
42 Variability Bugs in the Linux Kernel:
A Qualitative Analysis

Iago Abal
iago@itu.dk

Claus Brabrand
brabrand@itu.dk

Andrzej Wąsowski
wasowski@itu.dk

IT University of Copenhagen
Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark

ABSTRACT
Feature-sensitive verification pursues effective analysis of the
exponentially many variants of a program family. However,
researchers lack examples of concrete bugs induced by vari-
ability, occurring in real large-scale systems. Such a collection
of bugs is a requirement for goal-oriented research, serving to
evaluate tool implementations of feature-sensitive analyses
by testing them on real bugs. We present a qualitative study
of 42 variability bugs collected from bug-fixing commits to
the Linux kernel repository. We analyze each of the bugs,
and record the results in a database. In addition, we provide
self-contained simplified C99 versions of the bugs, facilitating
understanding and tool evaluation. Our study provides in-
sights into the nature and occurrence of variability bugs in a
large C software system, and shows in what ways variability
affects and increases the complexity of software bugs.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General; D.2.5 [Software
Engineering]: Testing and Debugging

Keywords
Bugs; Feature interactions; Linux; Software Variability

1. INTRODUCTION
Many software projects have to cope with a large amount
of variability. In projects adopting the Software Product
Line methodology [1] variability is used to tailor development
of an individual software product to a particular market
niche. A related, but different, class of projects develops
highly configurable systems, such as the Linux kernel, where
configuration options, here referred as features [20], are used
to tailor functional and non-functional properties to the needs
of a particular user. Highly configurable systems can get
very large and encompass large sets of features. Reports of
industrial systems with thousands of features exist [4] and
extensive open-source examples are documented in detail [5].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE’14, September 15-19, 2014, Vasteras, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2642990.

Features in a configurable system interact in non-trivial
ways, in order to influence each others functionality. When
such interactions are unintended, they induce bugs that man-
ifest themselves in certain configurations but not in others, or
that manifest differently in different configurations. A bug in
an individual configuration may be found by analyzers based
on standard program analysis techniques. However, since
the number of configurations is exponential in the number
of features, it is not feasible to analyze each configuration
separately.

Family-based [33] analyses, a form of feature-sensitive anal-
yses, tackle this problem by considering all configurable
program variants as a single unit of analysis, instead of ana-
lyzing the individual variants separately. In order to avoid
duplication of effort, common parts are analyzed once and
the analysis forks only at differences between variants. Re-
cently, various family-based extensions of both classic static
analysis [2, 6, 9, 14, 22, 24] and model checking [3, 12, 13, 17,
30] based techniques have been developed.

Most of the research so far has focused on the inherent
scalability problem. However, we still lack evidence that
these extensions are adequate for specific purposes in real-
world scenarios. In particular, little effort has been put into
understanding what kind of bugs appear in highly config-
urable systems, and what are their variability characteristics.
Gaining such understanding would help to ground research
on family-based analyses in actual problems.

The understanding of complexity of variability bugs is
not common among practitioners and in available artifacts.
While bug reports abound, there is little knowledge on what
of those bugs are caused by feature interactions. Very often,
due to the complexities of a large project like Linux, and
the lack of feature-sensitive tool support, developers are not
entirely conscious of the features that affect the software
they work on. As a result, bugs appear and get fixed with
little or no indication of their variational program origins.

The objective of this work is to understand the complexity
and nature of variability bugs (including feature interaction
bugs) occurring in a large highly-configurable system, the
Linux kernel. We address this objective via a qualitative
in-depth analysis and documentation of 42 cases of such bugs.
We make the following contributions:

• Identification of 42 variability bugs in the Linux kernel,
including in-depth analysis and presentation for non-
experts.

• A database containing the results of our analysis, en-
compassing a detailed data record about each bug.



These bugs comprise common types of errors in C soft-
ware, and cover different types of feature interactions.
We intend to grow the collection in the future with the
help of the research community. The current version is
available at http://VBDb.itu.dk.

• Self-contained simplified C99 versions of all bugs. These
ease comprehension of the underlying causes, and can
be used for testing bug-finders in a smaller scale.

• An aggregated reflection over the collection of bugs.
Providing insight on the nature of bugs induced by
feature interactions in a large project like Linux.

We adopt a qualitative manual methodology of analysis for
three reasons. First, family-based automated analysis tools
that scale for the Linux kernel do not exist. In fact, without
this study it was unclear what tools should be built. Second,
using conventional (not family-based) analysis tools on indi-
vidual variants after preprocessing does not scale (if applied
exhaustively) or yields low probability of finding bugs (if
applied by random sampling). Third, searching for bugs with
tools only finds cases that these tools cover, while we were
interested in exploring the nature of variability bugs widely.

Reflecting on the collected material, we learn that vari-
ability bugs are very complex, they involve many aspects
of programming language semantics, they are distributed
in most parts of Linux project, involve multiple features
and span code in remote locations. Detecting these bugs is
difficult for both people and tools. Once feature-sensitive
analyses that are able to capture these bugs are available, it
will be interesting to conduct extensive quantitative experi-
ments to confirm our qualitative intuitions.

We direct our work to designers of program analysis and
bug finding tools. We believe that the collection of bugs
can inspire them in several ways: (i) it will provide a set of
concrete, well described challenges for analyses, (ii) it will
serve as a benchmark for evaluating their tools, and (iii) it will
dramatically speed up design of new techniques, since they
can be tried on simplified Linux-independent bugs. Using
realistic bugs from a large piece of software in evaluation
can aid tuning the analysis precision, and incite designers to
support certain language constructs in the analysis.

We present basic background in Sect. 2. The methodology
is detailed in Sect. 3. Sections 4–5 describe the analysis: first
the considered dimensions, then the aggregate observations.
We finish surveying threats to validity (Sect. 6), related work
(Sect. 7) and a conclusion (Sect. 8).

2. BACKGROUND
We use the term software bug to refer to both faults and
errors as defined by IEEE Standard Glossary of Software
Engineering [32]. A fault (defect) is an incorrect instruction
in the software, introduced into the code as a result of a
human mistake. Faults induce errors, that are incorrect
program states, such as a pointer being null when it should
not be. In this work we collected errors that manifested
as runtime failures (typically a kernel panic), as well as
defects spotted when building a specific kernel configuration.
While the latter might look harmless (for instance an unused
variable) we assume that they might be side-effects of serious
misconceptions potentially leading to other bugs.

A feature is a unit of functionality additional to the core
software [11]. The core (base variant) implements the basic

1 #include <stdlib.h>

3 void foo(int a) { →(5)
•4 printf("%d\n",2/a); // ERROR (6)×
5 }

•7 int main(void) { // START ⇒(1)
8 int x = 1; (2)
9 #ifdef CONFIG_INCR // DISABLED |

10 x = x + 1; |
11 #endif |
12 #ifdef CONFIG_DECR // ENABLED ↓
13 x = x - 1; (3)
14 #endif ↓
15 foo(x); (4)→
16 }

Figure 1: Example of a program family and a bug.

functionality present in any variant of a program family. The
different selections of features (configurations) define the set
of program variants. Often, two features cannot be simul-
taneously enabled, or one feature requires enabling another.
Feature dependencies are specified using a feature model [20]
(or a decision model [18]), denoted here by ψFM; effectively a
constraint over features defining legal configurations.

