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Abstract—We propose a novel coherent optical orthogonal fre-
quency-division multiplexing (CO-OFDM) scheme with reduced
guard interval (RGI) for high-speed high-spectral-efficiency
long-haul optical transmission. In this scheme, fiber chromatic
dispersion is compensated for within the receiver rather than
being accommodated by the guard interval (GI) as in conventional
CO-OFDM, thereby reducing the needed GI, especially when fiber
dispersion is large. We demonstrate the generation of a 448-Gb/s
RGI-CO-OFDM signal with 16-QAM subcarrier modulation
through orthogonal band multiplexing. This signal occupies an
optical bandwidth of 60 GHz, and is transmitted over 2000 km
of ultra-large-area fiber (ULAF) with five passes through an
80-GHz-grid wavelength-selective switch. Banded digital coherent
detection with two detection bands is used to receive this 448-Gb/s
signal. Wavelength-division multiplexed transmission of three
80-GHz spaced 448-Gb/s RGI-CO-OFDM channels is also demon-
strated, achieving a net system spectral efficiency of 5.2 b/s/Hz and
a transmission distance of 1600 km of ULAF.

Index Terms—Coherent optical orthogonal frequency-division
multiplexing (CO-OFDM), polarization-division multiplexing
(PDM), wavelength-division multiplexing (WDM).

I. INTRODUCTION

IGH-SPEED optical transmission with per-channel data
H rates beyond 100 Gb/s is being actively researched for
future optical transport systems [1]-[6], with 400-Gb/s Eth-
ernet (400GbE) being a likely next step [7], [8]. To increase the
overall system capacity, it is important to achieve high spectral
efficiency (SE) when scaling up the wavelength-division mul-
tiplexed (WDM) per-channel bit rate. This can be achieved by
imposing higher-order modulation on a single optical carrier
for single-carrier transmission, or on multiple carriers for
multi-carrier transmission [3]-[6]. Independent of the approach
taken, the SE is defined as the ratio of the net bit rate per
WDM channel to the WDM channel spacing. In multi-carrier
formats such as coherent optical orthogonal frequency-division
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multiplexing (CO-OFDM), each WDM channel is composed of
multiple optical subcarriers, and one can define an intra-channel
SE (iSE) [4], [5] as the ratio of the net bit rate per subcarrier to
the subcarrier spacing. The iSE constitutes an upper bound on
the SE achievable in WDM operation, i.e., iSE > SE. Using
multi-band CO-OFDM with polarization-division-multiplexed
(PDM) quadrature phase-shift keying (QPSK) for subcarrier
modulation, channel data rates of about 1 Tb/s have been
demonstrated at an iSE ranging from 3.1 to 3.3 b/s/Hz [4],
[5]. Using no-guard-interval (NGI) CO-OFDM [6], a 1.2-Tb/s
signal based on PDM-QPSK was transmitted over 7200 km
of ultra-large-area fiber (ULAF) at an iSE of 3.7 b/s/Hz [9].
Recently, optical transmission at higher SE has been demon-
strated using 16-QAM [10], 32-QAM [11], and 36-QAM [12],
respectively achieving SEs of 6.2 b/s/Hz at 112 Gb/s over 630
km, 7 b/s/Hz at 65 Gb/s over 240 km, and 8 b/s/Hz at 107 Gb/s
over 320 km. More recently, 64-QAM was used to realize a
per-channel bit rate of 240 Gb/s [13], but significant error floors
were observed and its long-haul transmission has not been
demonstrated. For optical backbone transport systems, it is
desirable to achieve high SE at high per-channel data rate while
maintaining long-haul transmission capability. We recently
reported the generation and detection of a novel spectrally-effi-
cient format, reduced-guard-interval (RGI) CO-OFDM, at 448
Gb/s with an iSE of 7 b/s/Hz, and transmitted this signal over
2000 km of ULAF with five passes through an 80-GHz-grid
wavelength-selective switch (WSS) [14]. This demonstration
represented the longest transmission distance for >200-Gb/s
transmission within an optical bandwidth allowing for WDM
transmission at SEs higher than 4 b/s/Hz., the first 400-Gb/s
transmission over 2000 km, and the lowest overhead (7.3%)
for >100-Gb/s CO-OFDM transmission with >40000-ps/nm
accumulated CD.

