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1 Introduction

Quantum field theories in a given number of dimensions can exhibit rather surprising

properties. Important examples of such properties are the dualities relating seemingly

different quantum field theories in four and lower dimensions. In many cases such surprising

properties can be given a geometric interpretation once the theories of interest are realized

as a dimensional reduction on a compact manifold of a higher dimensional theory. Different

duality frames correspond to different ways to construct the same compact manifold. A

paradigmatic example of this is the compactifications of (2, 0) theories on a Riemann surface

giving a wide variety of N = 2 (and N = 1) theories in four dimensions [1]. An important

by product of this construction is the derivation of existence of new strongly coupled SCFT’s

with no tunable parameters. A generic SCFT in four dimensions has then a description

in terms of such SCFT’s and only in very special cases a weakly coupled Lagrangian can

be constructed.

A natural question to ask is whether by starting from more generic six dimensional

theories, in particular considering less supersymmetric starting points, new four dimen-

sional phenomena can be derived. In particular a variety of six dimensional setups can be

considered having (1, 0) supersymmetry [2] and a classification of them based on F-theory

constructions has been proposed [3–5], leading to a vast number of 6d SCFT’s. Taking such

theories on a Riemann surface would give N = 1 models in four dimensions. These models

will be labeled by the choice of the six dimensional theory and by the choices made during

the compactification. The latter include the choice of the Riemann surface and choices of

bundles for different background vector fields associated to flavor symmetries of the six di-

mensional theory. Different compactifications, thus different labeling, might produce same

theories in four dimensions [6–8], but in a generic scenario the four dimensional theories

coming from different compactifications are distinct. This then possibly produces a very

wide variety of theories and relations between those.
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The purpose of this paper is to establish a direct link between choices made in six

dimensions and theories conjecturally obtained in four dimensions [9] (see also [10–12]). In

particular the choices made during compactification determine in a rather tractable way the

dimension of the conformal manifold and the anomalies of the four dimensional theories.

The conformal manifold is determined by the moduli space of complex structures of the

Riemann surface and by the moduli space of gauge connections for the symmetries of the

six dimensional setup. These can lead to distinct 4d theories coming from choices of in

general non-abelian flat bundles1 leading to a large number of moduli [13]. More precisely,

let G denote the 6d flavor symmetry. We pick an abelian subgroup of it L ⊂ G and denote

the commutant by G′ which we take to be non-abelian. In particular we have

L×G′ ⊂ G

and define Gmax = L×G′. Then we pick a flat gauge field for Gmax on the Riemann surface

modulo the possibility of picking a non-trivial flux for the abelian part c1(L) ∈ Zdim(L).

The dimension of the conformal manifold for compactifications with no punctures for each

non-trivial choice of c1(L) is given by,

dimMg,0 = 3g− 3+ (g− 1)dim G′ + g · dim L = 3g− 3+ (g− 1)dim Gmax +dim L. (1.1)

Note that the −1 in the (g − 1) term is there only for the non-abelian part of Gmax,

which comes from the fundamental group relation of the Riemann surface as well as gauge

transformations which only impact the non-abelian part of Gmax. The anomalies of the

four dimensional theories can be obtained on the other hand by integrating the anomaly

polynomial of the six dimensional theory on the Riemann surface taking into account the

particular choice made for the fluxes, c1(L).

After making some general remarks and predictions we will discuss in detail the case of

two M5 branes probing Z2 singularity. Following [9] we will derive a set of theories in four

dimensions which we will then map to the six dimensional compactifications on Riemann

surfaces with genus g > 1 and with different choices of fluxes for the flavor symmetry. In

particular we will compare the anomalies of the four dimensional construction with those

obtained from six dimensions and the dimensions of the conformal manifolds. The theories

in four dimensions will have a description in terms of “strongly coupled” Lagrangians. The

construction will start from weakly coupled Lagrangians and then take us on a parameter

space of these models to special loci where certain symmetries are enhanced. Coupling

these symmetries to dynamical gauge field the theories which correspond to the different

compactifications can then be constructed. Since the enhancement of symmetry used for

the construction happens only at strong coupling and we do not have a precise road map to

the enhancement locus, we refer to these models as having “strongly coupled” Lagrangians.

Such Lagrangians are nevertheless sufficient to derive a plethora of protected information

about the models. In particular all the anomalies and supersymmetric indices are easily

extractable. We will compute here the supersymmetric index and the central charges from

these Lagrangians.

1This can be viewed as the choice of a connection for a holomorphic vector bundle.
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The organization of this paper is as follows. In section 2 we study the general structure

of 6d (1,0) SCFT’s compactified on a Riemann surface and the resulting 4d theories. We

exemplify it using 6d SCFT’s arising from M5 branes on G singularity compactified on a

Riemann surface and in particular predict the dimension of the conformal manifold of the

four dimensional field theory arising in low energy. In section 3 we review a four dimensional

construction conjectured to give the field theories arising in the compactification, and

discuss the dimension of the conformal manifold from this perspective. In section 4 we

discuss the salient features of the field theoretic construction when k = 2 and the number

of M5 branes is also two. In section 5 we derive a description of some trinions, theories

obtained upon compactification on three punctured sphere, of k = 2 and two M5 branes case

in terms of “strongly coupled” Lagrangians. We also discuss superconformal indices and

anomalies of theories constructed from these building blocks. In section 6 we derive a variety

of examples of theories corresponding to different choices of fluxes upon compactifications.

In section 7 we compute anomalies of the putative four dimensional theories arising in

compactifications from six dimensional anomaly polynomial. In section 8 we summarize

our results. Several appendices complement the text.

2 Basic setup

In this section we discuss the basic setup we have and use that to make predictions about

4d N = 1 SCFT’s arising from compactification of N = (1, 0) SCFT’s in 6d. In order to

preserve half the supersymmetry we need to partially twist the theory along the Riemann

surface [14]. What this means is that we modify the spin connection by mixing with it a

u(1) in the Cartan of su(2) R-symmetry of the (1, 0) theory: u(1) ⊂ su(2)R. In this way, on

a generic Riemann surface, we preserve half the supersymmetry leading to N = 1 in d = 4.

We expect, as in the case of its (2, 0) cousin, that in the infrared, which corresponds to

the area of the Riemann surface going to zero, we obtain an N = 1 superconformal theory

in d = 4. Just as in the (2, 0) theory, we expect that the resulting theory will depend on

the choice of the complex structure of the Riemann surface. In other words, the conformal

manifold, or moduli of the 4d N = 1 theory will include the complex structure moduli of

the Riemann surface. However with lower supersymmetry we will have more options as

we go down to 4d. The reason for this is that the (1, 0) theories often (but not always)

have additional global symmetries. We can turn on backgrounds [15] corresponding to

gauge field configurations for this flavor symmetry along the Riemann surface in a way

that guarantees preserving N = 1 supersymmetry. To see this, note that the condition

that supersymmetry be preserved is that the supersymmetry variation of the gaugino fields

in the multiplet be zero. This variation of the gauginos represented by λ is given by

δλ = Fµνγ
µν · ǫ+Dǫ , (2.1)

where the D-term in the variation breaks the symmetry to an abelian subgroup. For the

non-abelian case (where D = 0) if we set F = 0 we see that we can preserve supersymme-

try. Thus for non-abelian flavor symmetry we can turn on flat non-trivial bundles on the

Riemann surface and still preserve the supersymmetry. For a genus g surface this gives
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rise to an (g − 1) dimG complex dimensional moduli space where G is the non-abelian

flavor group. To see this note that as usual one can open up the Riemann surface given

the Ai, Bj cycles. We can assign arbitrary G holonomies for each Ai, Bj subject to

g∏

i=1

[Ai, Bi] = 1 , (2.2)

and the overall gauge transformation. This gives (2g − 2) · dimG real dimensions, or a

(g − 1) · dimG complex dimensional manifold.

For the abelian u(1) case, we have a more general possibility. Let ǫ denote the spinor

which is covariantly constant after the topological twist. Then to preserve the variation

along the ǫ we need to satisfy the equation

Fzz ǭγ
zzǫ+D = Fzz ǫ

zz +D = 0. , (2.3)

This can be solved by

Fzz = const. ǫzz . (2.4)

We can now have F be non-zero. In such a case the allowed constants (related to the

D-term) in the above equations are quantized because 1
2π

∫
Σ F = c1(F ) ∈ Z. Even after an

F representing a given class in c1(F ) has been fixed, we can still solve the above equation

by the addition of flat u(1) gauge fields to it. So for each u(1) flavor symmetry and for any

integer n representing its c1 we will get an additional g complex moduli.

However, there is a more general possibility which allows combining the abelian and

non-abelian cases. Let G denote the flavor symmetry group. We can choose an abelian

subgroup of it L whose non-abelian commutant inside G is given by G′: L×G′ ⊂ G. Then

we can choose a non-trivial flux in L which can be deformed by addition of flat bundle in

L×G′. In other words for each c1(L) ∈ Zdim(L) and each genus g we get an N = 1 SCFT

in 4d whose conformal manifold Mg is expected to have complex dimension

dimMg = (3g−3)+g·dim(L)+(g−1)dim(G′) = (3g−3)+(g−1)dim(Gmax)+dim(L) (2.5)

where Gmax = L×G′. Note that Gmax is the maximal symmetry group we expect to have

for the 4 dimensional theory corresponding to submoduli where the holonomies of G′ are

turned off, but for which there is a background flux in L.

It is useful to consider a familiar example to illustrate these ideas. Consider the 6d (2, 0)

theory but view it as a (1, 0) theory as we wish to preserve only N = 1 supersymmetry

in 4d. In such a case the R-symmetry group is so(5). To twist we need to pick a u(1)

in it. Consider the su(2)L × su(2)R = so(4) ⊂ so(5). We choose so(2) R-symmetry

in the Cartan of su(2)R (which can be viewed as the sum of the two canonical Cartans

so(2) × so(2) ⊂ so(4)). After this twist, we still have an extra flavor symmetry group

G = su(2)L. We can choose to turn on a flat su(2)L bundle on the Riemann surface as

mentioned above. This will give us a theory whose moduli space has dimension

dimMg = (3g − 3) + (g − 1) · 3 = 6g − 6 , (2.6)
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which has been studied in [16]. This corresponds to the geometry of the normal bundle to

the Riemann surface being R×Lg−1 ⊕Lg−1, where Lr denotes a line bundles of degree r.