Preprocessor-based program families [21] associate features
with macro symbols, and define their implementations as
statically conditional code guarded by constraints over fea-
ture symbols. The macro symbols associated to features
(configuration options) are often subject to naming conven-
tions, for instance, in Linux these identifiers shall be prefixed
by CONFIG_. We follow the Linux convention through out
this paper. Figure 1 presents a tiny preprocessor-based C pro-
gram family using two features, INCR and DECR . Statements
at lines 10 and 13 are conditionally present. Assuming an
unrestricted feature model (ψFM = true), the figure defines
a family of four different variants.

A presence condition ϕ of a code fragment is a minimal
(by the number of referred variables) Boolean formula over
features, specifying the subset of configurations in which the
code is included in the compilation. The concept of presence
condition extends naturally to other entities; for instance,
a presence condition for a bug specifies the subset of con-
figurations in which a bug occurs. Concrete configurations,
denoted by κ, can also be written as Boolean constraints—
conjunctions of feature literals. A code fragment with pres-
ence condition ϕ is thus present in a configuration κ iff κ � ϕ.
As an example, consider the decrement statement in line
13, which has presence condition DECR , thus it is part of
configurations κ0 = ¬INCR ∧ DECR and κ1 = INCR ∧ DECR .

Features can influence the functions offered by other fea-
tures—a phenomenon known as feature interaction, which
can be either intentional or unexpected. In our example, the
two features interact because both modify and use the same
program variable x. Enabling either INCR or DECR , or both,
results in different values of x prior to calling foo.

As a result of variability, bugs can occur in some configu-
rations but not in others, and can also manifest differently in
different variants. If a bug occurs in one or more configura-
tions, and does not occur in at least one other configuration,
we call it a variability bug. Figure 1 shows how one of the pro-
gram variants in our example family, namely κ0, will crash
at line 4 when we attempt to divide by zero. Because this
bug is not manifested in any other variant, it is a variability
bug—with presence condition ¬INCR ∧ DECR .

http://VBDb.itu.dk


Program family implementations are usually conceptually
stratified in three layers: the problem space (typically a fea-
ture model), a solution space implementation (e.g. C code),
and the mapping between the problem and solution spaces
(the build system and cpp in Linux). We show how the
division-by-zero bug could be fixed, depending on the inter-
pretation, in our running example, in each layer separately.
We show changes to code in unified diff format (diff -U0).

Fix in code. If function foo should accept any int value,
then the bug is fixed by appropriately handling zero as input.

@@ -4 +4,4 @@
- printf("%d\n",2/a);
+ if (a != 0)
+ printf("%d\n",2/a);
+ else
+ printf("NaN\n");

Fix in mapping. If we assume that function foo shall not be
called with a zero argument, a possible fix is to decrement x

only when both DECR and INCR are enabled.

@@ -12 +12 @@
- #ifdef CONFIG_DECR
+ #if defined(CONFIG_DECR) && defined(CONFIG_INCR)

Fix in model. If the bug is caused by an illegal interaction, we
can introduce a dependency in the feature model to prevent
the faulty configuration κ0. For instance, let DECR be only
available when INCR is enabled. Assuming feature model
ψFM = DECR → INCR forbids κ0.

3. METHODOLOGY
Objective. Our objective is to qualitatively understand the
complexity and nature of variability bugs (including feature-
interaction bugs) occurring in a large highly-configurable
system: the Linux kernel. This includes addressing the
following research questions:

• RQ1: Are variability bugs limited to any particular type
of bugs, “error-prone” features, or specific location?

• RQ2: In what ways does variability affect software bugs?

Subject. We study the Linux kernel, taking the Linux stable
Git1 repository as the unit of analysis. Linux is likely the
largest highly-configurable open-source system. It has about
ten million lines of code and more than ten thousand features.
Crucially, data about Linux bugs is available freely. We
have free access to the bug tracker2, the source code and
change history3, and to public discussions on the mailing list4

(LKML) and other forums. There also exist books on Linux
development [8, 25]—valuable resources when understanding
a bug-fix. Access to domain specific knowledge is crucial for
the qualitative analysis.

We focus on bugs already corrected in commits to the
Linux repository. These bugs have been publicly discussed
(usually on LKML) and confirmed as actual bugs by kernel
developers, so the information about the nature of the bug fix
is reliable, and we minimize the chance of including fictitious
problems.

Methodology. Our methodology has three parts: first, we
identify the variability bugs in the kernel history. Second,

1http://git-scm.com/
2https://bugzilla.kernel.org/
3http://git.kernel.org/cgit/linux/kernel/git/
4https://lkml.org/

CONFIG_fid
configuration
config option

if fid is [not]? set

when fid is [not]? set
if fid is [en|dis]abled
when fid is [en|dis]abled

(a) Message filters.

#if
#else
#elif
#endif
select fid
config fid
depends on fid

(b) Content filters.

Figure 2: Regular expressions selecting configura-
tion-related commits in: (a) message, (b) content; fid
abbreviates [A-Z0-9_]+, matching feature identifiers.

bug
fix
oops
warn
error
unsafe
invalid
violation
end trace
kernel panic

(a) Generic bug filters.

void *
unused
overflow
undefined
double lock
memory leak
uninitialized
dangling pointer

null [pointer]? dereference
. . .

(b) Specific bug filters.

Figure 3: Regular expressions selecting bug-fixing
commits: (a) generic, (b) problem specific

we analyze and explain them. Finally, we reflect on the
aggregated material to answer our research questions.

Part 1: Finding Variability Bugs. We have settled on a semi-
automated search through Linux commits to find variability
bugs via historic bug fixes. As of April 2014 the Linux
repository has over 400, 000 commits, which rules out manual
investigation of each commit. We have thus searched through
the commits for variability bugs using the following steps:

1. Selecting variability-related commits. We retain com-
mits matching regular expressions of Fig. 2. Expressions
in Fig. 2(a) identify commits in which the author’s mes-
sage relates the commit to specific features. Those in
Fig. 2(b) identify commits introducing changes to the
feature mapping or the feature model. We reject merges
as such commits do not carry changes. This step selects
in the order of tens of thousands of commits.

2. Selecting bug-fixing commits. We narrow to commits
that fix bugs, matching regular expressions that in-
dicate bugs within the commit message (see Fig. 3).
Depending on the keywords of interest this step may
select from thousands of commits, to only a few tens
or less.

3. Manual scrutiny. We read the commit message and
inspect the changes introduced by the commit to re-
move obvious false positives. We order commits by
the number of hits in the first two searches, and down
prioritize very complex commits (given the information
provided in the commit message and the number of
lines modified by the patch).

Part 2: Analysis. The second part of the methodology is
significantly more laborious than the first part. For each
variability bug identified, we manually analyze the commit
message, the patch fix, and the actual code to build an
understanding of the bug. When more context is required,

http://git-scm.com/
https://bugzilla.kernel.org/
http://git.kernel.org/cgit/linux/kernel/git/
https://lkml.org/


we find and follow the associated LKML discussion. Code
inspection is supported by ctags5 and the Unix grep utility,
since we lack feature-sensitive tool support.

1. The semantics of the bug. For each variability bug we
want to understand the cause of the bug, the effect on
the program semantics and the relation between the two.
This often requires understanding the inner workings
of the kernel, and translating this understanding to
general programming language terms accessible to a
broader audience. As part of this process we try to
identify a relevant runtime execution trace and collect
links to available information about the bug online.

2. Variability related properties. We establish what is the
presence condition of a bug (precondition in terms of
configuration choices) and where it was fixed (in the
code, in the feature model or in the mapping).

