To our surprise, the transcript abundance of NOB1 was

about 2.5 fold higher in the nob1+/2 plants when compared to

wild-type (Fig. 5C). However, this transcript enrichment does not

lead to a functional protein, as the Nob1 protein is significantly

reduced in the heterozygous mutant plants as determined by

western blotting (Fig. 5D). Therefore, we conclude that the

enhanced transcript level does not account for an increase in

protein content.

We also analyzed the protein level in enp1+/2, which was not

significantly reduced in total plant extracts of 14 day old plants in

comparison to wild-type (Fig. 5E). For atNoc4, atRrp5 and

atPwp2 the protein level could not be determined in the

heterozygous T-DNA insertion lines. On the one hand, we were

unable to generate a suitable antibody against atNoc4. On the

other Hand, the expression of atRrp5 and atPwp2 was very low or

the peptide antibodies against these two proteins not affine enough

for denatured protein to determine differences in protein levels in

wild type and mutant plants. Nevertheless, alike the yeast proteins

atRrp5, atPwp2, atNoc4, atEnp1 and atNob1 are essential and the

lethality of the homozygous knockout indicates a high importance

of the protein in an essential pathway.

The Heterozygous T-DNA Insertion Mutants Show
Alterations in rRNA Processing
The heterozygous lines did not show significant differences with

respect to developmental rate, growth, plant size or flowering in

comparison to wild-type (Fig. S6). Next, we analyzed the

molecular properties of these plants such as the pre-rRNA

processing pattern (Fig. 6A). RNA isolated from wild-type or

mutant flowers were separated by agarose (Fig. 6B,C) or

acrylamide gel electrophoresis (Fig. 6D). The EtBr-stain visualizes

the most abundant mature cytoplasmic rRNAs 25S and 18S (6B)

and 5S and 5.8S (Fig. 6D). Apart from these, the chloroplastic

rRNA 16S and 23S are also detectable (Fig. 6B,D). The 23S

rRNA is further processed at so called ‘‘hidden breaks’’ [61],

which leads to a fragmentation in three different 23S products

(23S-1, 23S-2, 23S-3; Fig. 6B,D). The analysis of the pre-rRNA

transcripts in wild-type revealed a distribution comparable to

previous reports [8]. We detected two large abundant pre-rRNA

species assigned as 35S and 33S (Fig. 6A–C). Furthermore, we

were able to detect the equivalent rRNA precursors as already

reported for yeast. Also in Arabidopsis the 27SA and 27SB are

present (Fig. 6B, p5). For the smaller precursors also associated

with the large pre-ribosomal subunit we could assign 7S, 6S and 59

and 39 extended 5.8S rRNAs to the pathway in Arabidopsis (Fig. 6D,

p4, p5). The major difference to yeast was observed in the

processing of 18S rRNA precursors in Arabidopsis. In yeast the first

processing step involves cleavage at A2 which produces the 20S

pre-rRNA. The 20S pre-rRNA in Arabidopsis is an elongated

transcript ending at cleavage site A3 [8]. This 20S- precursor is

detectable in Arabidopsis (Fig. 6B, p3), but in contrast to yeast the

first cleavage in Arabidopsis takes place at A3, resulting in the

formation of the P-A3 fragment (Fig. 6B, p3). This fragment is the

equivalent to 23S in yeast, which is an aberrant processing

product, when cleavage at A2 is aborted [42]. Thus, P-A3 in

Arabidopsis can also be called 23S-like rRNA. Additionally a third

18S precursor, the P’-A3 Fragment, is present in Arabidopsis

(Fig. 6B, p3).

The comparison of the rRNA processing in wild-type and T-

DNA insertion mutants revealed some significant alterations. For

all lines an accumulation of 35S above the 33S rRNA was

observed (Fig. 6B). In the heterozygous lines of the three factors

acting early in ribosome biogenesis (Noc4, Rrp5, Pwp2) the

maturation of 5.8S rRNA was affected, especially the processing at

the 59 end (Fig. 6D, p4). For all plant lines investigated the level of

the 27S rRNA (Fig. 6B, p5) and the major 5.8S precursors 7S and

6S were not changed (Fig. 6D, p5). The most significant alteration

were observed for nob1+/2 plants (Fig. 6B,C). Although, an

enrichment of P-A3 was also observed for other plants (enp1+/2,

pwp2+/2, noc4+/2), the accumulation of the 23S-like precursor

P-A3 was most prominent in nob1+/2 (Fig. 6B,C; Fig. S7).