Here the su(2) flat bundle mixes the two line bundles of degree g − 1. Instead we can also

consider choosing an abelian subgroup L ⊂ G which in this case is simply u(1) ⊂ su(2)L,

and turn on a non-trivial flux characterized by an integer c1(L) = n. This corresponds to

theories studied in [17] and corresponds to the normal bundle to the Riemann surface being

R×Lg+n−1 ⊕Lg−n−1. The dimension of the conformal manifold for this case is according

to our discussion above

dimMg = (3g − 3) + g = 4g − 3 . (2.7)

Let us just consider two examples to illustrate the diversity of choices available for

6d (1, 0) theories. Consider the exceptional 6d SCFT, with F-theory base given by O(−1)

bundle over P1. This theory has E8 global symmetry. For this theory we can choose G′ =

G = E8 and we end up getting the moduli space of flat E8 bundles on the Riemann surface

as part of the conformal manifold. Or we can choose any abelian subgroup L ⊂ E8 whose

dimension can vary from 1, . . . , 8. For each dimension there are numerous possibilities for

how it embeds in E8 leading to different non-abelian commutants G′. For each such choice,

each choice of c1(L), and each g we get an N = 1 SCFT. Clearly this is an enormous

list of new N = 1 theories arising from a simple 6d SCFT! We can also contrast this with

the 6d SCFT corresponding to F-theory geometry O(−12) bundle over P1. This theory

has no global symmetries and so for each genus g we get a unique choice whose conformal

manifold is simply the complex structure moduli space of the Riemann surface.2

2.1 Adding punctures

So far we have discussed compactifications on Riemann surfaces without punctures. If we

add punctures to the Riemann surface, there would be additional moduli for the resulting

conformal field theory. The most obvious has to do with the choice of the position of the

punctures. If we have s punctures this will add s complex moduli. Moreover, depending

on the type of the puncture, the choice of the holonomy of G will have to be restricted to

a special one compatible with preserving conformal symmetry. One way to think about

this is that a puncture on the Riemann surface can be viewed as attaching a semi-infinite

cylinder to the surface. So we effectively obtain the reduction of the 6d theory on a circle

to 5d. We will have to choose a holonomy for G along the circle. Such holonomies typically

play the role of mass parameters for 5d theories. Only at special holonomies can we expect

the 5d theory to be gapless. Thus the choice of such holonomies will typically break the

G symmetry to a subgroup P ⊂ G, which preserves the element. The inequivalent choices

of G holonomy in a particular conjugacy class, which are preserved by P are given by

the coset G/P . In this way we find that at each puncture we have more choices for the

moduli, whose complex dimension is given by 1
2dim(G/P ) (see [18] for a nice discussion

of such moduli spaces). If the holonomy in the bulk is broken to Gmax due to picking an

2This is an N = 1 theory whose moduli space is expected to be exactly that of moduli of genus g surfaces

with no extra moduli. All of the well-studied cases have extra moduli (even those coming from (2, 0) theory

as already discussed) when viewed as an N = 1 theory in 4d.
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Abelian subgroup L to turn on flux in, then the allowed holonomies will be smaller given

by Pmax = Gmax ∩P . In this way we get the following formula for the dimension of the 4d

conformal manifold:

dimMg = (3g − 3 + s) + (g − 1)dim(Gmax) + dim(L) +
1

2

∑

i

dim

(
Gmax

Pmax
i

)

= (3g − 3 + s) +
(
g − 1 +

s

2

)
dim(Gmax) + dim(L)− 1

2

∑

i

dim(Pmax
i )

(2.8)

As we have discussed, the choice of punctures of a given type corresponds to a conjugacy

class of G which preserves a subgroup P of G. There could be various different though

physically equivalent ways to embed P in G. These are usually related to one another by

automorphisms of G, which may be both inner or outer automorphisms.

For different choices related by an inner automorphism, if G is a simple non-abelian

group then there is no need to have an extra designation of the actual element of the

conjugacy class of the puncture, because one can obtain all choices of the conjugacy element

by the action of G which can be absorbed into the moduli of flat connections on the

punctured Riemann surface. However, even if G is simple, when we choose an abliean

subgroup L to put flux in, it could happen that not all conjugacy elements compatible

with P symmetry can be reached by the action of Gmax = L × G′ which is the left-over

symmetry. In such a case, inequivalent choices of embedding of the conjugacy classes of

the punctures in G should be viewed as leading to distinct classes of theories. The same

is true also for embeddings differing by an outer automorphism. These Gmax inequivalent

embeddings of the conjugacy element of the puncture in G is an extra designation for the

puncture and explains the appearance of the ‘color’ (and ‘sign’) of the puncture in [9]. We

shall call such extra choices for a puncture for a general theory as the ‘color’ of the puncture.

2.2 M5 branes probing ADE compactified on a surface

The main class of examples studied in this paper involve compactifications of the 6d SCFT

obtained by probing ADE singularities with N M5 branes. In fact we will concentrate on

the Ak−1 case and our main example will involve 2 M5 branes probing the A1 singularity.

As we will see, already this example is highly non-trivial and interesting.

Consider M-theory in the presence of K-type singularity where K can stand for any

of the ADE groups. In other words, we consider the background given by

C2

ΓK
, (2.9)

where ΓK is the discrete subgroup of su(2) associated to the group K. As is well known

this gives rise to a 7 dimensional singularity on which a K-type gauge symmetry emerges.

Now consider probing this singularity with N parallel and coincident M5 branes. Since

M5 branes have a 6 dimensional worldvolume, i.e. 1 lower dimension than the singularity

locus, they will appear as points on the line of the singularity. The resulting theory will

have a G = KL × KR symmetry [8]. The KL,R arise from the bulk gauge symmetries

of M-theory on the left and right part of the M5 branes respectively. In the K = su(k)

– 6 –
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case, which we will be mainly interested in, there is also a global u(1) symmetry coming

from the fact that K enhances to u(k). Generally these theories are non-trivial 6d (1, 0)

SCFT’s. However in one case, they are rather simple: when N = 1 for the Ak−1 singularity,

they simply give rise to a hypermultiplet which transforms in the (k, k)+1 representation of

su(k)L×su(k)R×u(1). For low k,N the flavor symmetry can get accidental enhancements.

For example for k = N = 2 it turns out that su(2)L×su(2)R×u(1) enhances to G = so(7).

Now we wish to compactify this 6d theory on a Riemann surface Σ and as already

discussed we partially twist the theory by adding to the spin connection the Cartan of

su(2)R symmetry. In the case of T 2 we can preserve all the supersymmetries, leading to

an N = 2 supersymmetric theory in 4d.

However, as already discussed we can do more: since the theory in the bulk has G

gauge symmetry we can turn on flat G-bundles on the Riemann surface. In fact, because

the M5 branes split the K-symmetry in the bulk to two parts, we can turn on independent

flat K bundles for KL and KR. This still preserves supersymmetry. A simple example

of this can be seen in the context of N = 1 M5 brane probing Ak−1 theory. In that

case the supersymmetry charge is given by Tr(ψ∗∂φ) where ψ and φ are bi-fundamental

hypermultiplet fermions and bosons transforming as,

(ψ, φ) → gL(ψ, φ)g
−1
R , (2.10)

which leaves the supercharge invariant as the ψ and φ undergo GL × GR monodromies

around non-trivial cycles of the Riemann surface. In addition we can turn on a flat bundle

for the u(1) global symmetry (which can also have a non-trivial first Chern-class). Moreover

we can also choose other abelian subgroups of su(k) × su(k) × u(1) as already discussed,

and turn on flux in them.

Similarly we can add punctures. There are various punctures allowed. To characterize

them we compactify the theory on a circle to 5d, leading to affine su(N)k quiver theory.

Punctures which preserve the full symmetry or a simple puncture with just a u(1) symmetry

have been studied in [9]. Moreover the structure of allowed punctures is rather intricate

and has been studied in [19]. In this paper we will mainly focus on the full and simple

punctures. For full punctures, we have evidence that the conjugacy class corresponding to

preserving superconformal symmetry leads to P = u(1)2k−1 for the generic k and N , but

for special cases this will be different. We will find that for the N = k = 2, the group P

corresponding to leaving the holonomy of the full puncture invariant is su(2)×u(1)×u(1).

2.3 N = 2 sub case and the resolution of a puzzle

It is instructive to consider the sub-case which leads to higher supersymmetry. To obtain

an N = 2 supersymmetric case we have to do two things: take the trivial case of G = A0

and turn on an N = 2 preserving flux. This leads to the class S theories [1, 20] with a 3g−3

complex dimensional moduli. Or we can consider the Ak−1 singularity case and consider

compactifying the theory on T 2 with the u(1) flat connection turned off. This gives rise

to an N = 2 supersymmetric theory whose moduli space is given by the moduli space of

flat su(k)diagonal ⊂ su(k) × su(k) connections on T 2. This is the case where we obtain a

– 7 –
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quiver gauge theory using the duality between M-theory compactified on T 2 and type IIB

on S1. Wrapped M5 branes on T 2 become dual to D3 branes and so in the type IIB theory

we have N D3 branes probing Ak−1 singularity which leads to the affine su(k) N = 2

supersymmetric quiver theory with su(N) gauge groups on each node of the quiver. It is

known [21] that the moduli of this theory is that of flat su(k) connections on T 2 which is k

dimensional. For a discussion of this in the context of 6d theory compactified on T 2 see [8].

Now we come to a puzzle: from the discussion of the previous section, we expected the

moduli space to be given by two copies of flatK bundles. However, here we are only getting

one copy. This is because we are in a special situation where the generic argument discussed

in the previous section does not apply. In particular naive application of the formulas of

the previous section would have given a factor of (g − 1) = 0 for the multiplicative factor

for the dimension of flat bundles at genus 1. Of course in that case the moduli would have

to be abelian because we are on a torus. Nevertheless we are still getting only one copy of

the flat bundles, which corresponds to turning on the diagonal flat bundle. The gL 6= gR
part of flat bundles lead to mass parameters for the bifundamentals of the quiver theory.

One may wonder whether this is a generic feature, and that somehow the off-diagonal part

of K-bundlles give mass terms. We will now argue that this is not the case, and the case

of torus with no punctures is misleading us.

To gain insight into this consider the case of N = 1 M5 brane probing Ak−1 singularity.

If we compactify this theory on T 2, and turn on flat su(k)L × su(k)R bundle, indeed

if the L and R connections are not equal we will mass up the hypermultiplets because

the light modes will come from the zero modes of the theory on T 2 and if the left and

right connections are not equal there are no zero modes left. However, if left and right

connections are equal, since the connections are abelian on the torus, this leads for generic

connections to k zero modes leading to k massless bifundamentals, as is expected for affine

Ak−1 quiver with rank 1 on each quiver node. Having confirmed the expectation based on

the N = 2 affine quiver case for this simple example, now let us consider the same theory

more generically, for g > 1 or even g = 1 but with punctures. In that case we may have

expected again that if the left and right connections are not equal the theory in 4d will

become trivial. But this is not the case, as we will now argue.

To see this, recall that the theory on a curved Riemann surface is twisted, which means

that the fields acquire non-traditional spins. In particular let us consider the fermions in

the hypermultiplet. They will transform as 1-forms as well as 0-forms, coupled to the

KL ×KR bundle. To find if there are any low energy 4d modes left, we need to count the

zero modes of the internal theory. By Hirzebruch-Riemann-Roch theorem we deduce that

n1 − n0 = (dimV )(2g − 2 + s) , (2.11)

where n1 denotes the number of 1-form zero modes and n0 the number of 0-form zero

modes leading in the 4d N = 1 theory to chiral and anti-chiral fields respectively. Here

dimV = k2. We thus learn that for 2g − 2 + s > 0 we will typically get 1-form zero modes

and no 0-forms. I.e. we have chiral fields. For g = 1, s = 0 generically we get no zero

modes, which is what we already observed. For the special case when g = 1, s = 0 and if

we set left and right K-connections equal, then we get equal number of n1 and n0 modes
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(k of each), leading to enhancement of supersymmetry to N = 2. This resolves the puzzle

and strengthens the picture that for arbitrary flat KL ×KR connections on the Riemann

surface we expect non-trivial 4d N = 1 SCFT in the IR.

3 Four dimensional perspective: preliminaries

We now turn our attention to field theories in four dimensions conjectured to be obtained

once N M5 branes probing Zk singularity get compactified on a Riemann surface. The

case of k = 1 is well studied and gives rise to N = 2 theories [1] or N = 1 theories [17, 22],

while for k > 1 one in general obtains N = 1 theories. Some of the models obtained

in this way are quiver theories with standard descriptions in terms of Lagrangians, but

the vast majority are built from strongly coupled ingredients. The theories possessing

standard Lagrangians correspond, for general N , to Riemann surfaces with genus zero and

punctures with low enough symmetry, linear superconformal quivers, or to genus one with

a number of u(1) punctures, circular/toric quivers. For higher genus and (N > 2 when

k = 1) the theories usually have strongly coupled ingredients. In what follows we will first

review the essentials of the linear and toric quiver cases and then discuss the higher genus

generic theories.