3. Simplified version. Last but not least, we condense our
understanding in a simplified version of the bug. This
serves to explain the original bug, and constitutes an
interesting benchmark for evaluating tools.

We analyzed Linux bugs from the previous step following
this method and stored the created reports in a publicly
available database. We were looking for a sufficiently diverse
sample, and stopped at 42 bugs once it became possible to
answer our two research questions. The detailed content of
the report is explained in Sect. 4.

Part 3: Data Analysis and Verification. We reflect on the
collected data set in order to find answers to our research
questions. This step is supported with some quantitative
data but, importantly, we do not make any quantitative
conclusions about the population of the variability bugs in
Linux (such conclusions would be unsound given the above
research method). It purely characterizes diversity of the
data set obtained. This allows to present the entire collection
of bugs in an aggregated fashion (see Sect. 5).

Finally, in order to reduce bias we confront our method,
findings, and hypotheses in an interview with a full-time
professional Linux kernel developer.

4. DIMENSIONS OF ANALYSIS
We begin by selecting a number of properties of variability
bugs to understand, analyze and document in bug reports.
These are described below and exemplified by data from our
database. We show an example record in Fig. 4, a null-pointer
dereference bug found in a driver, which was traced back to
errors both in the feature model and the mapping.

Type of Bug (type). In order to understand the diversity of
variability bugs we establish the type of bugs according to
the Common Weakness Enumeration (CWE)6—a catalog of
numbered software weaknesses and vulnerabilities. We follow
CWE since, it was applied to the Linux kernel before [31].
However, since CWE is mainly concerned with security, we
had to extend it with a few additional types of bugs, includ-
ing type errors, incorrect uses of Linux APIs, etc. The types
of bugs in the obtained taxonomy are listed in Tbl. 1; our
additions lack an identifier in the rightmost column. The

5http://ctags.sourceforge.net/
6http://cwe.mitre.org/

bug types directly indicate what kind of analysis and pro-
gram verification techniques can be used to address the bugs
identified in the kernel. For instance the category of mem-
ory errors (Tbl. 1) maps almost directly to various program
analyses: for null pointers [10, 16, 19], buffer overruns [7, 15,
35], memory leaks [10, 16], etc.

Bug Description (descr). Understanding a bug requires
rephrasing its nature in general software engineering terms,
so that the bug becomes understandable for non kernel-
experts. We obtain such a description by studying the bug
in depth, and following additional available resources (such
as mailing list discussions, available books, commit messages,
documentation and online articles). Whenever use of the
Linux terminology is unavoidable, we provide links to the
necessary background. Obtaining the description is often
non-trivial. For example, one bug in our database (commit
eb91f1d0a53) was fixed with the following commit message:

Fixes the following warning during bootup when compiling with CONFIG_SLAB:

[ 0.000000] ------------[ cut here ]------------

[ 0.000000] WARNING: at kernel/lockdep.c:2282 lockdep_trace_alloc+0x91/0xb9()

[ 0.000000] Hardware name: [ 0.000000] Modules linked in:

[ 0.000000] Pid: 0, comm: swapper Not tainted 2.6.30 #491

[ 0.000000] Call Trace:

[ 0.000000] [<ffffffff81087d84>] ? lockdep_trace_alloc+0x91/0xb9

...

It is summarized in our database as:
Warning due to a call to kmalloc() with flags __GFP_WAIT
and interrupts enabled

The SLAB allocator is initialized by start_kernel() with in-

terrupts disabled. Later in this process, setup_cpu_cache()

performs the per-CPU kmalloc cache initialization, and will

try to allocate memory for these caches passing the GFP_KERNEL

flags. These flags include __GFP_WAIT, which allows the process

to sleep while waiting for memory to be available. Since, as

we said, interrupts are disabled during SLAB initialization,

this may lead to a deadlock. Enabling LOCKDEP and other de-

bugging options will detect and report this situation.

We add a one-line header to the description, here shown in
bold, to help identification and listing of bugs.

Program Configurations (config). In order to confirm that
a bug is indeed a variability bug we investigate under what
presence condition it appears. This allows to rule out bugs
that appear unconditionally and enables further investigation
of variability properties of the bug, for example the number
of features and nature of dependencies that enable the bug.

Our example bug (Fig. 1) is present when DECR is enabled
but INCR is disabled. The Linux bug captured in Fig. 4(b)
requires enabling TWL4030_CORE , and disabling OF_IRQ , in
order to exhibit the erroneous behavior (see config entry in
the left part).

Bug-Fix Layer (layer). We analyze the fixing commit to
establish whether the source of the bug is in the code, in
the feature model, or in the mapping. Understanding this
can help direct future research on building diagnostics tools:
are tools needed for analyzing models, mappings, or code?
Where is it best to report an error?

The bug of Fig. 4 has been fixed both in the model and in
the mapping (cf. Fig. 5). The fixing commit asserts that: first,
TWL4030_CORE should not depend on IRQ_DOMAIN (fixed in
the model), and, second, that the assignment of the variable
ops to &irq_domain_simple_ops is part of the IRQ_DOMAIN

code and not of OF_IRQ (fixed in the mapping).

Error Trace (trace). We manually analyze the execution
trace that leads to the error state. Slicing tools cannot easily

http://ctags.sourceforge.net/
http://cwe.mitre.org/


type: Null pointer dereference

descr: Null pointer on !OF_IRQ gets dereferenced if IRQ_DOMAIN .

In TWL4030 driver, attempt to register an IRQ domain with

a NULL ops structure: ops is de-referenced when registering

an IRQ domain, but this field is only set to a non-null

value when OF_IRQ .

config: TWL4030_CORE && !OF_IRQ

bugfix:

repo: git://git.kernel.org/pub/.../linux-stable.git

hash: 6252547b8a7acced581b649af4ebf6d65f63a34b

layer: model, mapping

trace:

. dyn-call drivers/mfd/twl-core.c:1190:twl_probe()

. 1235: irq_domain_add(&domain);

.. call kernel/irq/irqdomain.c:20:irq_domain_add()

... call include/linux/irqdomain.h:74:irq_domain_to_irq()

... ERROR 77: if (d->ops->to_irq)

links:

* [I2C](http://cateee.net/lkddb/web-lkddb/I2C.html)

* [TWL4030](http://www.ti.com/general/docs/...)

* [IRQ domain](http://lxr.gwbnsh.net.cn/.../IRQ-domain.txt)

(a) Bug record.

2 #include <stdlib.h>

4 #ifdef CONFIG_TWL4030_CORE // ENABLED
5 #define CONFIG_IRQ_DOMAIN
6 #endif

8 #ifdef CONFIG_IRQ_DOMAIN // ENABLED
9 int irq_domain_simple_ops = 1;

11 void irq_domain_add(int *ops) { →(6)
•12 int irq = *ops; // ERROR (7)×
13 }
14 #endif

16 #ifdef CONFIG_TWL4030_CORE // ENABLED
17 void twl_probe() { →(3)
18 int *ops = NULL; (4)
19 #ifdef CONFIG_OF_IRQ // DISABLED |
20 ops = &irq_domain_simple_ops; |
21 #endif |
22 irq_domain_add(ops); (5)→
23 }
24 #endif

•26 int main(void) { ⇒(1)
27 #ifdef CONFIG_TWL4030_CORE // ENABLED ↓
28 twl_probe(); (2)→
29 #endif
30 }

(b) Simplified version.

Figure 4: Bug 6252547b8a7: a record example and a simplified version.