However, as expected from the heterozygosity of the plants and

the importance of functional ribosomes in general, all rRNA

intermediates were observed in all plant lines and the loss of one

particular precursor or mature rRNA could not be observed.

To verify the effects shown for nob1+/2 we generated co-

suppression plant lines (Fig. 7A). For these plants the protein level

of the endogenous protein is significantly reduced due to high

expression of a 35S driven nob1-HTP transcript (Fig. 7B). The

drastically reduced Nop1 protein level led to alterations in leaf

morphology (Fig. 7A) and to inhibition of inflorescence elongation

and thus, a loss of reproduction. We analyzed the rRNA

processing in this plant lines (Fig. 7C). We observed a strong

accumulation of the P-A3 by more than 5 fold (Fig. 7D), as well as

a moderate increase of the 35S/33S precursors and the 20S pre-

rRNAs (Fig. 7D). We also tried to investigate co-suppression lines

for the other ribosome biogenesis co-factors, but no plants survived

to a developmental stage, were a reasonable molecular or

biochemical analysis would have been possible.

In summary, we could clearly show the involvement of the

ribosome biogenesis co-factors in this pathway, as defects in rRNA

processing already occur in the heterozygous state. Especially the

involvement of atNob1 in the processing of the 18S rRNA

precursors was shown in heterozygous and co-suppression plant.

Arabidopsis Mutants Show Defects in Embryo and
Gametophyte Development
Although the mutant plants do not show strong changes in the

overall morphology, we observed significant alterations in the size

of siliques, which is reduced by at least 25% for the heterozygous

mutant lines of pwp2, rrp5 and enp1 (Table 1, Fig. S8) when

compared to wild-type. Analysis of the seed content of siliques

from these lines revealed the presence of small non-developed or

early aborted seeds (Fig. 8) leading to an overall seed reduction of

around 50% (Table 1). The siliques of noc4+/2 or nob1+/2 were

not as drastically reduced in size (Table 1) and seed abortion was

secondary antibody labeled with Cy2 fluorophore (green). Tissues were stained with DAPI (blue) to visualize the nucleus. Scale bar: 10 mm. D,
Arabidopsis cell culture extract subjected to SDS-PAGE followed by Western Blot analysis using the indicated antibodies. White arrows point to
expected migration of the protein.
doi:10.1371/journal.pone.0054084.g003
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Figure 4. AtNob1 and AtENP1 are components of the 40S pre-ribosome. A, Arabidopsis cell culture lysate was applied to continuous
sucrose gradient centrifugation. The absorption profile is shown on top. Fractions were collected and subjected to SDS-PAGE and Western blot
analysis with indicated antibodies. RNA of the fractions was isolated and rRNA content was determined by northern blot analysis (NB) or EtBr staining.
B, Secondary structure prediction of the RNA probe used for the cleavage assay is shown. The black arrow points to the predicted cleavage site D. C,
Internally labeled in vitro transcribed RNA was incubated with recombinant atNob1 and the D50N mutant. Black arrows indicate the expected
cleavage products.
doi:10.1371/journal.pone.0054084.g004
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only observed for the latter one (Fig. 8). As a consequence, the

number of seeds per silique of nob1+/2 plants was reduced by

15%, while it was comparable to wild-type for noc4+/2 plants.

However, for both lines we observed around 25% pale seeds

(Table 1) which lead to the reduction of the germination rate of

these two lines (Table 1). Bleaching of the pale seeds in Hoyer’s

solution showed an arrest of the embryo development in the

globular stage for seeds of nob1+/2 and noc4+/2 (Fig. 9). In

contrast to wild type where the embryo passes through all

developmental stages up to the final green cotelydone stage, the

embryo in the pale noc4+/2 or nob1+/2 seeds is unable to initiate

asymmetric cell divisions to form the heart stage. As a consequence

the embryo only slightly increases in size but no mature embryo is

formed (Fig. 9, bottom panel).