In this paper, we describe in more detail the concept of
RGI-CO-OFDM and the single-channel 448-Gb/s transmission
experiment reported in [14]. In addition, more recent results
on wavelength-division-multiplexed (WDM) transmission with
three 448-Gb/s RGI-CO-OFDM channels will be presented.
This paper is organized as follows. We first describe the con-
cept of RGI-CO-OFDM and its pros and cons as compared
to the conventional CO-OFDM in Section 2. We then detail
the experimental results obtained on single-channel 448-Gb/s
RGI-CO-OFDM transmission in Section 3. Section 4 presents
the WDM transmission of three 80-GHz-spaced 448-Gb/s
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RGI-CO-OFDM channels, achieving a net system SE of
5 b/s/Hz and a transmission distance of 1600 km. Finally,
Section 5 concludes this paper.

II. CoNCEPT OF RGI-CO-OFDM

In conventional CO-OFDM, a guard interval (GI), e.g., in
the form of cyclic prefix (CP), is inserted in the time domain
between adjacent OFDM symbols to accommodate fiber chro-
matic dispersion (CD) induced inter-symbol interference (ISI)
[15]-[17]. For high-speed long-haul optical fiber transmission
without inline optical dispersion compensation, the CD-induced
channel memory length can be very large, so a large GI is re-
quired. The use of a larger GI leads to a larger unwanted tem-
poral overhead, which results in substantial reduction of the SE,
when the OFDM symbol size is fixed. On the other hand, when
the OFDM symbol size is proportionally increased to maintain
a fixed GI overhead, the subcarrier spacing, which scales as
the inverse of the OFDM symbol size, decreases, resulting in
tighter requirements on the optical frequency locking between
the transmit laser and the receiver optical local oscillator (OLO).
The technical problem that our work aims to solve is how to
enable high-speed (e.g., >100-Gb/s) CO-OFDM to be highly
spectrally efficient and tolerant to the frequency offset between
the OLO and the transmit laser in the presence of large fiber
dispersion.

One solution to this problem is to completely remove the GI
and rely on blind equalization at the receiver to compensate for
fiber dispersion, as demonstrated in recent NGI-CO-OFDM ex-
periments [6], [9]. However, without the GI, the ISI due to trans-
mitter bandwidth limitations is not accommodated for, and more
complex blind equalization is needed to compensate for the ef-
fect of polarization-mode dispersion (PMD) [17].

In the proposed RGI-CO-OFDM scheme [14], a reduced
GI or CP between adjacent OFDM symbols is used to ac-
commodate the ISI with short memory, such as induced
by transmitter bandwidth limitations or fiber PMD, while
fiber CD-induced ISI with long memory and well-defined
characteristics is compensated at the receiver, as is done in
single-carrier frequency-domain equalization (SC-FDE) sys-
tems [18]. In essence, RGI-CO-OFDM is a hybrid version of
conventional CO-OFDM with CP and SC-FDE. Fig. 1 shows
the schematic of the digital signal processing (DSP) structure
of RGI-CO-OFDM. RGI-CO-OFDM shares most of the DSP
modules used in conventional CO-OFDM, and the only new
DSP modules used in RGI-CO-OFDM are those associated with
receiver-side electronic dispersion compensation (EDC) based
on discrete Fourier transform (DFT), inverse DFT (IDFT),
and overlap-add [18]. The size of the M-point DFT and IDFT
used for EDC is usually a few times the CD-induced channel
memory length [18]. As the residual channel memory length is
much shortened after the EDC, the GI length and the OFDM
symbol size in RGI-CO-OFDM can be much shorter compared
to conventional CO-OFDM. Using the 112-Gb/s PDM-OFDM
design described in [19] as an example, the sampling rate of
digital-to-analog converter (DAC) and analog-to-digital con-
verter (ADC), Rp AC(ADC), Was assumed to be 56 GSamples/s,
and the size of N-point DFT(IDFT) used, Nprraprr), was
2048. The GI length in units of DAC sampling period, N1, was
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selected to be 512 in order to be longer than the CD-induced
channel memory length in a dispersion-uncompensated trans-
mission over 1500-km standard single-mode fiber (D = 17
ps/nm/km), which was ~500 samples. The Gl-induced over-
head, denoted as Ogj, is