3.1 Linear and circular quivers

We start with reviewing some aspects of the linear and circular quivers, for details we refer

the reader to [9]. The building block for constructing linear and circular quivers is the

free trinion. This is a collection of free chiral fields which we organize into k fields Qi

and k fields Q̃i, figure 1. The chiral fields Ql are in the bifundamental representation of

su(N)al × su(N)bl , and Q̃l are in the bifundamental representation of su(N)bl+1 × su(N)al .

We also have 2(k − 1) + 1 + 1 abelian symmetries u(1)t × u(1)k−1
β × u(1)k−1

γ × u(1)α. It is

convenient to encode the charges of the fields in fugacities. For Ql we have t
1
2α−1βl and

for Q̃l t
1
2αγℓ. We think of this theory as associated to a three punctured sphere with two

maximal punctures with flavor symmetry su(N)ka and su(N)kb , and a minimal puncture

with symmetry u(1)α. The other symmetries (β, γ, t) are not associated to the punctures

but have more general geometric origin. We will refer to the symmetries which are not

associated to punctures as internal symmetries. These symmetries are conjectured to come

from the Cartan subgroup of u(1)× su(k)L × su(k)R discussed in the second section.

We have natural operators which are charged only under the symmetry of one of

the maximal punctures and internal symmetries, the mesonic operators M b
l = QlQ̃l and

Ma
l = QlQ̃l−1. There are also operators which are charged only under the minimal puncture

symmetries, the baryons ǫQN
l and ǫQ̃N

l . There are k mesonic operators for every maximal

puncture and 2k baryonic operators for every minimal puncture. The k mesons for the

two maximal punctures of the free trinion have different charges under the 2k− 1 internal

symmetries. They have charge +1 under u(1)t and are charged under certain diagonal

combination of the u(1)k−1
β and u(1)k−1

γ and have charge zero under the complementary

combination. In fact there is a choice of the diagonal subgroup corresponding to mapping

u(1)k−1
γ to u(1)k−1

β . We could have in principle maximal punctures with mesons charged
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Figure 1. The free trinion on the left and the mesonic and baryonic operators associated to

punctures. The mesons are the bilinear combinations of Q and Q̃ denoted in brown in the picture.

In the example here the meson is charged under the maximal puncture symmetry corresponding to

the groups on the left side of the quiver and singlet under other puncture symmetries. Note that

the meson operators in the free trinion are “mesons” of the maximal symmetry on the right in the

usual sense of the word, that is are bilinears and singlets under that symmetry, but are operators

we associate to the symmetry on the left under which they are charged in the bifundamental

representation. The baryons are operators of the form QN and are singlets of the maximal puncture

symmetries while being charge under the minimal puncture abelian symmetry.

under any one of these choices. We associate a label to the maximal punctures we call

color defining the choice of the diagonal abelian group, that is a map between the u(1)β to

u(1)γ symmetries. In linear quivers we discuss here only a Zk valued index will appear, [9].

We note that in the special case of k = 2 and also N = 2 the abelian symmetry under

which the mesons are charged enhances to su(2)×u(1). In this case we have two mesons in

the bifundamental representations of the same groups and having opposite charges under

a diagonal combination of u(1)β and u(1)γ . We can think of the punctures as breaking the

su(k)L× su(k)R×u(1) symmetry to the Cartan in general, and to su(2)diag.×u(1)×u(1)t
when k and N are both two. From the point of view of six dimensions the internal group

is enhanced to so(7) with the su(2)diag. a particular subgroup, which we will discuss in

detail soon. We denote the symmetries that the punctures preserve as P . This will become

important in what follows. We will momentarily discuss a six dimensional interpretation

of the color label.

We can combine two theories together by gauging a diagonal combination of symme-

tries associated to maximal punctures, one from each theory. There are two different ways

to perform the gluing. The gluing we refer to as Φ-gluing, see figure 2, also introduces k

bifundamental chiral fields Φl which couple to the mesonic operators through a superpo-

tential term
∑

l(MlΦl − ΦlM
′
l ), where Ml and M ′

l are the mesons coming from the two

different theories. This gluing is the Zk orbifold of gluing with N = 2 vector field in class

S with the bifundamental originating from the adjoint chiral field in the N = 2 vector.

Gluing two trinions together the resulting theory will have two maximal punctures, two

minimal punctures, and also have all the additional abelian symmetries discussed above.

It is important to note that the maximal punctures have a natural cyclic ordering of the k

su(N) groups and when gluing we keep that ordering. The gluing together of free trinions

into a linear quiver theory breaks no global symmetries specified above.
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Figure 2. Gluing two theories together. We have Φ-gluing on the left and S-gluing on the right.

The linear quivers have a conformal manifold. A sub-manifold of this preserves all the

symmetries and has dimension equal to the number of minimal punctures minus one. The

linear quivers enjoy dualities which geometrically are associated to exchanging the minimal

punctures. For k = 1 the duality is just N = 2 S-duality of su(N) theory with 2N flavors.

For k > 1 it is a combination of the N = 2 duality and Seiberg duality of N = 1 su(N)

theories with 3N flavors [9].

We can also glue two maximal punctures of a linear quiver together. The theory so

obtained is associated to torus with a number of minimal punctures. If the number of

minimal punctures is a multiple of k no symmetries are broken by the gauging, however if

the number of minimal punctures is not a multiple of k, a u(1)k−1 subgroup of the u(1)2k−1

internal symmetry group is broken. As a basic example, gluing two maximal punctures of

the free trinion one obtains the affine N = 2 quiver with k nodes coupled to additional

k singlet chiral fields. This theory corresponds to torus with one minimal puncture. Re-

moving the singlet chiral fields one interprets the affine quiver itself as associated to torus

with no punctures [8]. This theory has u(1)α × u(1)t × u(1)k−1
β symmetry. It has k + 1

dimensional manifold of conformal deformations. This manifold can be thought of as 1 for

complex structure moduli, k − 1 for su(k) holonomies, 1 for u(1)t holonomy. In N = 2

language the affine quiver is a torus with k punctures. We have k complex structure moduli

and one N = 1 deformation.

The breaking of the symmetry when one glues a torus can be understood by considering

the Zk valued label, color, of maximal punctures introduced above. The basic trinion has

two maximal punctures with color differing by one unit. Cyclic shift of the color label has

no physical meaning so gluing several free trinions we can always think of them as glued

along maximal punctures of same color. The colors of two maximal punctures of a sphere

with some number of minimal punctures differ by that number. When we glue two ends

together however if the number of minimal punctures is not a multiple of k we glue two

punctures of different colors together and this breaks some symmetries.

We can obtain different theories by starting from one of the theories above and closing

different punctures. This corresponds to vacuum expectation values for baryonic operators,

which closes minimal punctures, or mesonic ones which closes maximal punctures down to
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minimal ones. In general closing minimal punctures does not correspond to a theory with

one minimal puncture less. This leads to the need to introduce discrete charges for the

symmetries. We will discuss this in more detail for the k = 2 and N = 2 M5 branes in

what follows.

We can also discuss a choice of such a bundle for the additional u(1) symmetry [9–

11, 17]. This corresponds to another type of gluing which we call S-gluing (figure 2) . This

is the Zk orbifold of gluing with an N = 1 vector in class S. Since there are no adjoint

chiral fields, no additional fields are introduced by orbifolding. Therefore in S-gluing, we

do not introduce the bi-fundamental fields when two models are glued but only turn on

a superpotential coupling the mesons of the two maximal punctures. For this gauging

not to break the symmetries we need to map appropriately the internal symmetries of the

glued components. In particular, we couple the mesons of the two copies and these are

charged under u(1)t. For this symmetry to be present after the gluing the u(1)t symmetry

of one theory is identified with u(1) 1
t
of the other theory. This leads to the notion of a

sign of maximal punctures depending on the pattern of charges under u(1)t. This idea was

introduced in [17] and further developed in [9–11, 23–25].

One can dwell on the question of what happens when a maximal puncture is closed.

In field theory closing a puncture corresponds to turning on vacuum expectation values to

operators which are charged under the puncture symmetries. For general N and k giving a

vacuum expectation value to a meson operator for example will change the maximal punc-

ture having su(N)k symmetry to a non maximal one having a smaller symmetry. Closing

a puncture, one needs to give vacuum expectation values to several mesons completely

breaking the symmetry. It was observed in [9] that doing so one does not just obtain a

theory without a puncture but rather one has a theory corresponding to a Riemann surface

with one less puncture and with certain additional fluxes/discrete charges turned on.

To summarize, the theories with Lagrangians, corresponding naturally to certain sphere

and torus compactifications of M5 branes on Ak−1 singularity, possess 2k− 1 abelian sym-

metries which are not associated to punctures. These symmetries can be thought of as cor-

responding to the Cartan of su(k)L×su(k)R×u(1) of the basic geometric setup of section 2.

The discrete charges are possible choices of bundles/fluxes for these abelian symmetries.

3.2 Higher genus theories

We wish to construct theories associated to general surfaces. This requires introducing

theories associated to a genus zero surface and having three maximal punctures. Such

theories are strongly interacting SCFT’s except for the su(2) k = 1 case. We thus do not

have much control over them. In the k = 1 case a lot of properties of such theories are

known mostly by indirect arguments involving dualities and cross dimensional relations.

Much more is understood for k = 1 than for higher k . The interacting three punc-

tured sphere, trinion, here is denoted by TN . These theories for example can be seen at

strong coupling cusps of a linear quiver with N − 1 minimal punctures. For su(2) this

quiver itself is the T2 theory, but for higher N the resulting theory is the TN theory with

certain superconformal tail attached to it by gauging a subgroup of it’s symmetry [1]. The
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construction of the interacting trinions in the k > 1 case is more involved [9]. We will

discuss in this paper in detail the trinions for two M5 branes and k = 2.

The addition of handles brings several complications. Gluing two punctures of the

same theory together might break some symmetries as we mentioned. We will not consider

such situations in general. We can also have additional moduli associated to cycles of the

surface and not just to the number of tubes as we will soon discuss at length. Here we just

mention that already in the N = 2 case the number of moduli is found to be 3g+ s− 3+ g

where the extra g break supersymmetry down to minimal one and come from holonomies

for the Cartan of the enhanced non abelian R symmetry [17, 23]. Tuning the degrees of the

line bundles this number can be enhanced to 3g+ s−3+3g−3+ s where the term coming

in addition to the complex structure is given by the number of flat su(2) holonomies [22].

3.3 Marginal directions

Let us constrain the number of marginal deformations of a theory corresponding to M5

branes on Zk singularity. To derive a constraint we will have to assume something about

the theories. The assumptions we choose to make are motivated by the linear quivers we

have discussed. We assume the following,

• For each puncture we have k relevant operatorsMi in a bifundamental representation

of an su(N)i × su(N)i+1 subgroup of the su(N)k flavor group associated to the

maximal puncture.

• Gluing two maximal punctures together can be achieved in two different ways, where

in both we gauge a diagonal combination of the su(N)k symmetry of the punctures.

In the first method of gluing, the Φ-gluing, we introduce k fields Φi charged −1 under

u(1)t and in bifundamental representation of of su(N)i+1 × su(N)i. We also turn on

the superpotential,

MiΦi − ΦiM
′
i . (3.1)

In the second way of gluing,the S-gluing, no bifundamental fields are introduced and

we turn on a superpotential coupling the meson fields of the punctures,

MiM
′
i . (3.2)

• The only new marginal operators after we perform the gluing are the ones appearing

in the superpotential and the ones one can build from Φi in the Φ-gluing, and the

field strength W
(i)
α corresponding to the gauged vector fields. We also assume that

operators which are marginal before gluing remain marginal.