To clarify the transmission of the T-DNA through male and

female gametophyte, we quantified the rates by selfing, male or

female backcrossing. For Mendelian segregation the transmission

rates should be 2:1:1 for selfing:male backcrossing:female back-

Figure 5. Analysis of T-DNA insertion mutants. A, Positions of the T-DNA within the genes are shown. Accession numbers of the plant lines and
the name used here is given. The base position verified by T-DNA mapping (Table S1) is indicated on the left or right border of the insertion. Black
arrows indicate primer binding sites used for the analysis (Table S2). B, Segregation state of insertion lines was verified with PCR. The T-DNA left
border primer was combined either with the forward (lane 1) or reverse genomic primer (lane 2). For lane 3 the forward and reverse genomic primers
were used. C, mRNA-levels in wild-type and mutants were analyzed by qRT-PCR. Values were normalized to ACT2 and the wild-type level was set to
100% for comparison to the expression level in mutants. Oligonucleotides are listed in Table S2. D, Protein levels of atNob1 in WT and nob1+/2 were
determined by immunodecoration of plant extract with aNOB1 or aACT2 antibodies (loading control). E, Protein levels of atEnp1 in WT and enp1+/2
were determined by immunodecoration of plant extract with aEnp1 or aAct2 antibodies (loading control).
doi:10.1371/journal.pone.0054084.g005
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crossing [28], while the segregation changes to 1:0:1 or 1:1:0 when

gametophyte affecting mutations occur. However, it has been

manifold described and discussed that experimentally determined

values of transmission rates (TRs) are typically lower than the ideal

assumption [62,63]. We observed clear differences between

determined TR of the analyzed lines (Table 2). Comparing the

probabilities for Mendelian and non-Mendelian behavior the

conclusions on these distributions are found to be statistically

significant (Table S4) although we realized large standard

deviations for the results.

Figure 6. rRNA processing in wild-type and mutant plants. A, The scheme of pre-rRNA processing indicating cleavage sites (top) and the
expected intermediates is shown. Names of intermediates (right) and numbers used in B–D (left) are given. Priming sites for Northern probes are
indicated. Stars indicate unknown processing positions. B, RNA from flowers indicated (bottom) was separated on agarose gel, stained with EtBr (left)
for visualization of mature rRNAs or Northern blotted with probe p5 (middle) or p3 (left) to detect pre-rRNA. The eEF1A RNA was probed as control
(see right). Migration of rRNA intermediates is indicated (right). C, RNA from wild-type and nob1+/2 plants was probed with p6 (left), p1 (middle) or
p2 (left). Migration of rRNA intermediates is indicated (right). D, RNA from plants indicated (bottom) was separated by acrylamide gel, stained with
EtBr (left) for visualization of mature rRNAs or Northern blotted with probe p5, p4 or p23 to detect pre-rRNA. Migration of rRNA intermediates is
indicated (right). The 7SL RNA was probed as control; shown on the right. For B–D: alterations between wild-type and mutant lines are indicated by
tilted arrows. Please note, all probes were used on the same blot and images were processed simultaneously.
doi:10.1371/journal.pone.0054084.g006
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For pwp2 or rrp5 mutants we observed a transmission rate

between 0.4 and 0.8 for selfing. For the paternal backcrossing we

observed a somewhat higher TR compared to selfing (Table 2)

suggesting that transmission through the male gametophyte was

not affected. In contrast, maternal backcrossing revealed a TR of

zero documenting that a female gametophyte defect exists for

these two factors (Table 2, Table S4). In case of noc4+/2 where no

seed set reduction was observed we observed a TR of 1.95 for

selfing, which shows that the mutation can be maternally and

paternally inherited and follows a classical Mendelian segregation.

The distribution of the transmission rates for enp1+/2 and

nob1+/2 does not follow any segregation pattern because the male

and female gametophyte is affected. For the enp1 mutant we

observed a TR close to zero for selfing, maternal and paternal

backcrossing (Table 2); for nob1+/2 we observed a TR of 1 for

selfing and close to zero for maternal transmission of the T-DNA,

which is consistent with the observed reduction of seeds per silique

and the reduced germination rate. Further, we observed a

significantly reduced paternal transmission leading to a TR of

0.34 as well.