Ogr = Na1/Nprraprr)-

The overhead due to GI was thus 25% (= 512/2048), which
not only reduces the achievable SE but also causes an op-
tical signal-to-noise-ratio (OSNR) penalty of ~1.8 dB. In
RGI-CO-OFDM, the GI only needs to be longer than the
memory length associated with PMD. With a GI length of 4
samples, 4/(56 GSamples/s) = 71.4 ps of instantaneous differ-
ential group delay (DGD) can be accommodated, which is suf-
ficient for most of optical fiber transport systems. Nppr/1pFr
can be shortened by a factor of 16, i.e., from 2048 to 128. As
a result, the overhead and OSNR penalty due to the GI are
dramatically reduced to 3.13% and 0.13 dB, respectively. The
OFDM subcarrier spacing, Af., is related to NpprppT) s

Af.. = Rpac(apc)/Nprraprr)

so, a smaller NDFTUDFT) also results in a larger subcarrier
spacing, which is beneficial in relaxing the requirements on
the optical frequency locking between the transmitter laser and
the receiver OLO. Table I compares the overhead and laser
stability requirements between the proposed RGI-CO-OFDM
and the conventional CO-OFDM for dispersion-uncompensated
standard single-mode fiber (SSMF) transmission. The laser sta-
bility requirement is characterized as the maximum allowable
frequency offset between the OLO and the transmitter laser,
| Afimax|, which is conventionally defined as half of the OFDM
subcarrier spacing, or Af,./2.

Clearly, RGI-CO-OFDM offers much reduced overhead and
relaxed laser stability requirements, independent of CD, in
high-speed long-haul dispersion-uncompensated transmission.
In practical systems, it is very difficult to control the frequency
offset to be less than 30 MHz, as the typical frequency stability
of a narrow-linewidth external-cavity laser is about +£300 MHz
over a period of 24 hours even when the laser temperature is
stabilized to a given value within £0.5°C [20]. At data rates
higher than 112 Gb/s, the CD-induced memory length can be
even longer, and the benefits of RGI-CO-OFDM are expected
to be more pronounced.

With the shortened GI and OFDM symbol size, there are
several additional benefits: (1) shorter training symbols (TSs),
leading to a lower TS-induced overhead and a lower computa-
tional load for channel synchronization, frequency estimation,
and channel estimation, (2) shorter OFDM frames, leading to
higher channel tracking speed and higher tolerance to clock or
sampling frequency offset between the transmitter DAC and the
receiver ADC, and (3) a higher tolerance to laser linewidth. The
only expense we have to pay when applying RGI-CO-OFDM
is the use of additional DSP to perform EDC before OFDM
de-multiplexing at the receiver. Nevertheless, owing to the
DSP efficiency of OFDM [17], the overall DSP complexity of
RGI-CO-OFDM is expected to be lower or similar to that of
SC-FDE.
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Fig. 2. Schematic of the single-channel transmission experimental setup. Insets: (a) OFDM frame arrangement; (b) Frequency allocation of the OFDM subcarriers;
and (c) Configuration of the banded digital coherent detection with 2 OLOs. OC: optical coupler; PC: polarization controller; EDFA: Erbium-doped fiber amplifier;

SW: optical switch.

TABLE I
COMPARISON BETWEEN CONVENTIONAL CO-OFDM AND RGI-CO-OFDM
FOR 112-GB/S TRANSMISSION WITH Rnpac(ancy = 56 GSSAMPLE/S

Conventional CO-OFDM RGL-CO-0FDM
S)-‘.‘slt:m {Nm isCD deCIldCIlf} (Nu|—4:_ Ny |—128)
Reach Ou Al Oui Al
{(=Ne'N 1) (=Af,./2)
25% 13.7 MHz 3.13% 218 MHz
1,500-km | (=512/2048)
SSMI 0% 27.3 MHz 3.13% 218 MHz
(=512/1024)
25% 6.8 MHz 3.13% 218 MHz
3,000-km (=1024/4096)
SSMI 0% 13.7 MHz 3.13% 218 MHz
(=1024/2048)