@@ -2,8 +2,4 @@
#include <stdlib.h>

-#ifdef CONFIG_TWL4030_CORE
-#define CONFIG_IRQ_DOMAIN
-#endif
-
#ifdef CONFIG_IRQ_DOMAIN
int irq_domain_simple_ops = 1;
@@ -16,9 +12,9 @@
#ifdef CONFIG_TWL4030_CORE
void twl_probe() {
+ #ifdef CONFIG_IRQ_DOMAIN

int *ops = NULL;
- #ifdef CONFIG_OF_IRQ

ops = &irq_domain_simple_ops;
+ irq_domain_add(ops);

#endif
- irq_domain_add(ops);
}
#endif

Figure 5: Fix for simplified bug 6252547b8a7. The
patch is given in unified diff format (diff -U2).

be used for these purpose, as none of them is able to handle
static preprocessor directives appropriately. Constructing a
trace allows us to understand the nature and complexity of
the bug. A documented failing trace allows other researchers
to understand a bug much faster.

There are two types of entries in our traces: function calls
and statements. Function call entries can be either static
(tagged call), or dynamic (dyn-call) if the function is called
via a function pointer. A statement entry highlights relevant
changes in the program state. Every entry starts with a non-
empty sequence of dots indicating the nesting of function
calls, followed by the location of the function definition (file
and line) or statement (only the line). The statement in
which the error is manifested is marked with an ERROR label.

In Fig. 4(a) the trace starts in the driver loading func-
tion (twl_probe). This is called from i2c_device_probe at
drivers/i2c/i2c-core.c, the generic loading function for

I2C 7 drivers, through a function pointer (driver->probe).
A call to irq_domain_add passes the globally-declared struct
domain by reference, and the ops field of this struct, now
aliased as *d, is dereferenced (d->ops->to_irq).

The ops field of domain is not explicitly initialized, so it has
been set to null by default (as dictated by the C standard).
Thus the above error trace unambiguously identifies a path
from the loading of the driver to a null-pointer dereference,
when OF_IRQ is disabled. Had OF_IRQ been enabled, the ops

field would have been properly initialized prior to the call to
irq_domain_add.

Simplified Bug. Last but not least, we synthesize a simplified
version of the bug capturing its most essential properties.
We write a small C99 program, independent of the kernel
code, that exhibits the same essential behavior (and the
same problem). The obtained simplified bugs are easily
accessible for researchers willing to try program verification
and analysis tools without integrating with the Linux build
infrastructure, huge header files and dependent libraries, and,
most importantly, without understanding the inner workings
of the kernel. Furthermore, the entire set of simplified bugs
constitute an easily accessible benchmark suite derived from
real bugs occurring in a large-scale software system, which
can be used to evaluate bug finding tools in a smaller scale.

Simplified bugs are derived systematically from the error
trace. Along this trace, we preserve relevant statements and
control-flow constructs, mapping information and function
calls. We keep the original identifiers for features, functions
and variables. However, we abstract away dynamic dispatch-
ing via function pointers, struct types, void pointers, casts,
and any Linux-specific type, when this is not relevant for
the bug. When there exist dependencies between features,
we force valid configurations with #define. This encoding
of feature dependencies has the advantage of making the
simplified bug files self-contained.

7A serial bus protocol used in micro controller applications.



Figure 4(b) shows the simplified version of our running ex-
ample bug with null pointer dereference. Lines 4–6 encode a
dependency of TWL4030_CORE on IRQ_DOMAIN , in order to pre-
vent the invalid configuration TWL4030_CORE ∧¬IRQ_DOMAIN .
We encourage the reader to study the execution trace leading
to a crash by starting from main at line 26. This takes a mere
few minutes, as opposed to many hours necessary to obtain
an understanding of a Linux kernel bug normally. Note that
the trace is to be interpreted under the presence condition
from the bug record (decisions are specified in comments
next to the #if conditionals).

Traceability Information. We store the URL of the repository,
in which the bug fix is applied, the commit hash, and links
to relevant context information about the bug, in order to
support independent verification of our analysis.

5. DATA ANALYSIS
In order to address the research questions, we have reflected
on the entire body of information gathered, arriving at de-
tailed observations presented below. In the following, we
sometimes aggregate data with numbers. The numbers are
used solely for descriptive purposes—no statistical conclu-
sions should be drawn from them (we emphasize this using
a gray font).

We start by presenting the observations that support our
first research question, RQ1:

Observation 1: Variability bugs are not limited
to any particular type of bugs.

Table 1 lists the type of bugs we found, along with occurrence
frequencies in the collection. For example, 15 bugs have been
classified under the category of memory errors, four of which
are null pointer dereferences. We note that variability bugs
cover a wide range of qualitatively different types of bugs from

Table 1: Types of bugs among the 42 bugs. The
first column gives the frequency of these bugs in our
collection.

15 memory errors: CWE ID
4 null pointer dereference 476
3 buffer overflow 120
3 read out of bounds 125
2 insufficient memory -
1 memory leak 401
1 use after free 416
1 write on read only -

10 compiler warnings: CWE ID
5 uninitialized variable 457
2 incompatible types 843
1 unused function (dead code) 561
1 unused variable 563
1 void pointer dereference -

7 type errors: CWE ID
5 undefined symbol -
1 undeclared identifier -
1 wrong number of args to function -

7 assertion violations: CWE ID
5 fatal assertion violation 617
2 non-fatal assertion violation 617

2 API violations: CWE ID
1 Linux sysfs API violation -
1 double lock 764

1 arithmetic errors: CWE ID
1 numeric truncation 197

drivers/

7.0M (59%)

arch/

2.0M (17%)

fs/

801k (7%)

sound/

595k (5%)

net/

583k (5%)

include/

372k (3%)

kernel/

139k (1%)

lib/

66k (.6%)

mm/

63k (.5%)

crypto/

62k (.5%)

security/

49k (.4%)

block/

21k (.2%)Smaller:
• virt/ (6.8k), ipc/ (6.4k), init/ (2.0k), and usr/ (0.6k).

Infrastructure:
• tools/ (102k), scripts/ (44k), and samples/ (2.1k).

Figure 6: Location of the 42 bugs in the main Linux
directories as of March 2014. Each square represents
25 thousand lines of code. The precise number of
LOC and its percentage of the total is given below
the squares. A red (dark) square symbolizes the
occurrence of one of the bugs.

type errors, through data-flow errors such as uninitialized
variables, to locking policy violations (double locks).

We found 17 bugs, type errors and compiler warnings,
caught by the compiler at build time. Despite the compiler
checks, the bugs had been admitted to the repository in the
first place. Since compiler errors cannot easily be ignored, we
take this as evidence that the author of the commit (and the
maintainer who accepted it) could not find the bug, because
they compiled the code in configurations that do not exhibit
it (compiler checks are not family-based).

Observation 2: Variability bugs appear to not
be restricted to specific “error prone” features.

Table 2 shows the complete list of features involved in the
bugs: a total of 78 qualitatively different features, ranging
from debugging options (e.g., QUOTA_DEBUG and LOCKDEP ),
to device drivers (e.g., TWL4030_CORE and ANDROID ), to net-
work protocols (e.g., VLAN_8021Q and IPV6 ), to computer
architectures (e.g., PARISC and 64BIT ). Three features are
involved in three of the bugs, nine features occur in two bugs,
and the remaining 66 are involved in only a single bug.