Because of the distorted transmission of the T-DNA through the

male gametophyte in nob1+/2 and enp1+/2, we analyzed the

pollen development in these particular plant lines. We observed

pollen delayed in development in both T-DNA insertion lines

(Fig. 10A, 2). The delayed pollen is determined by the presence of

vacuoles characteristic for the early stages of microgametogenesis

shortly after meiosis [64]. The vacuoles are visible as round

spheres within the pollen which itself shows a more round

morphology in comparison to mature pollen. In the enp1+/2

mutant the fully developed wild-type pollen (Table 3, Fig. 10A, 1)

Figure 7. Analysis of co-suppression mutants of nob1. A, To visualize the growth and flowering phenotype of wild type and nob1 co-
suppression mutants two representative 30 day old plants are shown. Scale bar: 30 mm for both panels. B, For protein expression study of wild type
and nob1 co-suppression mutants (upper panel) three independent wild type plants and three independent nob1 co-suppression mutants
(independent transformation events) were used. As loading control aActin antibody (middle panel) and Ponceau staining (lower panel) are depicted.
C, For northern blot analysis total RNA from leaves was loaded on a agarose gel. Three representative, independent plant lines are presented. EtBr
staining of the gel is shown (left). As a loading control a probe against eEF1A was used. The migration of the pre-rRNAs is indicated on the right. D,
The northern blot quantification of the major transcripts (35S, 33S, P-A3, 20S and 27SB) was normalized to the signal of eEF1A after background
correction. For wild type three replicates were used. For the co-suppression mutants of nob1 six plant lines derived from four independent
transformation events were used for quantification. To statistically analyze the changes of pre-rRNA values a Students’s t-test was performed. The two
asterisk indicate a p-value below 0.005.
doi:10.1371/journal.pone.0054084.g007

Figure 8. Embryo development of heterozygous mutants. Wild-
type and indicated mutants siliques were dissected to visualize the
seeds. Black arrows indicate aborted seeds, white arrows undeveloped
seeds and grey arrows pale seeds. Scale bar: 200 mm.
doi:10.1371/journal.pone.0054084.g008
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Figure 9. Embryos in pale seeds of noc4+/2 and nob1+/2 arrest in globular stage. Seeds from wild-type and insertion lines were bleached
for visualization with a phase contrast microscope. Scale bars: 100 mm.
doi:10.1371/journal.pone.0054084.g009
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accounts for 54% of the pollen grains, while 43% are delayed in

development (Tab. 3, Fig. 10A, 2) and 3% are crippled with now

distinguishable developmental stage (Tab. 3, Fig. 10A, 3). The

developmental distortion of the mutant pollen was further

investigated by scanning electron microscopy (SEM, Fig. 10B).

The pollen from wild-type and enp1+/2 and nob1+/2 showed no

obvious morphological changes but an equivalent proportion was

smaller than wild-type. The round appearance of the delayed

pollen is not visible in SEM because the pollen was dried for two

day prior to the microscopic analysis.

To verify the developmental delay in the pollen still containing

vacuoles, the nuclei within the pollen grains were stained with

DAPI (Fig. 10C,D). Fully developed wild-type pollen contains

three nuclei, one vegetative nucleus and two sperm cells nuclei.

The pollen in nob1+/2 and enp1+/2 still containing vacuoles

showed only one or two nuclei and therefore is probably unable to

Table 1. Seed set and germination rate of heterozygous mutants.

mutant line Silique length [%]1 seeds per silique [%]2 no. of pale seeds [%]3 germination rate [%]4

pwp2.1+/2 7465 51610 2 100

pwp2.2+/2 7665 5768 2 100

rrp5.1+/2 7465 5667 2 100

rrp5.2+/2 7564 5868 2 100

noc4+/2 9265 100611 2065 8265

enp1.1+/2 7267 4968 2 100

nob1+/2 8265 8469 2566 9362

Seeds were sowed out on selection plates containing kanamycin for Salk lines or sulfadiazine for Gabi lines. The plants were grown under long day condition for 3
weeks.
1From 3 independent plants 15 siliques each were measured. The length was calculated according to the length of wild-type siliques, which were set to 100%.
2Percentage was calculated according to wild-type seed set, which was set to 100%.
3Percentage was calculated according to the amount of seeds in the heterozygous silique.
4Percentage was calculated according to wild-type, which was set to 100%.
doi:10.1371/journal.pone.0054084.t001

Table 2. Transmission rates of selfing and backcrossed mutants.