III. SINGLE-CHANNEL 448-GB/S TRANSMISSION

A. Experimental Setup

Fig. 2 shows the schematic of the experimental setup for
single-channel transmission [14]. At the transmitter, offline DSP
was first performed to generate an OFDM waveform, which
was then stored in an arbitrary waveform generator (AWG). In

the offline DSP, a data stream consisting of a pseudo-random
bit sequence (PRBS) of length 2!5 — 1 was mapped onto 75
16-QAM subcarriers, which, together with one pilot subcarrier,
one unfilled (i.e., zero-power) DC subcarrier, and 51 unfilled
edge subcarriers, was converted to the time domain via an
IFFT of size 128. The filled subcarriers were pre-emphasized
to mitigate transmitter bandwidth roll-off. A small GI of length
4 samples was used, resulting in an OFDM symbol size of
132. To facilitate OFDM frame synchronization and channel
estimation, four training symbols (TSs), [A A A — A], where
A is a known OFDM symbol, were inserted at the beginning of
each OFDM frame that contained 300 data symbols. Note that
after PDM (to be discussed later), there were three correlated
dual-polarization (CDP) TSs, as shown in inset (a) of Fig. 2.
The first two CDP-TSs were identical and used for autocorre-
lation-based frame synchronization, and the last two CDP-TSs
were for channel estimation. The TS power was equal to the
average data symbol power to mitigate some penalty from fiber
nonlinearity [21]. Intra-symbol frequency-domain averaging
[19] was later applied at the receiver to improve the accuracy
of the channel estimation based on only two TSs. The real
and imaginary parts of the OFDM waveform were clipped
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Fig. 3. Measured optical signal spectra at various stages.

with a clipping ratio of 6 (the samples whose powers are more
than 6 times of the mean sample power are set to 6) [19],
and converted to analog waveforms by two DACs operating
at 10 GS/s, which were amplified and used to drive an optical
I/Q modulator connected to an external-cavity laser (ECL)
with 100-kHz linewidth. A CO-OFDM signal at 22.4 Gb/s
(= 10Gb/s -4 - 75/132 - 300/304) with a spectral bandwidth
of 6.016 GHz (= 10 GHz -77/128) was thus formed. The
signal was split into two copies, one being frequency shifted by
exactly 6.016 GHz through a single-sideband modulator and
the other being delayed by 8 OFDM symbol periods relative
to the first copy, before being seamlessly recombined to form
a 44.8-Gb/s signal consisting of two decorrelated bands, as
illustrated in Fig. 2 and inset (b). The combined 2-band signal
was expanded by a 5-comb generator based on an overdriven
Mach—Zehnder modulator to form a 10-band 224-Gb/s signal.
The above arrangement ensured that adjacent bands contained
different data patterns (for de-correlation purposes) and pro-
duced minimal coherent crosstalk among the 10 bands. Note
that in real implementations, 10 independent modulators would
need to be used to form the 10-band RGI-CO-OFDM signal.
Note also that by using higher speed DACs and modulators,
the number of optically multiplexed bands can be reduced to
simplify the optics. A PDM emulator (with one-symbol delay
between the two polarizations) was used to double the data rate
to generate a 448-Gb/s signal with a bandwidth of 60.16 GHz.
Fig. 3 shows the measured optical spectra at various stages
of the generation process. Notably, the total overhead due to
OFDM in this RGI-CO-OFDM signal was only 7.3% and was
independent of CD.

The signal was launched into a transmission loop [9], con-
sisting of four Raman-amplified 100-km ULAF spans. The av-
erage fiber loss, dispersion, and dispersion slope at 1550 nm
were 0.185 dB/km, 19.9 ps/nm/km, 0.06 ps/nm?/km, respec-
tively. The effective area was 120 zm?. Span amplification was
provided solely by backward Raman pumping. One erbium-
doped fiber amplifier (EDFA) was used to compensate for the
remaining loss in the loop. To evaluate the performance of the
448-Gb/s channel in optically routed networks with reconfig-
urable optical add/drop multiplexers (ROADMs), we used two
flexible-bandwidth WSSs (Finisar WaveShaper 4000S) config-
ured for 80-GHz channel spacing, one before and the other in the
loop. Note that the unwanted sidebands generated by the 5-comb
generator were filtered by the input WSS. To emulate the joint
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signal, respectively covering the first and last five OFDM bands.

impact of filtering and inband crosstalk from non-ideal wave-
length-blocking at ROADMs, we configured the WSS output
port 1 to pass the signal and port 2 to block the signal, and com-
bined the two ports before the signal went on for the next round
trip. By doing so, the inband crosstalk due to the finite rejection
ratio of the WSS is added to the original signal. The transmit-
tances of the two ports are shown in Fig. 4. The 0.2-dB and 3-dB
bandwidth of port 1 was 60 GHz and 80 GHz, respectively, and
the rejection of crosstalk from port 2 in the signal bandwidth
(£30 GHz) was >33 dB, from which we expect a small filtering
and crosstalk penalty even after five WSS passes.