Table 2: Features involved in the bugs.
64BIT IP SCTP S390
ACPI VIDEO JFFS2 FS WBUF VERIFY S390 PRNG
ACPI WMI KGDB SCTP DBG MSG
AMIGA Z2RAM KPROBES SECURITY
ANDROID KTIME SCALAR SHMEM
ARCH OMAP2420 LBDAF SLAB
ARCH OPAM3 LOCKDEP SLOB
ARM LPAE MACH OMAP H4 SMP
BACKLIGHT CLASS DEVICE MODULE UNLOAD SND FSI AK4642
BCM47XX NETPOLL SND FSI DA7210
BDI SWITCH NUMA SSB DRIVER EXTIF
BF60x OF STUB POULSBO
BLK CGROUP OF IRQ SYSFS
CRYPTO BLKCIPHER PARISC TCP MD5SIG
CRYPTO TEST PCI TMPFS
DEVPTS MULTIPLE INSTANCES PM TRACE IRQFLAGS
DISCONTIGMEM PPC64 TRACING
DRM I915 PPC 256K PAGES TREE RCU
EP93XX ETH PREEMPT TWL4030 CORE
EXTCON PROC PAGE MONITOR UNIX98 PTYS
FORCE MAX ZONEORDER=11 PROVE LOCKING VLAN 8021Q
HIGHMEM QUOTA DEBUG VORTEX
HOTPLUG RCU CPU STALL INFO X86
I2C RCU FAST NO HZ X86 32
IOSCHED CFQ REGULATOR MAX8660 XMON
IPV6 REISERFS FS SECURITY ZONE DMA



Observation 3: Variability bugs are not confined
to any specific location (file or kernel subsystem).

Figure 6 shows in which subsystems the bugs are located
and the relative size of each subsystem as of March 2014

—we approximate subsystems by directories. The size of
each subsystem is measured in lines of code (LOC), we take
the sum of LOC (for any language) as reported by cloc8

(version 1.53). E.g., with six squares, the kernel/ subsystem
has approximately 150 KLOC and represents about 1% of
the Linux code. Superimposed onto the size visualization,
the figure also shows in which directories the bugs occur.
With five red (dark) squares, the directory kernel/ thus
houses five of the bugs of our collection.

We found bugs in ten of the main Linux subsystems, show-
ing that variability bugs are not confined to any specific sub-
system. These are qualitatively different subsystems of Linux
ranging from networking (net/), to device drivers (drivers/,
block/), to filesystems (fs/) or encryption (crypto/). Note
that Linux subsystems are often maintained and developed
by different people, which adds to diversity of our collection.

We found no bug in nine directories, representing less than
the 3% of the Linux kernel code in total. Further, three of
them (tools/, scripts/, and samples/) contain example
and support code (build infrastructure, diagnostic tools, etc.)
that does not run on a compiled kernel.

We are now ready to answer RQ1:

Conclusion 1: Variability bugs are indeed not
confined to any particular type of bug, error-prone
feature, or location in the Linux kernel.

We have found variability bugs falling in 20 different types of
semantic errors, involving 78 qualitatively different features,
and located in 10 major subsystems of the Linux kernel.

We now turn to evidence regarding research question RQ2:

Observation 4: We have identified 30 bugs that
involve non-locally defined features; i.e., features
that are “remotely” defined in another subsystem
than where the bug occurred.

Understanding such bugs involves functionality and fea-
tures from different subsystems, while most Linux devel-
opers are dedicated to a single subsystem. For example,
bug 6252547b8a7 (Fig. 4) occurs in the drivers/ subsystem,
but one of the interacting features, IRQ_DOMAIN , is defined
in kernel/. Bug 0dc77b6dabe, which occurs in the loading
function of the extcon-class module (drivers/), is caused by
an improper use of the sysfs virtual filesystem API—feature
SYSFS in fs/. We confirmed with a Linux developer that
cross-cutting features constitute a frequent source of bugs.

Observation 5: Variability can be implicit and
even hidden in (alternative) configuration-dependent
macro, function, or type definitions specified in
(potentially different) header files.

Hidden variability significantly complicates the identifica-
tion of variability-related problems. For example, in bug
0988c4c7fb5, function vlan_hwaccel_do_receive is called
if a VLAN-tagged network packed is received. This func-
tion, however, has two different definitions depending on
whether feature VLAN_8021Q is present or not. Variants
without VLAN_8021Q support are compiled with a mockup-
implementation of this function that unconditionally enters

8http://cloc.sourceforge.net/

0

10

20

30

code
mapping
model

code
mapping
model

code
mapping
model

code
mapping
model

code
mapping
model

#bugs

Figure 7: In which layer(s) are the bugs fixed.

an error state. Another example is bug 0f8f8094d28 which
can be regarded as a trivial out of bounds access to an
array, except that the length of the array (KMALLOC_SHIFT_-
HIGH+1) is architecture-dependent, and only the PowerPC
architectures, for a given virtual page size, are affected. Both
vlan_hwaccel_do_receive and KMALLOC_SHIFT_HIGH have
alternative definitions at different locations.

Observation 6: Variability bugs are fixed not
only in the code; some are fixed in the mapping,
some are fixed in the model, and some are fixed
in a combination of these.

Figure 7 shows whether the bugs in our sample were fixed
in the code, mapping, or model. Even though we only docu-
mented bugs that manifested in code, 13 bugs in our sample
were fixed in the mapping, in the model, or in two layers.

Examples of simple fixes in the mapping and in the model
are commits 472a474c663 and 7c6048b7c83, respectively.
The former adds a new #ifndef to prevent a double call to
APIC_init_uniprocessor—which is not idempotent, while
the latter modifies STUB_POULSBO ’s Kconfig entry to prevent
a build error.

Bug-fix 6252547b8a7 (Fig. 5) removes a feature depen-
dency (TWL4030_CORE no longer depends on IRQ_DOMAIN )
and changes the mapping to initialize the struct field ops

when IRQ_DOMAIN (rather than OF_IRQ ) is enabled. An
example of multiple fix in mapping and code is commit
63878acfafb, which removes the mapping of some initializa-
tion code to feature PM (power management), and adds a
function stub.

This stratification into code, mapping and model may
obscure the cause of bugs, because an adequate analysis of a
bug requires understanding these three layers. Further, each
layer involves different languages; in particular, for Linux:
the code is C, the mapping is expressed using both cpp
and GNU Make, and the feature model is specified using
Kconfig.

Presumably, this complexity may cause a developer to fix
a bug in the wrong place. For instance, the dependency
of TWL4030_CORE on IRQ_DOMAIN removed by our bug-fix
6252547b8a7 was added by commit aeb5032b3f8. Appar-
ently aeb5032b3f8 introduced this dependency into the fea-
ture model to prevent a build error, so to fix a bug, but
this had undesirable side-effects. According to the message
provided in commit 6252547b8a7, the correct fix to the build
error was to make a variable declaration conditional on the
presence of feature IRQ_DOMAIN .

Observation 7: We have identified as many as
30 feature-interaction bugs in the Linux kernel.

We define the feature-interaction degree of a bug, or just
degree of a bug, as the number of individual features occurring
in its presence condition. Intuitively, the degree of a bug

http://cloc.sourceforge.net/


0

5

10

15

20

1-degree 2-degree 3-degree 4-degree 5-degree

#bugs

variability bugs
feature-interaction bugs

Figure 8: Numbers of features involved in a bug
(feature-interaction degree).

indicates the number of features that have to interact so that
the bug occurs. A bug present in any valid configuration
is a bug independent of features, or a 0-degree bug. Bugs
with a degree greater than zero are variability bugs, thus
occurring in a nonempty strict subset of valid configurations.
Particularly, if the degree of a bug is greater than one, the
bug is caused by the interaction of two or more features. A
software bug that arises as a result of feature interactions is
referred to as a feature-interaction bug.