mutant line backcrossing1 germinated seeds resistant seedlings sensitive seedlingstransmission rate [ABR/ABS]

pwp2.1+/2 Selfing 342 131 211 0.6360.15

Paternal 122 49 73 0.6660.19

Maternal 109 0 109 0.0060.00

pwp2.2+/2 Selfing 387 156 231 0.5660.23

Paternal 150 75 75 0.8860.23

Maternal 280 3 277 0.0160.02

rrp5.1+/2 Selfing 332 142 190 0.8060.24

Paternal 541 235 306 0.8260.22

Maternal 115 4 111 0.0260.03

rrp5.2+/2 Selfing 447 124 323 0.4060.17

Paternal 855 340 515 0.7260.25

Maternal 272 0 272 0.0060.00

noc4+/2 selfing 428 281 147 1.9560.32

paternal 521 258 263 1.0160.16

maternal 682 344 338 1.0360.20

enp1.1+/2 selfing 179 6 173 0.0360.02

paternal 193 3 190 0.0160.03

maternal 176 0 176 0.0060.00

nob1+/2 selfing 325 163 171 1.0060.34

paternal 418 101 308 0.3560.16

maternal 336 26 317 0.0760.10

Seeds were sowed out on selection plates containing kanamycin for Salk lines or sulfadiazine for Gabi lines. The plants were grown in long day condition for 3 weeks.
1Paternal backcrossing was performed with the insertion mutant as pollen donor. For maternal backcrossing flowers of mutant lines were fertilized with wild type
pollen. For each heterozygous insertion line 10–30 flowers were backcrossed. The term selfing describes flowers that were self pollinated.
doi:10.1371/journal.pone.0054084.t002
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form pollen tubes and carries the T-DNA insertion on its haploid

genome.

An exception from the clear full penetration through the female

gametophyte is nob1+/2. The seed set was reduced by 25%

(Tab. 1), about 25% of the seeds appeared pale (Fig. 8) and the TR

of selfing plants is reduced due to male and female gametophyte

defects (Table 2). Remarkably, about 84% of the pollen of the

mutant line has a wild-type shape, while the other mutant-specific

shapes occur with a frequency of around 16%. This indicates that

sterility of the pollen might lead to the reduced paternal

transmission rate of the T-DNA.

Figure 10. Pollen of enp1+/2 and nob1+/2 are delayed in development. A, Pollen of wild type, enp1+/2 and nob1+/2 was analyzed with a
phase contrast microscope. Scale bars: 10 mM. B, Pollen of wild type and mutant plants were visualized by scanning electron microscopic pictures.
Scale bar: 10 mM. C, The pollen was stained with DAPI to visualize the nuclei (left panel). The middle panel shows the DIC image of the pollen, the
right panel the overlay of both. White arrows indicate the stained nuclei. Scale bar: 10 mM. D, Additional enp1+/2 and nob1+/2 pollen is presented
to verify the arrest in pollen development. The pollen was stained with DAPI. White arrows indicate the stained nuclei. Scale bar: 10 mM.
doi:10.1371/journal.pone.0054084.g010
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Discussion

Functional Conservation between Ribosome Biogenesis
Factors from Yeast and Arabidopsis thaliana
Only limited information on the evolutionary conservation of

ribosome biogenesis in plants is available and the information on

the few factors investigated in plants give a divergent picture.

OsNog2 and ateIf6-1 could complement in the corresponding

yeast mutants, while ateIf6-2 or Mtr4 failed to do so [11,57]

Although the factors investigated here show a high sequence

similarity (Fig. 1), they did not complement yeast mutants with the

exception of atNob1, which somewhat rescued the phenotype

(Fig. 1). A reason for the inability of the plant proteins to

complement the depletion of their yeast counterpart might be that

the plant proteins require different or additional complex partners

that are not present in yeast. Another explanation could be that all

components of pre-ribosomes are present in yeast and plants, but

have differently co-evolved to maintain the functionality of their

interaction. However, currently we do not have information about

the differences of ribosomal complex composition in different

species to verify one of these hypotheses. The observed comple-

mentation by Nob1 might be explained by the cytoplasmic action

of the protein and by its two domain structure where the largest

diversity between the plant and yeast protein (Fig. S1) is restricted

to a loop region of unknown function not required for the

enzymatic activity [56].