• The number of marginal operators which are singlets of the symmetries associated to

punctures minus the conserved currents for the internal symmetries will be assumed

to be given by a linear expression,

m(g, s) = Ag +Bs+ C . (3.3)
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Here g denotes the genus of the surface and s the number of maximal punctures. We

do not consider here more general types of punctures. We are considering marginal

directions minus the currents as this is a robust and easily computable quantity

parametrizing a model. For example, it is an invariant of the Higgs mechanism for

flavor symmetry [26].

Using these assumptions we can quickly derive a constraint on m(g, s). When we glue

two theories together we combine the genera and the number of punctures is the sum of

punctures minus two. The number of marginal operators minus currents is the sum of

these numbers of the two components plus the following new operators. We analyze first

the Φ-gluing. We have k operators MiΦi, k M
′
iΦi, k gaugino bilinears W (i)W (i), and we

have k fermionic opertaors ψ̄iφi. Here ψi and φi are the fermionic and bosonic components

of Φi. The latter operators correspond to the k u(1) symmetries rotating the Φi which are

broken by the superpotential/anomalies. All in all we deduce,

m(ga + gb, sa + sb − 2) = m(ga, sa) +m(gb, sb) + 2k . (3.4)

The same computation applied to increasing the genus by gluing two punctures of the same

theory gives,

m(g + 1, s− 2) = m(g, s) + 2k . (3.5)

In the S-gluing we have k gaugino bilinearsW (i)W (i), and we have k operatorsMiM
′
i . Thus

again every S-gauging introduces 2k marginal operators and the relations (3.4) and (3.5)

derived for Φ-gauging still hold.

From relations (3.5) and (3.4) we deduce,

C = −A , B =
1

2
A− k . (3.6)

We deduce two observations. First, if we do not have any punctures the number of marginal

deformations minus the currents is proportional to g − 1. We also can write a general

solution to the above constraints in a informative way,

m(g, s) = 3g − 3 + s+Υ
(
g − 1 +

s

2

)
− s

2
(2k − 1) . (3.7)

Here Υ is a parameter which should be integer. Note that from our discussion in six

dimensions both Υ and 2k−1 should be dimensions of groups. The former is the dimension

of the group preserved on the Riemann surface, Υ = dimGmax, whence the latter is the

dimension of the intersection of the group fixed by the puncture and the group preserved

by the surface, 2k−1 = dim(Gmax∩P ). The rank of Gmax is 2k−1 and thus we see that in

a generic compactification our result is consistent with fixing the conjugacy classes of the

holonomies around punctures. There are a variety of values Υ can have depending on the

choice of R symmetry. Taking Υ = 2k−1 we get that there are u(1)2k−1 abelian symmetries.

This is the symmetry we obtained from our Lagrangian constructions of linear and toric

quivers, and we will argue that in a general compactification it gives the correct dimension

(minus the currents) of the conformal manifold. Another natural choice we could consider
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would be Υ = 2k2− 1. This gives m(g, s) = 3g+ s− 3+ g− 1+ (k2− 1)(2g− 2)+ (k2−k)s
which implies that the Gmax symmetry is su(k)×su(k)×u(1) and the expression gives the

number of complex structure moduli with flat connections for these groups.

The general arguments presented here should be modified in certain cases. We give

several examples. Let us consider first the S-gauging. The simplest special case is k = 1.

In excess to the operators we counted also TrM2 and TrM ′2 here are gauge invariant since

the mesons here are the moment map operators in the adjoint representation of the gauge

group. These operators can be also marginal in certain cases and we will assume they are

in what follows. The mesons squared are associated to the each glued component and thus

do not change the number of marginal directions associated to gluing, but do change the

values of Υ we should consider. Each gauging adds then 2 operators. Number of marginal

operators minus the conserved currents is,

m(g, s) = 3g − 3 + s+Υ
(
g − 1 +

s

2

)
− s

2
. (3.8)

From six dimensions the group preserved by the compactification for which the additional

operators are marginal is so(3). We choose a u(1) sub-group of the so(5) R symmetry to

perform the compactification and the commutant is the global symmetry. We thus expect

Υ to be equal to dim so(3) and we can write the above as,

m(g, s) = 3g − 3 + s+
(
g − 1 +

s

2

)
dim so(3)− s

2
rank so(3) . (3.9)

This is the known result of [16, 17].

Other interesting cases are when k = 2 and/or N = 2, where some operators which

are otherwise not gauge invariant and/or marginal might become such. Take k = 2 and

general N . The operatorsM1M2 andM
′
1M

′
2 in this particular case become gauge invariant.

In some situations these become also marginal. Since these operators are from only one

of the glued copies they do not change the counting of operators one has to add but this

does affect the number of operators. From the six dimensional analysis the symmetry

here enhances to su(2)3. We thus would expect there to be marginal directions for flat

holonomies of this symmetry. In this case then we can deduce from six dimensions that

A = 3 + dim su(2)3 = 12 giving B = 4. The number of marginal operators minus currents

then can be written as,

m(g, s) = 3g − 3 + s+
(
g − 1 +

s

2

)
dim su (2)3 − s

2
rank su(2)3 . (3.10)

In the case of N = 2 we again have more gauge invariant operators, MiMi and M ′
jM

′
j ,

which come from one of the two glued theories. Also here in certain situations these are

marginal. Here the dimension of the symmetry group enhances to su(2k). This gives

A = 3 + dim su(2k) = 4k2 + 2 which sets B = 2k2 − k + 1. Then the dimension of the

conformal manifold minus the conserved currents becomes,

m(g, s) = 3g − 3 + s+
(
g − 1 +

s

2

)
dim su(2k)− s

2
rank su(2k) . (3.11)

Finally in case both k and the number of branes are equal to two we have the gauge

invariant deformations, which are also marginal in some cases, derived above and two
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additional deformations constructed from ingredients of the two copies, M ′
1M2 and M1M

′
2.

The latter operators are added when we glue theories together and thus they change the

number of operators added for each gluing to six. The group here enhances to so(7)

which determines A = 3 + dim so(7) = 24 and B = 9 leading to the marginal operators

minus currents,

m (g, s) = 3g − 3 + s+
(
g − 1 +

s

2

)
dim so(7)− s

2
5

= 3g − 3 + s+
(
g − 1 +

s

2

)
dim so (7)− s

2
(dim su(2) + 1 + 1) .

(3.12)

We will analyze this case in detail in what follows and will see this result emerging from com-

putations.

Next we consider the Φ-gauging. When both k and number of M5 branes are two

we have additional gauge invariant deformations becoming marginal in certain compacti-

fications. These are M1Φ2, M2Φ1, M
′
2Φ1, M

′
1Φ2. We also have more fermionic operators,

φ1ψ̄2 and ψ̄1φ2. Gluing thus changes the number of marginal directions minus currents.

The six dimensional symmetries here are broken to so(5)× u(1). Thus we expect to have

A = 3 + dim so(5)u(1) = 14 while B = 4. Number of marginal operators minus the

currents is,

m(g, s) = 3g − 3 + s+
(
g − 1 +

s

2

)
dim so(5)− s

2
(dim su(2) + 1) + g − 1 . (3.13)

We will recover this expression in explicit computations in what follows. Here too in general

compactification the additional marginal operators are not marginal and only for special

choices of R symmetry they are exactly marginal.

In all the cases above we assumed that the additional operators we add are exactly

marginal. Although they are marginal for any setup they are only exactly marginal for

compactifications with particular choices of R symmetry. Some of the operators which are

not marginal before gluing can become marginal in certain cases which will violate our

assumptions. We will see how this comes about in the k = 2 and N = 2 case in detail

in the rest of the sections of this paper. There can be additional cases when operators

become marginal, for example operators made from Φs, for some special choices of the R

symmetry. It will be interesting to explore this further.

We have derived here constraints on the structure of the conformal manifolds of the

four dimensional theories based on simple assumptions of what the punctures are and

how you glue them together. This structure fits well with the geometric expectation of

section 2 and we will see in what follows that even finer details, like values of Υ, agree with

the expectations.

4 Two M5 branes on A1 singularity: preliminaries and summary

We will next study in detail the case of two M5 branes probing Z2 singularity. The

symmetry of the six dimensional setup, which for general Zk is su(k) × su(k) × u(1)t,

here enhances to so(7) [7, 8]. This fact makes this case in certain respects richer than the
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general setup. However, we will be able to completely determine supersymmetric properties

of the four dimensional theories corresponding to such compactifications. In this section

we discuss the general properties of this case and state the main results to be derived

more rigorously in the following sections. To avoid confusion since both k, the order of the

orbifold, and N , the number of branes, are two we will try to keep the variable N where

the confusion between the two might arise. Everywhere in the following sections unless

explicitly said otherwise N stands for the number two.

4.1 Symmetries and group theory

When we compactify the six dimensional model, we can turn on a flux on the Riemann

surface for an abelian subgroup L = u(1)r of the flavor symmetry, so(7) in this case.3

The four dimensional theories obtained when compactified on a Riemann surface with no

punctures will have a conformal manifold with maximal symmetry on a sub locus of it

being the commutant of the chosen u(1)r in so(7). We denote this symmetry by Gmax.

On a general point of the conformal manifold the symmetry will be given by the abelian

sub-group of Gmax which is L. The 8 possible values of Gmax and L for the k = N = 2

theory are summarized in the table below and in table (4.7).

Gmax u(1)3 su(2)u(1)2 su(2)diagu(1)
2 su(2)su(2)u(1)

L u(1)3 u(1)2 u(1)2 u(1)

F (a, b, c) (a, 0, b)/(0, a, b) (a,±a, b) (a, 0, 0)/(0, a, 0)

Gmax s̃o(5)u(1) so(5)u(1) su(3)u(1) so(7)

L u(1) u(1) u(1) ∅
F (a,±a, 0) (0, 0, a) (a, 0,±a)/(0, a,±a) (0, 0, 0)

(4.1)

We will refer to compactification leading to Gmax maximal symmetry on a locus of con-

formal manifold as being of type Gmax. In the table F denotes a triplet of fluxes for the

Cartan of so(7) one turns on. The three Cartans we will denote as u(1)β × u(1)γ × u(1)t
and will now define. It is convenient to parametrize the symmetries with fugacities. The

character of the adjoint representation of so(7) we will parametrize as,

21so(7) = 1 + 10so(5) +

(
t2 +

1

t2

)
5so(5) , (4.2)

where we have defined so(5) characters,

10so(5) = 3su(2)1 + 3su(2)2 + 2su(2)12su(2)2 ,

5so(5) = 1 + 2su(2)12su(2)2 ,
(4.3)

3In most parts of this paper we are not cautious with the global structure of the groups. In particular

by quoting groups we are referring to their Lie algebras.
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and su(2) characters are defined as,

3su(2)1 = 1+
1

β4
+β4 , 3su(2)2 = 1+

1

γ4
+γ4 2su(2)1 =

1

β2
+β2 , 2su(2)2 =

1

γ2
+γ2 . (4.4)

We choose here a somewhat unusual normalization for the su(2) fugaicities which is done

to be consistent with [9] and avoid proliferation of square roots in the equations. In terms

of these fugacities the groups appearing in the table above are as follows,

u(1)3 = u(1)t × u(1)β × u(1)γ ,

su(2)u(1)2 = u(1)t × u(1)β × su(2)2 , or u(1)t × u(1)γ × su(2)1 ,

su(2)diagu(1)
2 = u(1)t × u(1)βγ × su(2)β/γ , or u(1)t × u(1)β/γ × su(2)γβ ,

su(2)× su(2)u(1) = u(1)β × su(2)t × su(2)γ , or u(1)γ × su(2)t × su(2)β ,

so(5)u(1) = so(5)× u(1)t ,

s̃o(5)u(1) = (su(2)βγ∓1/tsu(2)βγ∓1t)× u(1)βγ±1 ,

su(3)u(1) = (su(2)1 × u(1)γ2t±2)× u(1)γ2t∓2 ,

or (su(2)2 × u(1)β2t∓2)× u(1)β2t±2 ,

so(7) = so(7) . (4.5)

It is informative to decompose so(7) into its so(6) maximal subgroup. The so(6) maximal

subgroup is given in terms of an so(3)×so(3) = su(2)×su(2) decomposition as su(2)β/γ ×
su(2)βγ .