Feature-interaction bugs are inherently more complex be-
cause the number of variants to be considered is exponential
in the degree of the bug. Bug 6252547b8a7 (cf. Fig. 4(b))
is the result of a two-feature interaction. The code slice
containing the bug involves three different features, and rep-
resents four variants (corrected for the feature model), but
only one of the variants presents a bug. The ops pointer
is dereferenced in variants with TWL4030_CORE enabled, but
it is not properly initialized unless OF_IRQ is enabled. A
developer searching for this bug needs to either think of
each variant individually, or consider the combined effect
of each feature on the value of the ops pointer. None of
these are easy to execute systematically even in a simplified
scenario, and outright infeasible in practice, as confirmed by
a professional Linux developer.

Feature interactions can be extremely subtle when vari-
ability affects type definitions. Commit 51fd36f3fad fixes
a bug in the Linux high-resolution timers mechanism due
to a numeric truncation error, that only happens in 32-bit
architectures not supporting the KTIME_SCALAR feature. In
these particular configurations ktime_t is a struct with two
32-bit fields, instead of a single 64-bit field, used to store
the remaining number of nanoseconds to execute the timer.
The bug occurs on attempt to store some large 64-bit value
in one of these 32-bit fields, causing a negative value to be
stored instead. Interestingly, one of the Linux developers
we interviewed also mentioned the difficulty to optimize for
cache-misses due to variability in the alignment of struct
fields.

Observation 8: We have identified 12 bugs in-
volving three or more features.

An example of a 3-degree bug is ae249b5fa27, caused by the
interaction of DISCONTIGMEM (efficient handling of discon-
tiguous physical memory) support in PA-RISC architectures
(feature PARISC ), and the ability to monitor memory uti-
lization through the proc/ virtual filesystem (feature PROC_-

PAGE_MONITOR ). We also found 5-degree bugs such as commit
221ac329e93, caused by 32-bit PowerPC architectures not
disabling kernel memory write-protection when KPROBES is

enabled—a dynamic debugging feature that requires modify-
ing the kernel code at runtime.

Figure 8 summarizes the degree of our bugs. To the best
of our knowledge, this is the first documented collection of
feature-interaction bugs in the operating systems domain. So
far, most feature-interaction bugs have been identified, docu-
mented, and published in telecommunication domain [11].

Observation 9: Presence conditions for variabil-
ity bugs also involve disabled features.

Table 3 lists and groups the structure of the presence con-
ditions for our sample. We observe two main classes of
bug presence conditions: some-enabled, where one or more
features have to be enabled for the bug to occur; and some-
enabled-one-disabled, where the bug is present when enabling
zero or more features and disabling exactly one feature. We
identified 20 bugs in some-enabled configurations, and an-
other 20 bugs in some-enabled-one-disabled. (Note that one
of the presence conditions has the form, (a ∨ a′) ∧ ¬b, but,
since it is implied by either a ∧ ¬b or a′ ∧ ¬b, we include it
in the some-enabled-one-disabled class.)

Testing of highly configurable systems is often approached
by testing one or more maximal configurations, in which
as many features as possible are enabled—in Linux this is
done using the predefined configuration allyesconfig. This
strategy allows to find many bugs with some-enabled presence
conditions simply by testing one single maximal configuration.
But, if negated features occur in practice as often as in our
sample, then testing maximal configurations only, will miss
a significant amount of bugs.

In our experience, the implementation of features in Linux
is crosscutting many code locations, and features code is
intermixed. As a result, disabling a feature can both add
or delete code from another feature, and we expect negated
features to be often part of bugs presence conditions. Bug
6252547b8a7 (Fig. 4) is such an example. Disabling OF_-

IRQ causes the null pointer dereference because this feature
is responsible for initializing the ops struct field. Another
example is bug 60e233a5660, where the implementation of a
function add_uevent_var, when feature HOTPLUG is disabled,
fails to preserve an invariant causing a buffer overflow.

Observation 10: Effective testing strategies ex-
ist for the observed bug presence conditions.

Given the observed patterns (some-enabled and some-enabled-
one-disabled) in Tbl. 3, we can think of a better testing

Table 3: The structure of the presence conditions
(i.e., in which configurations the 42 bugs occur).

20 some-enabled:
6 a
8 a ∧ b
5 a ∧ b ∧ c
0 a ∧ b ∧ c ∧ d
1 a ∧ b ∧ c ∧ d ∧ e

20 some-enabled-one-disabled:
3 ¬a

13 a ∧ ¬b one of which is: (a ∨ a′) ∧ ¬b
3 a ∧ b ∧ ¬c
0 a ∧ b ∧ c ∧ ¬d
1 a ∧ b ∧ c ∧ d ∧ ¬e
2 other configurations:
1 ¬a ∧ ¬b
1 a ∧ ¬b ∧ ¬c ∧ ¬d ∧ ¬e



strategy than maximal configuration testing. We propose
a one-disabled configuration testing strategy, where we test
configurations in which exactly one feature is disabled, corre-
sponding to the formulas ∀g∈F: (

∧
f∈F\{g} f) ∧ ¬g. Table 4

compares the two strategies, maximal configuration testing
and one-disabled configuration testing. We also add an en-
try for exhaustive testing of all configurations, serving as a
baseline (the cost is exponential there).

Maximal configuration testing has constant cost—ideally
only one configuration has to be tested, and thus scales to
program families with an arbitrarily large number of features
(F). It appears to be a fairly good heuristic: 48% of bugs
in our sample, 20 out of 42, could be found this way. One-
disabled configuration testing has a linear cost on |F|, thus
it is reasonably scalable, even for program families with
thousands of features like Linux. Remarkably, 95% of our
bugs, 40 out of 42, could be found by testing the |F| one-
disabled configurations. Note that these configurations also
find the bugs with a some-enabled presence condition (except
for hypothetical cases requiring all features enabled).

In practice, we must consider the effect of the feature model
in the testing strategy. Due to mutually exclusive dependen-
cies between features there is often no maximal configuration,
but many locally maximal configurations. Moreover, because
some features depend on others to be present, we often
cannot disable features individually. The practical consid-
eration of having a feature model is that enumerating the
configurations to test requires selecting valid configurations
only, which is a NP-complete problem itself. Yet, we expect
that enumerating valid one-disabled configurations would
be tractable, given the scalability of modern SAT solvers
(hundreds of thousands of variables and clauses) and the size
of real-world program families (only thousands of features).

Let us answer RQ2 now. It is a well known fact that an ex-
ponential number of variants makes it difficult for developers
to understand and validate the code, but:

Conclusion 2: In addition to introducing an ex-
ponential number of program variants, variability
additionally increases the complexity of bugs in
multiple ways.