However, the assignment of the plant factors analyzed in here to

ribosome biogenesis is supported by several lines of evidences. The

intracellular localization of the five factors (Nucleolus: atNoc4,

atRrp5, atPwp2; nucleolus & nucleus: atEnp1; nucleus &

cytoplasm atNob1; Fig. 3) overlaps with localization of the yeast

homologues [40,42,59,65]. Further, atEnp1 and atNob1 co-

migrate with pre-ribosomal 40S complexes (Fig. 4), which is

comparable to the observed association of scEnp1 with 20S rRNA

[65] and the endonuclease activity of atNob1, scNob1 and

phNob1 for 20S rRNA (Fig. 4; [35,37,56,59]. In addition, pre-

rRNA processing is affected already at the heterozygous state of all

lines (Fig. 6). In all investigated heterozygote mutant lines the 35S

pre-rRNA was found to be accumulated (Fig. 6), which was also

observed while analyzing yeast depletion mutants of pwp2, rrp5 and

noc4 [1,34,42]. In the ENP1 and NOB1 T-DNA insertion mutants

the accumulation of the 35S pre-rRNA is probably due to a

general delayed rRNA processing, which cannot be excluded for

pwp2, rrp5 and noc4 as well. The general accumulation of rRNA

precursors in plants with defects in ribosome biogenesis is

supported by the observation for the Nob1 co-suppression plants.

All investigated precursors show an accumulation, but the

precursor directly affected by the protein is significantly more

enriched (Fig. 7).

Beside obvious similarities between yeast and plant factors,

some differences are found. Depletion of Nob1 in yeast leads to an

accumulation of pre-rRNAs and a decrease of the mature rRNAs

(e.g. [59]). In contrast, in nob1+/2 the accumulation of the rRNA

precursors was rather weak and the level of mature rRNA was not

significantly affected, while the P-A3 fragment accumulated

(Fig. 6). The latter is surprising because atNob1 shows endonu-

clease activity and processes the 20S pre-rRNA at site D in vitro
(Fig. 4). Thus, an accumulation of 20S as observed in yeast was

expected. However, the enhanced level of P-A3 and the even

reduced level of 20S in nob1+/2 would indicate that cleavage at

site A3 and D is not affected. However, this conclusion is not

certain. As seen in the analysis of co-suppression of Nob1, all

precursors are enriched to the same extent and only P-A3 shows a

higher accumulation. This indicates that in general the 59

processing of the 18S precursors is affected in the early steps of

ribosome biogenesis and influences the downstream processing of

the pre-rRNAs accociated with the small ribosomal subunit. Thus,

two different explanations for the accumulation of the P-A3

fragment are possible. First, a reduced atNob1 level does not affect

the cleavage at site D, but the recruitment of unknown 59 end

processing factors that lead to an accumulation of precursors

upstream to 20S pre-rRNA. Second, P-A3 accumulation can

occur by disturbed export of pre-ribosomal complexes. It was

speculated that in yeast a weak interaction between scNob1 and a

putative export adapter for the small subunit scLtv1 exist [66]. A

reduction of Nob1 could thereby influence the export competence

of the 40S subunit in general. Nevertheless, it is not known, if P-A3

is exported to the cytoplasm. If this is the case it would explain the

accumulation of this pre-rRNA in atNob1 deficient plants.

It appears that Nob1 level has to be tightly regulated as the

enhanced transcript level in nob1+/2 triggers a down-regulation of

the protein level (Fig. 5). Similarly, the Arabidopsis transformation

with a wild-type gene under 3S5 promoter leads to a co-

suppression of the Nob1 protein (Fig. 7). In this case the 35S

driven transcripts are regulated probably by RNAi processing and

lead to a reduction of the endogenous and exogenous protein. The

requirement for balancing the Nob1 protein level might be

explained by ‘‘titration’’ of different factors important for ribosome

biogenesis by interaction with Nob1 in the cytoplasm in case of its

overexpression.

In summary, a functional of atPwp2, atRrp5, atNoc4, atEnp1

and atNob1 in ribosome biogenesis is supported by the results

presented in this study. It was documented that in general they

have comparable properties as the yeast factors, but the molecular

characteristic appear not to be conserved. Further experiments

should aim to the identification of interaction partners of the

proteins to finally prove the association of atPwp2, atRrp5,

atNoc4, atEnp1 and atNob1 with pre-ribosomal complexes and

the functional conservation of the proteins in ribosome biogenesis.