4 In particular the adjoint of so(7) decomposes as 15+ 6 of so(6) where,

15 =

(
1 +

γ2

β2
+
β2

γ2

)
+

(
1 +

1

γ2β2
+ β2γ2

)
+

(
1 +

γ2

β2
+
β2

γ2

)(
1 +

1

γ2β2
+ β2γ2

)
,

6 =

(
1 +

γ2

β2
+
β2

γ2

)
+

(
1 +

1

γ2β2
+ β2γ2

)
. (4.6)

The su(2)diag that we encounter are the su(2)β/γ and su(2)βγ we see here.

Note that so(5) and s̃o(5) from both the six dimensional point of view and group

theory wise are equivalent and related by a choice of u(1) in so(7). However, we treat them

differently here as in the four dimensional constructions the field theoretic description of

the two cases is different. Because the six dimensional origin of the two is the same the

theories with Gmax = s̃o(5)u(1) and Gmax = so(5)u(1) should be dual to each other. There

are more choices of fluxes which give same groups as the ones appearing in table (4.1)

having different four dimensional constructions. We list these for completeness but will

not discuss these in detail in what follows as an interested reader can easily generate field

theories corresponding to them from the constructions of other models.

Gmax su(2)u(1)2 su(2)diagu(1)
2 su(2)su(2)u(1)

L u(1)2 u(1)2 u(1)

F (a, b,±a± b) (a, b, 0) (a,±a,±2a)

(4.7)

4One can also decompose so(6) into su(2)t×su(2)βγ or su(2)β/γ×su(2)t with similar expressions. These

are equivalent decompositions of so(7) differing by a Weyl transformation.
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Other flux choices leading to symmetry enhancement. Note that the signs appearing in

the table are not correlated.

We will obtain four dimensional N = 1 QFTs corresponding to each one of the choices

for Gmax in (4.16). The resulting theories are different but they are related by RG flows

triggered by either superpotentials or vacuum expectation values of operators charged

under puncture symmetries. We will discuss the latter next and here let us comment on

the former. Let us denote as MGmax

g,s the conformal manifold of a theory corresponding

to genus g with s maximal punctures compactification of type Gmax. Then we will find

relevant operators which will bring us from the conformal manifold of a theory with a given

Gmax to ones with larger Gmax. For example,

Mu(1)3

g,s → Msu(2)diagu(1)
2

g,s → Mso(5)u(1)
g,s → Mso(7)

g,s . (4.8)

In particular theories of type so(7) with no punctures have no relevant deformations. The

reason for the fact that theories with more fluxes has more degrees of freedom is not apriori

clear. One explanation may be that with flux we get more zero modes on the Riemann

surface leading to more degrees of freedom surviving in 4d.5 We will see how this type of

flows arise in what follows. In all the examples listed here we will find that as expected

from (2.5)

dimMGmax

g,0 = (g − 1)dim Gmax + dimL+ 3g − 3 . (4.9)

4.2 Punctures and gluings

In each one of the different types of compactification we can introduce maximal and min-

imal punctures as well as more general punctures (see [9, 19]) which we will not consider

here. Let us first discuss the maximal punctures. These punctures introduce an su(N)2

(su(2)a × su(2)b) factor into the four dimensional global symmetry. However, they also

break some of the so(7) symmetry of the six dimensional set-up, see for example [16]. The

maximal punctures are classified according to their color, sign, and orientation. Color and

sign are related to embedding of the symmetry preserved by the puncture in so(7). Differ-

ent embeddings are related by a Weyl transformation of so(7). Though group-theoretically

they are equivalent, when two punctures with two different embeddings appear in the

same model, and the element of the Weyl group relating them is not in Gmax, the dif-

ference between the embeddings is physically meaningful. Very concretely the choices of

embeddings are classified as follows. Color determines what is the group un-broken by the

punctures. The symmetry preserved by the full punctures turns out to be an su(2)diagu(1)
2

subgroup of so(7). One has several choices for the embedding of the puncture symmetry

in so(7) which is conveniently parametrized by taking an so(5)u(1) ⊂ so(7), for which

we have three natural choices, and then also an su(2)2 decomposition of so(5). The pre-

served su(2)diag is the diagonal combination of su(2)2. We will restrict our investigation

in what follows, mostly, to the decomposition so(5)u(1)t since it can be generalized to

higher k. The two possibilities for the puncture symmetry P are su(2)γ/β × u(1)βγ × u(1)t
and su(2)βγ × u(1)β/γ × u(1)t. We denote these groups as P1 and P2 respectively. The

5We thank Thomas Dumitrescu for a discussion on this point.
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groups P1 and P2 are not to be confused with the su(N)2 group associated to the punc-

ture, rather these are sub-groups of so(7) preserved by the puncture. The orientation is

related to the ordering of the two su(N) factors associated to the puncture (su(2)a, su(2)b)

or (su(2)b, su(2)a). The sign is related to the two choices of embedding of u(1)t inside

so(7) which differ by complex conjugation.6 This is illustrated by considering the mesonic

operators associated to the maximal puncture. These operators are in the bifundamental

representation of su(2)a× su(2)b. We will associate to them R-charge one which in general

will not be the superconformal one. They are in the 2 of su(2)βγ and have zero charge

under u(1)β/γ for punctures of one color, and in the 2 of su(2)β/γ and have zero charge

under u(1)γβ for the other color. The mesons have u(1)t charge +1 for negative punctures,

and −1 for positive ones. As far as orientation goes the mesonic operators are the same

but other operators can and are different.

When gluing two punctures together we glue punctures of opposite orientation and of

the same color. The curvature triplet F of the theory obtained by gluing two surfaces is

the sum of the triplets associated with the two summands. This is a non trivial statement

and we will check its validity in numerous examples in the next sections. In field theory

the gluing is associated with gauging the diagonal combination of the su(N)2 symmetry

associated to the punctures. When gluing punctures of the same sign we use the Φ gluing,

introduce dynamical vector fields for su(N)2 and bi-fundamental fields Φ in a doublet

representation of su(2)diag which flip the mesonic operators associated to the punctures [9],

W = Φ ·M −M ′ · Φ . (4.10)

The different ordering here denotes the way the two factors of su(N)2 are contracted

between Φ and the mesons coming from the oppositely oriented punctures. When gluing

two opposite sign punctures together we use the S gluing, introduce the dynamical vector

fields and couple the mesonic operators of the two maximal punctures to each other forming

a singlet of su(2)diag [9–11],

W =M ·M ′ . (4.11)

Since the mesonic operators have opposite u(1)t charges and are not charged under the

additional u(1)s no symmetries are broken.

The dimension of the conformal manifold of theory of type Gmax with s2 punctures

preserving P2 and s1 punctures preserving P1 will be found to have the form (consistent

with eq. (2.8)),

dimMGmax

g,(s1,s2)
= 3g − 3 + s2 + s1 +

(
g − 1 +

s2 + s1
2

)
dim Gmax

− s1
2
dim(Gmax ∩ P1)−

s2
2
dim(Gmax ∩ P2) + dimL .

(4.12)

We can give vacuum expectation values to one of the two mesonic operators associated

to the maximal puncture. This will break the flavor symmetry of the puncture to u(1). This

6Note that for so(7) the operation that inverts the charge under u(1)t is part of the Weyl group. While

also true for the k = 2 case, this fails in the k > 2 case. In those cases the sign appears to be related to

embeddings differing by an outer automorphism while the color to ones differing by an inner automorphism.
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symmetry is associated to a minimal puncture. There are two independent ways to give

such a vacuum expectation value for a maximal puncture of a given color [9]. The remaining

u(1) symmetry in the two choices is the Cartan of one of the two possible diagonal su(2)s

built from su(N)2 associated to the maximal puncture. The theory in the IR is associated

to compactification on a surface with the maximal puncture traded with minimal one and

the triplet of curvatures shifted by F = (±1
4 ,±1

4 ,±1
2) relative to the original theory with

the signs determined by the color and sign of the original puncture, and the choice of the

meson for the vacuum expectation value. We note that the above fluxes are either the

minimal or half the minimal possible ones for the corresponding symmetries, depending on

the global properties of the flavor symmetry group. We shall discuss the normalization for

fluxes in section seven.

We can use this to gain an understanding of the color parameter of the punctures.

The minimal punctures only differ by their sign [9] and do not carry the color label. The

positive puncture preserving symmetry P1 when closed shifts the curvature triplet with

F = (±1
4 , ±1

4 , −1
2), whence the positive one preserving P2 shifts by F = (±1

4 , ∓1
4 , −1

2).

For negative maximal punctures the shifts are minus of the above. We will check this

association of fluxes with six dimensional computations through computations of central

charges which depend explicitly on the fluxes. We will perform the computation in six

dimensions only for the surfaces with no punctures. However, since the construction of

those in four dimensions involves combining theories with punctures it will be a strong

check of this logic. We will give more details in next sections.

We will not deal in detail with minimal punctures in what follows. Let us mention

that closing a minimal puncture can be achieved by turning on a vacuum expectation

value to baryonic operators and this will shift the fluxes for positive minimal punctures

by F = (±1
2 , 0,−1

2), (0,±1
2 , −1

2) depending on choice of the baryon, and the same with

opposite signs for negative punctures. Here we also want to mention that the triplet of

charges associated to the free trinion, which is sphere with two maximal punctures of

opposite color but same signs and orientations, is F = (0, 0,±1
2) with the sign determined

by the sign of the punctures which is the same for all three here.

We will next define the trinion theories corresponding to the different types of com-

pactifications. We will glue from these trinions theories which correspond to different Gmax,

genera, and numbers of punctures. In the following sub-sections we will state the basic

facts of the Gmax = so(7) and Gmax = so(5)u(1) models and postpone the more general

cases and rigorous but technical derivations to the next sections.

4.3 The Gmax = so(7) models

We begin unfolding the story with constructing the field theories corresponding to com-

pactifications with no flux for so(7) turned on. In what follows we just state what is the

theory we conjecture is obtained by such a compactification. The derivation of this result

follows several steps detailed in the next sections.

Let us consider the theory of figure 3. This model is constructed from two copies of

su(2) SQCD with four flavors coupled through quartic superpotentials coupling the mesons

of the two copies. We can also construct this model by gluing two free trinions using the S
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Figure 3. The E7 surprise theory. The boxes are su(2) flavor groups, circles su(2) gauge groups.