Our analysis indicates that variability affects the complexity
of bugs along several dimensions. Let us summarize them:

– Bugs occur because the implementation of features
is intermixed, leading to undesired interactions, for
instance, through program variables;

– Interactions occur between features from different sub-
systems, demanding cross-subsystem knowledge from
Linux developers;

Table 4: Maximal vs one-disabled configuration test-
ing. The cost is the number of configurations sat-
isfying the formula, disregarding the feature model.
Benefit shown as bug coverage for our sample.

test formula(s) cost benefit∧
f∈F f O(1) 48% (20/42)

∀g∈F: (
∧

f∈F\{g} f) ∧ ¬g O(|F|) 95% (40/42)
ψ O(2|F|) 100% (42/42)

– Variability may be implicit and even hidden in alterna-
tive macro, function, and type definitions specified at
spare locations;

– Variability bugs are the result of errors in the code, in
the mapping, in the feature model, or any combination
thereof;

– Further, each of these layers involves different languages
(C, cpp, GNU Make and Kconfig);

– Not all these bugs will be detected by maximal configu-
ration testing due to interactions with disabled features;

– The existence of compiler errors in the Linux tree
shows that conventional feature-insensitive tools are
not enough to find variability bugs.

6. THREATS TO VALIDITY

6.1 Internal Validity
Bias due to selection process. As we extract bugs from
commits, our collection is biased towards bugs that were
found, reported, and fixed. Since users run a small subset of
possible Linux configurations, and developers lack feature-
sensitive tools, potentially only a subset of bugs is found.

Further, our keyword-based search relies on the compe-
tence of Linux developers to properly identify and report
variability in bugs. Note, however, that in Linux, variability
is ubiquitous and often “hidden”. For instance, the ath3k
bluetooth driver module file contains no explicit variability,
yet after variability-preserving preprocessing and macro ex-
pansion we can count thousands of cpp conditionals involving
roughly 400 features. It is then unlikely that developers are
always aware of the variability nature of the bugs they fix.

In order to further minimize the risk of introducing false
positives, we do not record bugs if we fail to extract a sensible
error trace, or if we cannot make sense of the pointers given
by the commit author. This may introduce bias towards
reproducible and lower complexity bugs.

Because of inherent bias of a detailed qualitative analysis
method, we are not able to make quantitative observations
about bug frequencies and properties of the entire population
of bugs in the Linux kernel. Note, however, that we are
able to make qualitative observations such as the existential
confirmation of certain kinds of bugs (cf. Sect. 5). Since we
only make such observations, we do not need to mitigate this
threat (interestingly though, our collection still exhibits very
wide diversity as shown in Sect. 5).

False positives and overall correctness. By only consider-
ing variability bugs that have been identified and fixed by
Linux developers, we mitigate the risk of introducing false
positives. We only take bug-fixing commits from the Linux
stable branch, the commits of which have been reviewed by
other developers and, particularly, by a more experienced
Linux maintainer. In addition, our data can be indepen-
dently verified since it is publicly available. The risk of
introducing false positives is not zero though, for instance,
commit b1cc4c55c69 adds a nullity check for a pointer that
is guaranteed not to be null9. It is tempting to think that
the above indicates a variability bug, while in fact it is just
a conservative check to detect a potential bug.

The manual analysis of a bug to extract an error trace
is also error prone, especially for a language like C and a

9https://lkml.org/lkml/2010/10/15/30

https://lkml.org/lkml/2010/10/15/30


complex large system such as Linux. Ideally, we should
support our manual analysis with feature-sensitive program
slicing, if it existed. A more automated approach based on
bug-finders would not be satisfactory. Bug-finders are built
for certain classes of errors, so they can give good statistical
coverage for their particular class of errors, but they would
not be able to assess the diversity of bugs that appear.

We derive simplified bugs based on manual slicing, filtering
out irrelevant statements. We also abstract away C language
features such as structs and dynamic dispatching via function
pointers. While the process is systematic, it is performed
manually and consequently error prone.

6.2 External Validity
Small number of bugs. The size of our sample speaks against
the generalizability of the observations. The process of col-
lecting and especially analyzing these 42 bugs costed several
man-months, being unfeasible the study of a larger number
of bugs. We expect that our database will continue to grow,
also from third-party contributions, in the near future.

Single-subject study. We decided to focus exclusively on
Linux, so our findings do not readily generalize to other
highly configurable software. Yet, the size and nature of
Linux make it a fair worst-case representative of software with
variability. The type of bugs we found, especially memory
errors, are expected in any piece of configurable system
software implemented in C. In addition, the significance of
the Linux kernel project itself justifies investigation of its
errors, even if it limits generalizability.

7. RELATED WORK
Bug databases. ClabureDB is a database of bug-reports for
the Linux kernel with similar purpose to ours [31], albeit
ignoring variability. Unlike ClabureDB, we provide a record
with information enabling non experts to rapidly understand
the bugs and benchmark their analyses. This includes a
simplified C99 version of each bug were irrelevant details
are abstracted away, along with explanations and references
intended for researchers with limited kernel experience. The
main strength of ClabureDB is its size—the database is
automatically populated using existing bug finders. Our
database is small. We populated it manually, as no suitable
bug finders handling variability exist (which also means that
none of our bugs is covered in ClabureDB adequately).

Mining variability bugs. Nadi et al. mined the Linux repos-
itory to study variability anomalies [28]. An anomaly is a
mapping error, which can be detected by checking satisfiabil-
ity of Boolean formulas over features, such as mapping code
to an invalid configuration. While we conduct our study in
a similar way, we focus on a broader class of semantic errors
in code, including data- and control-flow bugs.

Apel and coauthors use a model-checker to find feature in-
teractions in a simple email client [3], using a technique known
as variability encoding (configuration lifting [30]). Features
are encoded as Boolean variables and conditional compilation
directives are transformed into conditional statements. We
focus on understanding the nature of variability bugs widely.
This cannot be done with a model-checker searching for a
particular class of interactions. Understanding variability
bugs should lead to building scalable bug finders, enabling
studies like [3] to be run for Linux in the future.

Medeiros et al. have studied syntactic variability errors [26].
They used a variability-aware C parser [23] to automate their
bug finding and exhaustively find all syntax errors. They
found only few tens of errors in 41 families, suggesting that
syntactic variability errors are rare in committed code. We
focus on the wider category of more complex semantic errors.

Nadi et al. mine feature dependencies in preprocessor-based
program families to support synthesis of variability models
for existing codebases [27]. They infer dependencies from
nesting of preprocessor directives and from parse-, type-, and
link-errors, assuming that a configuration that fails to build
is invalid. Again, we consider a much wider class of errors
than can be detected automatically so far.

Methodologically related work. Tian et al. studied the prob-
lem of distinguishing bug fixing commits in the Linux reposi-
tory [34]. They use semi-supervised learning to classify com-
mits according to tokens in the commit log and code met-
rics extracted from the patch contents. They significantly
improve recall (without lowering precision) over the prior,
keyword-based, methods. In our study most of time was
invested in analyzing commits, not in finding potential candi-
dates, so we found a simple keyword-based method sufficient.

Yin et al. collect hundreds of errors caused by misconfig-
urations in open source and commercial software [36] to build
a representative set of large-scale software systems errors.
They consider systems in which parameters are read from
configuration files, as opposed to systems configured stati-
cally. More importantly, they document errors from the user
perspective, as opposed to (our) programmer perspective.

Padioleau et al. studied collateral evolution of the Linux
kernel, following a method close to ours [29]. Collateral evo-
lution occurs when existing code is adapted to changes in
the kernel interfaces. They identified potential collateral
evolution candidates by analyzing patch fixes, and then man-
ually selected 72 for a more careful analysis. Similarly, they
classify and perform an in-depth analysis of their data.

8. CONCLUSION
We have identified 42 variability bugs, including 30 feature-
interaction bugs, in the Linux kernel repository. We analyzed
their properties and condensed each of these bugs into a self-
contained C99 program with the same variability properties.
These simplified bugs aid understanding the real bug and
constitute a publicly available benchmark for analysis tools.