Atthe receiver, four asynchronously sampling 50-GS/s ADCs
embedded in a real-time sampling oscilloscope with 16-GHz
RF bandwidth were used. Due to the ADC bandwidth limita-
tion, a banded digital coherent detection approach with 2 op-
tical local oscillators (OLOs) had to be used to recover the en-
tire 448-Gb/s signal, as shown in inset (c) of Fig. 2 In the experi-
ment, we sequentially detected the lower (long-wavelength) and
upper (short-wavelength) halves of the signal with one optical
frontend by setting the OLO to —15 GHz and +15 GHz rela-
tive to the signal center frequency, respectively. Fig. 5 shows
the RF spectra of the recovered two halves of the signal, respec-
tively covering the first and last five OFDM bands as illustrated
in Fig. 2. Exemplarily recovered subcarrier constellations are
shown in Fig. 6. The digitized waveforms were stored and pro-
cessed offline. Most of the DSP modules were similar to those
described in [21]. The main new DSP module is the compen-
sation of self-phase modulation (SPM) [22] and CD through a
multi-step FFT-based algorithm, similar to that for single-car-
rier transmission [23], [24], where the number of steps equals
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the number of fiber spans. This receiver-side module for EDC
and fiber nonlinearity compensation (NLC) not only reduces the
OFDM overhead, but also improves the signal tolerance to fiber
nonlinearity.

B. Experimental Results

Fig. 7 shows the measured bit error ratio (BER) as a function
of OSNR (0.1-nm noise bandwidth; both noise polarizations).
At BER = 1 x 1073, the required OSNR for the 448-Gb/s
signal is 28.2 dB, which is 10.8 dB higher than that for the
original single-band 44.8-Gb/s signal, showing a small excess
penalty of ~0.8 dB due to band multiplexing and simultaneous
detection of only 5 bands instead of the entire orthogonal mul-
tiplex per shot. At BER = 3.8 x 1073, the threshold of an
advanced 7% FEC [25], [26], the required OSNR is ~25 dB,
within 3.5 dB from the theoretical limit. For 2000-km transmis-
sion, the optimal signal launch power was found to be about 1.5
dBm, at which the OSNR after transmission was 28.5 dB. Fig. 8
shows the Q2 factor, derived from the measured BER, as a func-
tion of transmission distance. With NLC, the mean BER of the
448-Gb/s signal is below 3 x 1072 after 2000-km transmission
and 5 WSS passes. The total transmission penalty is ~3 dB. The
reach improvement by the NLC is ~25%. Fig. 9 shows the Q?
factor as a function of the band index with the use of NLC. The
OFDM bands at the edges of the two halves (1, 5, 6, and 10)
perform slightly worse than the other bands, primarily due to
the bandwidth limitation of the ADCs. Compared to that after 1
WSS pass, the performance of the two outmost bands (1 and 10)
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after 5 WSS passes shows negligible additional penalty com-
pared to the two center bands (5 and 6), possibly due to the bal-
ancing between the small WSS filtering penalty at bands 1 and
10 and the slightly higher nonlinear penalty at bands 5 and 6.

IV. WDM TRANSMISSION

A. Experimental Setup

After studying the performance of a single 448-Gb/s
RGI-CO-OFDM channel at an iSE of 6.9 b/s/Hz, we set up a
WDM experiment to test its performance in a WDM network
at a SE of 5.2 b/s/Hz (excluding the 7% FEC overhead). Fig. 10
shows the schematic of the experimental setup for WDM trans-
mission. At the transmitter, the outputs of three 80-GHz spaced
external-cavity lasers (ECLs), each having 100-kHz linewidth
were combined by an optical coupler, before being modulated
the same way as described in the previous section to form three
448-Gb/s RGI-CO-OFDM channels. Fig. 11 shows the mea-
sured optical spectra of the three WDM channels before and
after transmission. Note that unwanted high-order sidebands
were produced by the 5-comb generator that caused an artificial
coherent crosstalk penalty, which will not be present in real
implementations where the 5-comb generator is replaced with
5 independent modulators. The WDM channels were launched
into the same transmission loop as described in the previous
section. An 80-GHz-grid WSS was inserted in the loop to first
separate the two edge channels from the center channel and
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Fig. 11. Measured optical spectra of the three 80-GHz spaced 448-Gb/s
RGI-CO-OFDM channels. Spectral resolution: 0.01 nm.