Fields Q±
i have charge ±1 under u(1)α, and fields Q′±

i have charge ±1 under u(1)δ. The quiver is

drawn on a cylinder and has quartic superpotential interactions preserving the four su(2)s and the

two u(1)s. All the fields have R-charge half.

gluing. Since here the groups are su(2) we can turn on quartic superpotential coupling all

the mesonic operators associated to maximal punctures, or saying this differently, turning

on the most generic quartic superpotentials preserving puncture symmetries breaks all

the u(1)t × u(1)β × u(1)γ symmetry. Alternatively we can turn on only a subset of quartic

couplings. One such choice is turning on the couplings preserving the diagonal su(8) global

symmetry of the two copies, this is the theory discussed in [27]. Another choice preserving

larger rank symmetry [9] is to couple the mesons as in figure 2. All these different choices sit

on the same conformal manifold as the superconformal R-symmetry determined by these

superpotentials, and thus the conformal anomalies, are the same. The number of marginal

operators (minus the currents) is large and equals 1330. It was claimed in [27] that on

some locus of this manifold the flavor symmetry enhances to E7.

We want to understand this theory starting from the Lagrangian of figure 3. In this

language we have two copies of su(N)2 factors in the flavor symmetry along with five

abelian factors. As we discussed in previous sections two of the abelian factors correspond

to minimal punctures, which we denote by u(1)α and u(1)δ, and three to the Cartan of the

so(7) symmetry of the six dimensional theory, which is denoted as u(1)β × u(1)γ × u(1)t.

In the caption of figure 3 we identified an su(N)2u × su(N)2v × u(1)δ × u(1)α subgroup of

the global symmetry.

We start exploring the conformal manifold by turning on exactly marginal operators.

There are such operators which preserve the u(1)α × u(1)δ × u(1)γ/β and the Cartan of

the symmetry associated to the maximal punctures. That is we break the u(1)βγ × u(1)t
symmetry and the non-abelian structure of the puncture symmetries. At the point of

E7 enhancement [27] the u(1)α × u(1)δ symmetry in particular enhances to su(2)α/δ ×
su(2)δα and u(1)γ/β enhances to su(2)β/γ . We have seven factors of su(2) groups which

enhance to E7. Denoting (α/δ, δα) as (w1, w2) the factors su(N)2u, su(N)2v, su(N)2w, appear

completely symmetrically. We claim that this theory resides on the conformal manifold of

the trinion theory for the so(7) compactifications with the su(N)2 symmetries associated
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to the maximal punctures. Note that this theory is almost Lagrangian. The only subtlety

here is that we have to tune the couplings of the model in figure 3 to the symmetry enhanced

point. The vector of fluxes of this theory is F = (0, 0, 0). We state this here and will verify

this statement by comparing the conformal central charges later in the paper.

We can glue such theories together to form arbitrary Riemann surfaces by gauging

the symmetries associated to the punctures. When doing so we will in general turn on

superpotentials coupling the mesons of the glued theories.

We can readily compute the indices of such models. Since the indices are the same inde-

pendent of the locus of the conformal manifold we can compute them from the Lagrangian

of figure 3. In particular one observes the enhancement of symmetry in the index. The

index of general genus g theory with s maximal punctures is then (suppressing fugacities

for u(1)β × u(1)γ × u(1)t),
7

I(so(7))
g,s = 1 + 2

s∑

j=1

2
(j)
1 2

(j)
2 (pq)

1
2 +

{(
g − 1 +

s

2

)
dim(so(7))− s

2
dim(su(2)diagu(1)

2)

+ 3g − 3 + s+ 3
s∑

j=1

3
(j)
1 3

(j)
2 +

s∑

j=1

(3
(j)
1 + 3

(j)
2 ) + 4

∑

j 6=l

2
(j)
1 2

(j)
2 2

(l)
1 2

(l)
2

}
pq

+ 2

s∑

i=1

2
(i)
1 2

(i)
2 (pq)

1
2 (p+ q) + · · · . (4.13)

Note that the superconformal R-charges are here completely fixed by the interactions since

on a generic point of the conformal manifold there are no abelian symmetries left. We

readily see from this expression that there is a conformal manifold on which the puncture

symmetries are not broken, dimension of which is,

dimMso(7)
g,s =

(
g − 1 +

s

2

)
dim(so(7))− s

2
dim(su(2)diagu(1)

2) + 3g − 3 + s . (4.14)

Since here so(7) ∩ su(2)diagu(1)
2 = su(2)diagu(1)

2 and L = ∅ this is exactly what we

would expect from eq. (2.8). We remind the reader that the marginal operators reside in

order pq of the index together with the conserved currents which appear with a negative

sign [23]. Computing the dimension for three punctured sphere the above implies that

dimM0,3 = 3. We can compute this dimension using the Lagrangian. At the point of

enhancement to E7 the marginal operators form 1463 representation of E7. There are

thus no exactly marginal directions preserving the full E7 symmetry. However we have

exactly marginal deformations preserving the puncture symmetries, three copies of su(N)2.

The group E7 decomposes into so(12) × su(2)β/γ , and we can further decompose so(12)

to su(N)2 × su(N)2 × su(N)2 (remember that N stands for 2). In particular we obtain

two singlets of su(N)2 × su(N)2 × su(N)2 which are in the adjoint of su(2)β/γ . Turning

on this operators we break su(2)β/γ and thus three of the six marginal operators combine

with the current of su(2)β/γ to form long multiplet leaving behind three exactly marginal

directions as (4.14) tells us (see appendix E for details). Note that at the E7 enhanced

7In appendix D the interested reader can find all the details of the index and anomaly computations

reported in the rest of the paper.
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point, the u(1)t and u(1)βγ symmetries are broken. This implies that for the symmetry to

enhance to E7, flat connection for the two symmetries needs to be turned on, and where

the puncture symmetries are not aligned within the so(7) group.

The central charges of this models are obtained readily through the Lagrangians with

the fixed R symmetry,

a =
3

8
((g − 1)17 + 7s) , c =

1

8
((g − 1)52 + 23s) . (4.15)

Again, these quantities are the same for all loci of the conformal manifold and thus can

be read off from the Lagrangian of figure 3 for the three punctured sphere, even though it

describes a corner of the moduli space at which enhancement of symmetry does not occur.

For generic genus and number of punctures the anomalies of the trinions and the vectors

just combine as the superconformal R symmetry is fixed, and no abelian symmetries survive

at a generic point on the conformal manifold.

We will rederive these models a bit more constructively in section 6 and match the

anomalies (4.15) with the six dimensional computation in section 7. In particular we will

see in section 6 that with no punctures there is a locus on the conformal manifold on which

we have the full so(7) symmetry. We note that the so(7) theory is the analogue of the

Sicilian theories of [16] in the k = 1 case.

In the language of the previous section and from (4.14) we have A = 24 and B = 10,

which implies that each gluing add 4 marginals minus currents. These are exactly the 2k

we obtained on general grounds.

4.4 The Gmax = so(5)u(1) models

We now turn to theories which are associated to compactifications with some specific u(1)t
flux turned on. The theory discussed here is the closest analogue of the N = 2 theories

in the k = 1 case. These theories, when punctures are not present, will have so(5)× u(1)t
symmetry on some locus of their conformal manifold. We start from the theory which

was associated to a sphere with two maximal and two minimal punctures which is just the

orbifold of N = 2 su(2) SQCD with four flavors [9]. We detail the fields in figure 4.

Throughout this paper we will refer to this theory as the orbifold theory. The theory

has various symmetries charges under which are summarized in the following table.

su(2)a su(2)b u(1)δ u(1)α su(2)u1 su(2)u2 su(2)v1 su(2)
v
2 u(1)β u(1)γ u(1)t u(1)R

Q+
1 2 1 −1 0 2 1 1 1 1 0 1

2
2
3

Q−
1 1 2 1 0 2 1 1 1 0 1 1

2
2
3

Q+
2 1 2 −1 0 1 2 1 1 −1 0 1

2
2
3

Q−
2 2 1 1 0 1 2 1 1 0 −1 1

2
2
3

Q′+
1 2 1 0 1 1 1 2 1 0 1 1

2
2
3

Q′−

1 1 2 0 −1 1 1 2 1 1 0 1
2

2
3

Q′+
2 1 2 0 1 1 1 1 2 0 −1 1

2
2
3

Q′−

2 2 1 0 −1 1 1 1 2 −1 0 1
2

2
3

Φ1 2 2 0 0 1 1 1 1 −1 −1 −1 2
3

Φ2 2 2 0 0 1 1 1 1 1 1 −1 2
3

(4.16)
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Figure 4. The Z2 orbifold of N = 2 su(2) SQCD with four flavors. The quiver is drawn on a

cylinder. There is a superpotential term for each triangle in the graph.

The theory has a superpotential,

W = Q+
1 Q

−
1 Φ1 −Q+

2 Q
−
2 Φ2 +Q′+

1 Q
′−
1 Φ1 −Q′+

2 Q
′−
2 Φ2 . (4.17)

The symmetry of this theory actually enhances to su(4)× su(4)× u(1)t × u(1)αδ × u(1)γβ
but it will be convenient for us to discuss it in terms of the sub-group appearing in the

table. The two factors of su(4) in the su(2)× su(2)× u(1) decomposition are,

su(4)1 → su(2)u1 × su(2)v1 × u(1)√
αβδ/γ

,

su(4)2 → su(2)u2 × su(2)v2 × u(1)√
αγδ/β

.
(4.18)

The orbifold theory has a six dimensional conformal manifold, see appendix E. On

a one dimensional locus of the manifold no symmetries are broken. In [9] this locus was

identified as corresponding to the complex structure modulus of the four-punctures sphere.

On a general point of the conformal manifold the symmetry u(1)βγ is broken as well as all

the su(2) symmetries being broken to their Cartan. In particular we now have six abelian

symmetries which come from the punctures. It is easy to see, for example from index

computations, that these symmetries come on the same footing. To be more precise, the

diagonal and anti-diagonal combinations of the Cartans of su(N)2 symmetries associated

to the punctures are interchangeable with u(1)α and u(1)δ symmetries associated to the

minimal punctures.

The conformal manifold thus has an interesting structure. At a generic point it looks

as if it should correspond to a sphere with six minimal punctures. At a special one di-

mensional loci it is natural to associate it to a sphere with two minimal and two maximal

punctures. There should be loci where it should correspond to one maximal and four min-

imal punctures. It is also plausible that at some locus the minimal punctures combine

in pairs to form three maximal punctures. We interpret the theory at that locus as the

trinion of the so(5) models. Again, we will give a more constructive derivation of this claim

in section six. As in previous subsection this trinion is almost Lagrangian as it involves

going to a special point of a conformal manifold of a theory with completely standard
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Lagrangian. The vector of fluxes of this theory is the sum of the ones for free trinions

and is F = (0, 0, 1). This is obtained as twice the flux of free trinion and we will test this

statement against six dimensional computation of anomalies in section seven.

We can glue trinions together to form general Riemann surfaces. The gluing here cor-

responds to gauging a diagonal combination of the su(N)2 symmetry as well as introducing

bi-fundamental fields Φi coupled to the mesonic operators associated to the punctures. The

gauging in this theory is conformal, a fact that we want to stress here.

Using this Lagrangian we can compute the indices and the conformal anomalies of the

models. The former is given by,

Iso(5)
g,s (ui) = 1 + ((3g − 3 + s)5 + s)

(pq)
2
3

t2
+


2 t

s∑

j=1

(u
(1)
j )±1(u

(2)
j )±1


 (pq)

2
3

+

{(
g − 1 +

s

2

)
10− 2s+ 3g − 3 + s+ g − 1

}
pq + · · · . (4.19)

We us here the R-symmetry of table (4.16). The conformal manifold here has directions

on which the puncture symmetries are broken and we will discuss this in detail in the next

sections. Focusing on directions on which the puncture symmetries are not broken we note

that the parameter A is 14 and B = 4. From here the number of deformations which are

added when we glue is 6 which corresponds to the MiΦj , M
′
iΦj , gaugino bilinear minus

the four operators ψ̄iφj .