We observe that variability bugs are not confined to any
particular type of bug, error-prone feature, or source code
location (file, or subsystem) of the Linux kernel. Moreover,
variability increases the complexity of bugs in Linux in several
ways, besides the well known introduction of exponentially
many code variants: a) the implementation of features is in-
termixed and undesired interactions can occur easily, b) these
interactions can happen between features from different sub-
systems; and c) bugs can occur in the code, in the mapping,
in the feature model, or any combination thereof.

Acknowledgments.
We thank kernel developers, Jesper Brouer and Matias

Bjørling. Julia Lawall and Norber Siegmund provided useful
suggestions. This work has been supported by The Danish
Council for Independent Research under a Sapere Aude
project, VARIETE.



9. REFERENCES
[1] S. Apel, D. Batory, C. Kästner, and G. Saake.

Feature-Oriented Software Product Lines.
Springer-Verlag, 2013.

[2] S. Apel, C. Kästner, A. Grösslinger, and C. Lengauer.
Type safety for feature-oriented product lines.
Automated Software Engineering, 17, 2010.

[3] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and
D. Beyer. Detection of feature interactions using
feature-aware verification. In Proceedings of the 26th
IEEE/ACM International Conference on Automated
Software Engineering (ASE’11), Lawrence, USA, 2011.
IEEE Computer Society.

[4] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker,
K. Czarnecki, and A. Wasowski. A survey of variability
modeling in industrial practice. In S. Gnesi, P. Collet,
and K. Schmid, editors, VaMoS. ACM, 2013.

[5] T. Berger, S. She, R. Lotufo, A. Wasowski, and
K. Czarnecki. A study of variability models and
languages in the systems software domain. IEEE Trans.
Software Eng., 39(12).

[6] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand,
P. Borba, and M. Mezini. SPLLIFT - statically
analyzing software product lines in minutes instead of
years. In PLDI’13, 2013.

[7] E. Bounimova, P. Godefroid, and D. Molnar. Billions
and billions of constraints: Whitebox fuzz testing in
production. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13,
Piscataway, NJ, USA, 2013. IEEE Press.

[8] D. Bovet and M. Cesati. Understanding the Linux
Kernel. O’Reilly Media, 2005.

[9] C. Brabrand, M. Ribeiro, T. Tolêdo, J. Winther, and
P. Borba. Intraprocedural dataflow analysis for
software product lines. Transactions on
Aspect-Oriented Software Development, 10, 2013.

[10] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static
analyzer for finding dynamic programming errors.
Softw. Pract. Exper., 30(7), June 2000.

[11] M. Calder, M. Kolberg, E. H. Magill, and
S. Reiff-Marganiec. Feature interaction: A critical
review and considered forecast. Comput. Netw., 41(1),
2003.

[12] A. Classen, P. Heymans, P.-Y. Schobbens, and
A. Legay. Symbolic model checking of software product
lines. In ICSE, 2011.

[13] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay,
and J.-F. Raskin. Model checking lots of systems:
efficient verification of temporal properties in software
product lines. In ICSE’10, Cape Town, South Africa,
2010. ACM.

[14] K. Czarnecki and K. Pietroszek. Verifying
feature-based model templates against well-formedness
OCL constraints. In Proceedings of the 5th
international conference on Generative programming
and component engineering, GPCE ’06, New York, NY,
USA, 2006. ACM.

[15] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a
Realistic Tool for Statically Detecting All Buffer
Overflows in C. SIGPLAN Not., 38(5), 2003.

[16] D. Evans. Static detection of dynamic memory errors.
SIGPLAN Not., 31(5), 1996.

[17] A. Gruler, M. Leucker, and K. D. Scheidemann.
Modeling and model checking software product lines. In
FMOODS, 2008.

[18] G. Holl, M. Vierhauser, W. Heider, P. Grünbacher, and
R. Rabiser. Product line bundles for tool support in
multi product lines. In VaMoS, 2011.

[19] D. Hovemeyer and W. Pugh. Finding more null pointer
bugs, but not too many. In Proceedings of the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, PASTE ’07, New
York, NY, USA, 2007. ACM.

[20] K. Kang, S. Cohen, J. Hess, W. Nowak, and
S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Tech. Rep. CMU/SEI-90-TR-21,
CMU-SEI, 1990.

[21] C. Kästner. Virtual Separation of Concerns: Toward
Preprocessors 2.0. PhD thesis, Marburg, Germany,
2010.

[22] C. Kästner and S. Apel. Type-checking software
product lines - a formal approach. In Proceedings of the
23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE’08), L’Aquila,
Italy, 2008.

[23] A. Kenner, C. Kästner, S. Haase, and T. Leich.
Typechef: Toward type checking #ifdef variability in c.
In Proceedings of the 2Nd International Workshop on
Feature-Oriented Software Development, FOSD ’10,
New York, NY, USA, 2010. ACM.

[24] C. H. P. Kim, E. Bodden, D. Batory, and S. Khurshid.
Reducing configurations to monitor in a software
product line. In 1st International Conference on
Runtime Verification (RV), volume 6418 of LNCS,
Malta, 2010. Springer.

[25] R. Love. Linux Kernel Development. Developer’s
Library. Pearson Education, 2010.

[26] F. Medeiros, M. Ribeiro, and R. Gheyi. Investigating
preprocessor-based syntax errors. In Proceedings of the
12th International Conference on Generative
Programming: Concepts &#38; Experiences, GPCE ’13,
New York, NY, USA, 2013. ACM.

[27] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki.
Mining configuration constraints: Static analyses and
empirical results. In 36th International Conference on
Software Engineering (ICSE’14), 2014.

[28] S. Nadi, C. Dietrich, R. Tartler, R. C. Holt, and
D. Lohmann. Linux variability anomalies: what causes
them and how do they get fixed? In T. Zimmermann,
M. D. Penta, and S. Kim, editors, MSR. IEEE / ACM,
2013.

[29] Y. Padioleau, J. L. Lawall, and G. Muller.
Understanding collateral evolution in linux device
drivers. In Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer
Systems 2006, EuroSys ’06, New York, NY, USA, 2006.
ACM.

[30] H. Post and C. Sinz. Configuration lifting: Verification
meets software configuration. In Proceedings of the 23rd
IEEE/ACM International Conference on Automated
Software Engineering (ASE’08), L´Aquila, Italy, 2008.
IEEE Computer Society.

[31] J. Slaby, J. Strejček, and M. Trt́ık. ClabureDB:
Classified Bug-Reports Database. In R. Giacobazzi,



J. Berdine, and I. Mastroeni, editors, Verification,
Model Checking, and Abstract Interpretation, volume
7737 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2013.

[32] The Institute of Electrical and Eletronics Engineers.
IEEE Standard Glossary of Software Engineering
Terminology. IEEE Standard, 1990.

[33] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and
G. Saake. A classification and survey of analysis
strategies for software product lines. ACM Computing
Surveys, 2014.

[34] Y. Tian, J. Lawall, and D. Lo. Identifying linux bug
fixing patches. In Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012,
Piscataway, NJ, USA, 2012. IEEE Press.

[35] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A
first step towards automated detection of buffer overrun
vulnerabilities. In NDSS. The Internet Society, 2000.

[36] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N.
Bairavasundaram, and S. Pasupathy. An empirical
study on configuration errors in commercial and open
source systems. In Proc. of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP ’11,
New York, NY, USA, 2011. ACM.