Mutations in Ribosome Biogenesis Factors Cause
Aberrant Gametophyte and Embryo Development
In Saccharomyces cerevisiae all five factors in focus of this study are

essential. Their homologues in Arabidopsis are essential as well

because no homozygous state can be segregated in the T-DNA

insertion plant lines (Fig. 5). Consistently with other studies on

proteins involved in ribosome biogenesis no growth phenotype was

observed for the heterozygote plants (Fig. S6; [8]). Only the silique

length was reduced in all T-DNA insertion lines when compared

to wild-type (Fig. S8). The reduction in silique length is caused by

the abortion of about 50% of the seeds within the siliques of the

PWP2, RRP5 and ENP1 mutants (Table 1, Fig. 8). This phenotype

is characteristic for mutations effecting female gametophyte

Table 3. Distribution of the distinct pollen shapes
representing fully developed (1), delayed (2) and crippled (3)
pollen.

mutant line Shape 1 [%]1 Shape 2 [%] Shape 3 [%] Total pollen

Wild type 100 0 0 300

enp1.1+/2 5462 4361 361 593

nob1+/2 8462 1461 261 477

1Pollen shape according to Figure 9.
doi:10.1371/journal.pone.0054084.t003
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development [67]. For example disruption of SLOW WALKER1

(SWA1), a WD-repeat containing protein involved in the 18S

rRNA maturation, leads to a delayed megagametophyte develop-

ment resulting in asynchronous distribution of ovules in different

developmental stages within one pistel [68]. Whether the small

undeveloped seeds within the pwp2+/2, rrp5+/2 and enp1+/2
siliques resemble unfertilized ovules or fertilized ovules arrested

early in development has to be addressed in further experiments,

but it is tempting to assume that similar effects cause the

phenotype observed.

A T-DNA transmission close to zero by female backcrossing was

observed for almost all mutants (except noc4+/2) indicating an

effect of the mutation on female gametophyte development

(Table 2). Additionally, a reduction of T-DNA transmission

through the male gametophyte was observed in enp1+/2 and

nob1+/2. The analysis of pollen properties revealed wild-type like

pollen containing three nuclei, but also pollen with two or one

nuclei for the two heterozygote lines. This might be explained by a

dilution of functional ribosomes from the microspore mother cell

leading to an arrest of the microspores before or during the two

mitotic cell divisions. During meiosis the microspore mother cell

divides into tetrads of haploid microspores whereas two tetrads

contain the mutated gene and two the wild type gene. In wild type

microspores newly synthesized ribosomes can fulfill their function

whereas microspores containing the mutated ribosome biogenesis

co-factor gene cannot produce functional ribosomes. Due to cell

growth and cell division the pollen grains have a high demand of

ribosomes which cannot be covered by the ribosomes inherited

from the microspore mother cell. Consequently, the development

of the pollen grain is delayed and eventually aborted.

A similar argumentation can be build up for the globally

observed defect of reduction of T-DNA transmission through the

male gametophyte. Although an arrest or delay in the mitotic cell

divisions of the female gametophyte was not proven earlier studies

reported a disturbed development of the megaspore during mitosis

[14]. Assuming that the aborted ovules in the siliques of the T-

DNA insertion lines analyzed here are also defective in mitotic cell

cycle progression, the arrest of the female gametophyte in the

mitotic cell divisions could be due to ribosome dilution during

gametogenesis as well. The larger cell size, the increased number

of mitotic cell divisions and/or the cellularization processes that

occur in ovules shortly before fertilization might account for a

higher demand on ribosome biogenesis related genes on the

development of the female gametophyte in comparison to the male

gametophyte.

In summary, the results show the great importance of functional

ribosome biogenesis on plant development. The deletion of co-

factors involved in ribosome biogenesis disturbs cell cycle

progression and cell proliferation especially in the haploid stages

of plant development. The mutations in ribosome biogenesis co-

factors mainly affect the mitotic cell cycle progression, which is

supported by the distribution of the T-DNA transmission through

the male and female gametophyte. A typical feature of mitotic

mutants is the non-Mendelian segregation pattern. In contrast

meiotic mutants are sporophytic mutations and would show

normal Mendelian segregation patterns at a heterozygous state

[67]. Most interestingly, the deletion of different ribosome

biogenesis co-factors, although these proteins participate in the

same cellular process, led to diverse defects in gametophyte or

embryo development represented by various segregation patterns.

Whereas a disruption of atRRP5 and atPWP2 lead to exclusively

female gametophyte defects, atENP1 and atNOB1 mutants show

female and male gametophyte defects. A clear exception is the T-

DNA insertion line of atNOC4 where a normal Mendelian

segregation occurs but the homozygous embryos arrest in the

globular stage of development. These diverse defects of proteins

participating in the same pathway are surprising and might be

explainable by epigenetic modifications (Fig. S9; [69]).
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