The conformal manifold when we turn on only maximal punctures and preserve their

symmetry has dimension,

dimMso(5)
g,s =

(
g − 1 +

s

2

)
dim so(5)u(1)− s

2
dim(su(2)diagu(1)

2) + 3g − 3 + s+ 1 . (4.20)

Here we have the symmetry preserved by the punctures is a subgroup of so(5)u(1) and

this is equal to the intersection of the two. We have L = u(1) and thus the last 1 in the

equation.

The conformal anomalies here can be easily computed using the Lagrangian. The

only symmetry which can be admixed to the u(1)R symmetry is u(1)t. Performing a

maximization we find that the R-charges of (4.16) are actually the superconformal ones.

In particular this implies that the gluings in the so(5) theories are superconformal with

the gauge couplings being exactly marginal when correlated with suitable superpotentials.

The anomalies here are given by,

a =
1

24
((g − 1)187 + 78s) , c =

1

12
((g − 1)97 + 42s) . (4.21)

We will derive these models in a more systematic way in section 6 and in section 7 we

will see by matching central charges that they correspond, when no punctures appear, to

compactifications with 2g − 2 units of u(1)t flux. These theories are the analogues of the

N = 2 twist in the k = 1 case. We will construct so(5) theories with other values for this

flux in the next sections.
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5 The Gmax = su(2)diagu(1)
2 models: derivation from dualities

We now turn our attention to systematic derivation of su(2)diagu(1)
2 theories. This deriva-

tion is rather technical and relies heavily on the results of [9]. However, we will be able

to use the construction of this section to derive and extend the results of the previous

sections as well as to deduce the theories which should correspond to compactifications

with arbitrary fluxes.

This section involves many technical considerations so let us first outline the general

procedure. We will start by constructing certain theories which are naturally associated to

some compactification on a three punctured sphere, i.e. trinions with maximal punctures.

The construction appears in [9] and we will make it more explicit here. This involves

harnessing dualities of linear quivers and constructing “strongly coupled” Lagrangians for

certain trinions. The Lagrangians will have some of the couplings tuned to infinite values

and some of the gauged symmetries not manifest in the description. It is analogous to the

construction of a “strongly coupled” Lagrangian for the E6 SCFT in [28].8

There are two different colors of maximal punctures for k and N equal to two (for

our choice of so(5) subgroup of so(7)). The two trinions we will construct have either all

three punctures of the same type, TA, or two of the same color and one of a different color,

TB. From the two trinions by gauging a subgroup of the flavor symmetry with additional

matter one can obtain the Z2 orbifold of N = 2 SYM with su(2) gauge group and four

flavors. The trinions belong to theories of type su(2)diagu(1)
2 with different choices of

fluxes. Trinion TA has FA = (14 ,
1
4 , 1) and trinion TB has FB = (−1

4 ,
1
4 , 1).

We will use these Lagrangians to compute conformal anomalies of theories coming from

k = 2 and two M5 branes, and the supersymmetric index. We will deduce the spectrum of

relevant and marginal operators.

Let us briefly describe how the dualities used here are argued for in [9]. We can consider

a field theory corresponding to compactification on a Riemann surface with 1+S maximal

and 1+M minimal puncture. We can discuss a duality frame of this model where a theory

with S +1 maximal puncture and M minimal punctures is coupled to free trinion with Φ-

gauging, see figure 5. We can ask then what happens if we close the maximal puncture on

the free trinion by giving vacuum expectation value to one of the mesonic operators. The

resulting theory corresponds to a surface with S maximal andM+2 minimal punctures. All

the minimal punctures can be exchanged by dualities and are equivalent. The RG flow here

triggered by the vacuum expectation value for the meson can be completely traced using

standard field theoretic arguments and leads to a description of the model as certain su(2)

gauging of a subgroup of the su(N)2 symmetry of the maximal puncture running in the

tube with the addition of extra fields. Let us assume now that the theory we started with

was a sphere with three maximal and one minimal puncture. The theory we obtain then is

a description of the orbifold theory as an su(2) gauging of a subgroup of the symmetry of

a three punctured sphere with only maximal punctures. From the six dimensional point of

view we decompose the surface into pairs of pants so that the two minimal punctures are on

8For somewhat related ideas for constructing Lagrangians by giving up on some symmetries of the

models see [29].
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Figure 5. We can derive a description of a theory in a duality frame where two minimal punctures

sit on the same pair of pants. First we start with a theory with one minimal puncture switched for

a maximal one, and then give a vacuum expectation value to a mesonic operator corresponding to

the maximal puncture. The choice of the pair of pants with two maximal and one minimal puncture

gives different dual descriptions of the same model. On the left we take the trinion to be the free

one and on the right an interacting trinion of figure 6.

Figure 6. Two different trinions with two maximal and one minimal punctures. On the right we

have interacting trinion with two maximal punctures of same color. This is su(2) SQCD with four

flavors and certain choice of singlets [9]. The trinion on the right is the free one with two maximal

punctures of different color.

the same pair of pants, see figure 7. Instead of free trinion we can use other theories with

two maximal and a minimal puncture. It will be useful to use a trinion with two maximal

punctures of the same color which is given by su(2) theory with four flavors of [9]. The

procedures give us the two different trinions TB and TA. we could construct more trinions

differing by the amount of abelian fluxes, however trinions TA and TB would suffice for us

to derive a wide variety of theories and match them with six dimensional considerations.

The procedure here is an analogue of the appearance of the E6 SCFT in class S [30].

5.1 The Z2 orbifold of the N = 2 SYM

We start our discussion with a Z2 orbifold of N = 2 su(2) SYM with four flavors. This

is an N = 1 superconformal gauge theory with gauge group su(2)a × su(2)b and with the

matter content described in the table (4.16) (see figure 4). Note that the two gauge groups

have six flavors each and thus the one loop gauge beta functions vanish. The theory can

be shown to have one exactly marginal deformation passing through zero coupling locus,

and preserving the full flavor symmetry [9]. We denote this conformal manifold by Mconf..

We also can argue that it is natural to expect that there is an action of a duality group on

Mconf.. For example, we can go off the conformal manifold and perform a Seiberg duality

on one of the gauge nodes. The resulting theory will be an su(4) gauge theory with six

flavors coupled to an N = 2 su(2) theory with four flavors and additional gauge singlets.

Performing S-duality for the su(2) N = 2 gauge node and then Seiberg duality on the
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Figure 7. Two dualities for the orbifold theory. The orbifold theory corresponds to four punctured

sphere with two maximal puntures of same color and two minimal punctures. Taking the limit of

the maximal punctures sitting on same pair of pants we develop a long tube and decompose the

surface into trinions. There are many ways to do so distributing compensating discrete charges

between the two trinions. The two trinion theories we discussed are obtained by decomposing the

tube in two different ways. First one corresponding to the procedure detailed in the text using

interacting trinion, and second using free trinion.

su(4) theory we obtain our original theory above with the u(1)δ and u(1)α symmetries

switched [9].

We will also assume that the conformal manifold has an infinite coupling cusp where

the exchange of u(1)α with u(1)δ is a symmetry. We will assume that the symmetry u(1)δ/α
enhances to su(2) at the cusp.

The theory has a number of mesonic chiral operators. Most of them are invariant

under exchanging u(1)α and u(1)δ and they map to themselves under the duality. Some

of them are charged under these symmetries and map to each other, for example Q+
i Q

′+
i

and Q−
i Q

′−
i . The baryonic operators are charged only under one of the u(1)δ or u(1)α

and are exchanged under the duality. We organize the mesons and the baryons in the

following table.

u(1)α/δ u(1)αδ su(2)
u
1 su(2)

u
2 su(2)

v
1 su(2)

v
2 u(1)γβ u(1)γ/β

Mu
− = Q+

1 Q
−
2 0 0 2 2 1 1 0 −1

Mu
+ = Q−

1 Q
+
2 0 0 2 2 1 1 0 1

Mv
+ = Q′+

1 Q
′−
2 0 0 1 1 2 2 0 1

Mv
− = Q′−

1 Q
′+
2 0 0 1 1 2 2 0 −1

Bℓ;+− = (Q+
ℓ )

2 +1 −1 1 1 1 1 (−1)ℓ+1 (−1)ℓ

Bℓ;−− = (Q′−
ℓ )

2 −1 −1 1 1 1 1 (−1)ℓ+1 (−1)ℓ

Bℓ;−+ = (Q−
ℓ )

2 −1 +1 1 1 1 1 (−1)ℓ+1 (−1)ℓ+1

Bℓ;++ = (Q′+
ℓ )

2 +1 +1 1 1 1 1 (−1)ℓ+1 (−1)ℓ+1

T 111 = Q±
1 Q

′±
1 ±1 0 2 1 2 1 1 0

T 122 = Q±
2 Q

′±
2 ±1 0 1 2 1 2 −1 0

T 212 = Q±
1 Q

′∓
2 0 ∓1 2 1 1 2 0 0

T 221 = Q±
2 Q

′∓
1 0 ∓1 1 2 2 1 0 0

(5.1)

The operators in this table have u(1)t charge one. We separated the fields in several

segments. The first two segments and the last two fields in the last segment are invariant

under duality, and these are mesons. The fields in the third segment are baryons and
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are exchanged under the duality. The first two fields in the last segment are two pairs of

mesons and duality acts within each pair.

5.2 IR dual descriptions A

The orbifold theory was conjectured in [9] to have a multitude of IR dual descriptions. A

common feature of these descriptions is that they involve a gauging of a strongly-coupled

SCFT, a Lagrangian for which is not obviously known. Alternatively, the arguments of [9]

and the resulting dualities can be viewed as definitions of the SCFT’s involved in the

construction. Let us consider in detail a couple of such descriptions.

The first description we discuss is as follows. We seek an IR dual of the orbifold theory

which is an su(2) gauging of an SCFT we denote by TA. This theory has, at least an

su(N)2u×su(N)2v×su(N)2z×u(1)β×u(1)γ×u(1)t flavor symmetry. The theory TA contains

operators Mu
±, M

v
±, and M

z
±. These operators are in bi-fundamental representation of the

corresponding su(N) × su(N) symmetry, in fundamental representation of su(2)γ/β (the

charge under the Cartan is the ± label), have u(1)t charge +1, are not charged under u(1)γβ ,

and have (the non-conformal) R-charge 4
3 in the notations of the previous subsection. The

IR dual of the orbifold theory is constructed by gauging su(2)z1 symmetry of TA while

adding the following fields.

su(2)z u(1)δ u(1)α u(1)R u(1)β u(1)γ u(1)t

q(±) 2 ±1 ∓1 0 −1 −1 0

Φ′(±) 2 ∓1 ∓1 2
3 ±1 ∓1 −1

B1,±± 1 0 ±2 4
3 1∓ 1 1± 1 1

B1,∓± 1 ±2 0 4
3 1∓ 1 1± 1 1

T0 1 0 0 2 2 2 0

(M z
∓2

)±1 2 ±11 ±11
4
3 ±21 ∓21 1

(5.2)

The extra fields are singlets/have zero charge under other symmetries. The superpotential

of the theory contains,

W ⊃ q(−)Φ′(+)
B1,−+ + q(+)Φ′(+)

B1,++ + q(−)Φ′(−)
B1,−− + q(+)Φ′(−)

B1,+−

+ q(+)q(−)T0 +Φ′(+)
(M z

+)
+ +Φ′(−)

(M z
−)

− .
(5.3)

There are additional terms in the superpotential to be discussed shortly once we understand

better the protected spectrum of TA. Under the duality the operator Mu
±, M

v
±, and B1,ab

map as the names suggest. The baryonic operators B2,ab map as,

B2,+− → q(−)(M z
+)

− , B2,−+ → q(+)(M z
−)

+ ,

B2,++ → q(−)(M z
−)

+ , B2,−− → q(+)(M z
+)

− .
(5.4)

A simple check of the validity of this duality is comparison of ’t Hooft anomalies involving

u(1)α/δ. The theory TA does not involve this symmetry with the only charged fields given

in the table above. All such anomalies match the orbifold theory. For example, the non-

vanishing anomalies are,
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Orbifold IR dual A

u(1)t × u(1)2α/δ
1
2 × 4× (4( 12 )

2 + 4(− 1
2 )

2) 1× 2× 12 + 1× 2× (−1)2 4

u(1)R × u(1)2α/δ − 1
3 × 4× (4( 12 )

2 + 4(− 1
2 )

2) −1× 2× (12 + (−1)2) + 1
3 (2× 12 + 2× (−1)2) − 8

3

All the rest of the anomalies involving u(1)α/δ consistently vanish between the two descrip-

tions.