then combine them to emulate an optically routed link. At the
receiver, each WDM channel was sequentially filtered out by a
tunable optical filter with a 3-dB bandwidth of 100 GHz before
detection. The receiver-side DSP blocks are shown in inset
(b) of Fig. 10. To minimize the computational load, multi-step
NLC was not performed. The fiber CD was compensated by a
FDE-based EDC [18].

B. Experimental Results

Fig. 12 shows the BER of the center 448-Gb/s RGI-CO-
OFDM channel as a function of transmission distance. For
1600-km transmission without NLC, the optimal signal launch
power, Py, was found to be about 1.5 dBm per channel. The
mean BER of the center channel after 1600-km transmission
and 4 WSS passes was 3.5 x 1072, below the threshold of a
7%-overhead FEC [25], [26]. Compared to the single-channel
performance without NLC (also shown in Fig. 12), the WDM
transmission performance is only slightly degraded, ~0.2 dB in
Q? at 1600 km. Part of this degradation can be attributed to the
OSNR degradation at the transmitter as three WDM channels
share the same optical amplifiers. This can also be seen from
the performance degradation at the back-to-back configuration
(0 distance) shown in Fig. 12. It can thus be inferred that the
inter-channel nonlinear penalty in the WDM transmission is
small.

12 . T T T T
—0 — Single 448-Ghfs channel
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Fig. 12. Measured Q2 factor of the center 448-Gb/s channel as a function of
transmission distance. P;,, = 1.5 dBm.
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Fig. 13. Measured Q? factors of the 10 bands of the center channel versus band
index before and after 1600-km transmission.

Fig. 13 shows the Q? factors of all the 10 bands of the center
448-Gb/s channel both before fiber transmission (back-to-back)
and after 1600-km transmission at 1.5 dBm launch power per
channel. The Q2 factors of all the bands of the center channel
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except for the two edge bands, are similar. We attribute the per-
formance degradation of the edge bands to the linear coherent
crosstalk artifact due to the unwanted sidebands produced by the
5-comb generator. After 1600-km transmission, the two center
bands perform slightly worse than the average, possibly due to
larger nonlinear penalty from neighboring bands in the same
channel, as in the single-channel transmission case discussed
in the previous section. Although the average BER over the 10
bands is below the FEC threshold, the BERs of bands 1, 5, 6,
and 10 are slightly higher than the threshold, so it is needed to
scramble (or interleave) all the bands of the 448-Gb/s channel
in the FEC process.

V. CONCLUSION

We have proposed a novel RGI-CO-OFDM scheme aiming
to take advantage of both CO-OFDM and SC-FDE and reduce
the OFDM overhead to low values. We described the genera-
tion and detection of a 448-Gb/s RGI-CO-OFDM signal with
16-QAM subcarrier modulation, occupying a narrow optical
bandwidth of 60 GHz. We transmitted the signal over 2000
(1600) km of 100-km low-loss low-nonlinearity ULAF spans
and through five (four) 80-GHz-grid WSS-based ROADMs,
achieving a BER below 3.8 x 10~3 with (without) the use of
multi-step NLC. Furthermore, we have demonstrated the trans-
mission of three 80-GHz-spaced 448-Gb/s RGI-CO-OFDM
channels over 1600 km of 100-km ULAF spans and through
four 80-GHz-grid WSS-based ROADMs with small WDM
penalty, realizing a net system SE of 5.2 b/s/Hz. As a compar-
ison, WDM transmission of seven 224-Gb/s RGI-CO-OFDM
channels on a standard 50-GHz channel grid, achieving a net
SE of 4.2 b/s/Hz, was recently demonstrated over 2000 km
of ULAF without the NLC [27]. This shows the feasibility of
realizing future high-SE long-haul 400GbE or 200GbE optical
transport by using RGI-CO-OFDM.
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