The TA SCFT. Assuming the IR duality is true we can now manipulate consistently

both sides to arrive to a description of the theory TA with no symmetry gauged and no

extra matter. The procedure is analogous to the one detailed in [28] and is as follows.

• Add matter. First we add the following fields to both sides of the duality,

su(2)w u(1)δ u(1)α u(1)R u(1)β u(1)γ u(1)t

q̃(±) 2 ±1 ∓1 0 1 1 0

b1,±± 1 0 ∓2 2
3 −1± 1 −1∓ 1 −1

b1,∓± 1 ∓2 0 2
3 −1± 1 −1∓ 1 −1

t0 1 0 0 2 −2 −2 0

(5.5)

We couple the new fields through the superpotential,

∆W = q̃(−)q̃(+)t0 + b1,∓∓B1,∓∓ + b1,∓±B1,∓± . (5.6)

In particular on the IR dual side this superpotential makes the b1 and B1 fields

massive, removing them from the theory, while on the orbifold side this is a cubic

superpotential term.

• Tune to enhance to su(2)α/δ. Next, we tune the couplings on the IR dual side such

that the u(1)α/δ symmetry enhances to su(2)α/δ. Note that the su(2) symmetry is

only broken through the superpotential terms and thus switching those couplings off

will restore the enhanced symmetry. On the orbifold side at no finite coupling such an

enhancement is seen in the Lagrangian. The enhancement thus happens at a strong

coupling limit of some of the superpotential couplings.

• Gauge su(2)α/δ. Now, we can gauge the enhanced su(2)α/δ. Note that since we added

q̃ fields this gauge sector has Nf = 2 and it is easy to verify that all the symmetries

are non anomalous. Gauging this symmetry we can use Seiberg duality to argue

that this su(2) sector has a description in terms of gauge invariant mesonic operators

parametrizing quantum mechanically deformed moduli space with no point where all

the gauge invariant fields have zero vacuum expectation value. Such non-zero vacuum

expectation values will Higgs the su(2)z gauge symmetry and we will be left precisely

with theory TA coupled to the Φ′ fields through a superpotential.

• Remove extra fields. Finally, we remove the fields Φ′ from the IR dual side by adding

on both sides of the duality fields φ′ and quadratically coupling the two sets of fields,

Φ′(∓)φ′(±). On the orbifold side the fields Φ′ maps to some composite operators.
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We thus obtain a description of TA SCFT albeit with a singular superpotential. The

flavor symmetry of this theory is at least,

su(2)w × su(2)αδ × (su(2))2u × (su(2))2v × u(1)t × u(1)γ × u(1)β , (5.7)

and soon we will see that it actually enhances. We can perform several computations using

this description. We will denote w,αδ → w1, w2.

5.3 IR dual descriptions B

Second description we discuss is very similar to the previous one but differs in small but

consequential details. We seek an IR dual of the orbifold theory which is an su(2) gauging

of an SCFT we denote by TB. This theory has, at least an su(N)2u × su(N)2v × su(N)2z ×
u(1)β × u(1)γ × u(1)t flavor symmetry. The theory TB contains operators Mu

±, M
v
±, and

M z
±. Operators Mu and Mv are in the bi-fundamental representation of the corresponding

su(2)× su(2) symmetry, in fundamental representation of su(2)γ/β (the charge under the

Cartan is the ± label), have u(1)t charge +1, are not charged under u(1)γβ , and have

(the non-conformal) R-charge 4
3 in the notations of the previous subsections. Operator

M z is in bi-fundamental representation of the corresponding su(2) × su(2) symmetry, in

fundamental representation of su(2)γβ (the charge under the Cartan is the ± label), has

u(1)t charge +1, is not charged under u(1)γ/β , and has (the non-conformal) R-charge 4
3 .

The IR dual of the orbifold theory is constructed by gauging the su(2)z1 symmetry of TB
while adding the following fields.

su(2)z u(1)δ u(1)α u(1)R u(1)β u(1)γ u(1)t

q(±) 2 ±1 ∓1 0 1 −1 0

Φ′(±) 2 ∓1 ∓1 2
3 ∓1 ∓1 −1

B2,±− 1 −1∓ 1 −1± 1 4
3 −2 0 1

B1,±+ 1 1∓ 1 1± 1 4
3 0 2 1

T0 1 0 0 2 −2 2 0

(M z
∓2

)±1 2 ±11 ±11
4
3 ∓21 ∓21 1

(5.8)

The extra fields are singlets/have zero charge under other symmetries. The superpotential

of the theory contains,

W ⊃ q(+)Φ′(+)
B1,++ + q(−)Φ′(+)

B1,−+ + q(−)Φ′(−)
B2,−− + q(+)Φ′(−)

B2,+−

+ q(+)q(−)T0 +Φ′(+)
(M z

+)
+ +Φ′(−)

(M z
−)

− .
(5.9)

There might be additional terms in the superpotential to be consistent with all the sym-

metries. Under the duality the operator Mu
±, M

v
±, and B1,a+, B2,a− map as the names

suggest. The baryonic operators B1,a−, B2,a+ map as,

B1,+− → q(−)(M z
+)

− , B2,−+ → q(+)(M z
−)

+ ,

B2,++ → q(−)(M z
−)

+ , B1,−− → q(+)(M z
+)

+ .
(5.10)

We can also check the relevant matching of ’t Hooft anomalies here.
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The TB SCFT. Assuming the IR duality is true we can now manipulate consistently

both sides to arrive to a description of the theory TB with no symmetry gauged and no

extra matter.

• Add matter. First we add the following fields to both sides of the duality.

su(2)w u(1)δ u(1)α u(1)R u(1)β u(1)γ u(1)t

q̃(±) 2 ±1 ∓1 0 −1 1 0

b1,±− 1 1± 1 1∓ 1 2
3 2 0 −1

b2,±+ 1 −1± 1 −1∓ 1 2
3 0 −2 −1

t0 1 0 0 2 2 −2 0

(5.11)

We couple the new fields through the superpotential,

∆W = q̃(−)q̃(+)t0 + b1,±+B1,±+ + b2,±−B2,±− . (5.12)

In particular on the IR dual side this superpotential makes the b1 and B1 fields

massive removing them from the theory, while on the orbifold side this is a cubic

superpotential term.

The next stages of the procedure are identical to the previous case.

• Tune to enhance to su(2)α/δ. Next, we tune the couplings on the IR dual side such

that the u(1)α/δ symmetry enhances to su(2)α/δ. Note that the su(2) symmetry is

only broken through the superpotential terms and thus switching those couplings off

will restore the enhanced symmetry. On the orbifold side at no finite coupling such

an enhancement is seen in the Lagrangian. The enhancement thus happens at an

infinite coupling limit of some of the superpotential couplings.

• Gauge su(2)α/δ. Now, we can gauge the enhanced su(2)α/δ. Note that since we added

q̃ fields this gauge sector has Nf = 2 and it is easy to verify that all the symmetries

are non anomalous. Gauging this symmetry we can use Seiberg duality to argue

that this su(2) sector has a description in terms of gauge invariant mesonic operators

parametrizing quantum mechanically deformed moduli space with no point where all

the gauge invariant fields have zero vacuum expectation value. Such non-zero vacuum

expectation values will Higgs the su(2)z gauge symmetry and we will be left precisely

with theory TB coupled to the Φ′ fields through a superpotential.

• Remove extra fields. Finally, we remove the fields Φ′ from the IR dual side by adding

on both sides of the duality fields φ′ and quadratically coupling the two sets of fields,

Φ′(∓)φ′(±). On the orbifold side the fields Φ′ maps to some composite operators.

We thus obtain a description of TB SCFT albeit with a singular superpotential. The

flavor symmetry of this theory is at least,

su(2)w × su(2)αδ × (su(2))2u × (su(2))2v × u(1)t × u(1)γ × u(1)β , (5.13)

which does not enhance here. We will denote w,αδ → w1, w2.
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5.4 Supersymmetric index and anomalies

The Lagrangians for the trinions can be used to compute different robust quantities. First

we can compute the conformal anomalies. The above procedure gives a Lagrangian with

infinite couplings, however the anomaly computation is insensitive to these couplings. We

can compute the anomalies using a-maximization to obtain that the superconformal R-

charge is given by (we refer to appendix D for the derivation),

TA : Rc = R+ 0.0689(qβ + qγ)− 0.044777qt ,

TB : Rc = R+ 0.0985(−qβ + qγ)− 0.043523qt ,
(5.14)

and the anomalies are,

TA : a = 2.0621 , c = 2.56004 ,

TB : a = 2.1153 , c = 2.61997 .
(5.15)

Note that the mixing of R-charges preserves the su(2)γ/βu(1)βγu(1)t symmetry in the case

TA and su(2)βγu(1)β/γu(1)t in the case of TB. This is consistent with our claim that these

theories correspond to compactifications of type Gmax = su(2)diagu(1)
2.

Next, we can compute the supersymmetric index which turns out to be very infor-

mative. The computation is straightforward. The gauging of su(2)α/δ for the index is

equivalent to the inversion formula of Spiridonov-Warnaar [31] and the same procedure

was applied in different contexts in [28, 32]. The result for TA is given by,9

ITA
=1+

(
2

β2γ2t2
+
β2γ2

t2
+t(2u18v+2v18s+2w18c)+tβ

2γ22u12v12w1

)
(pq)

2
3

+(β2γ2(3u1+3v1+3w1)+
1

β2γ2
28−28−3u1−3v1−3w1−1−1)(pq)+. . .

(5.16)

Let us explain this expression. First we used the R-symmetry of (4.16) and not the su-

perconformal one to write this expression. Remember that at order pq in the index we

have marginal operators minus conserved currents, whence for smaller powers of pq we get

relevant operators [23]. Thus, the operators weighed β2γ2 at this order above are actually

irrelevant and operators weighed by β−2γ−2 are relevant. In particular this SCFT has thus

no exactly marginal operators preserving puncture symmetries.

We also see that the theory has an operator weighed by β2γ2pq3w1 , let us denote it by

Φw1 . This operator can appear in superpotential of the IR dual theory (5.3) as Φw1q
(+)q(−)

without breaking any symmetries and thus we should add it there.

Another fact we read off from order pq is that the flavor symmetry is enhanced to

so(8)× su(2)u1 × su(2)v1 × su(2)w1 × u(1)t × u(1)γβ . (5.17)

The symmetry u(1)γ/β enhances to su(2) and moreover su(2)γ/β × su(2)u2 × su(2)v2 ×
su(2)w2 enhances to so(8). In more detail we have,

8v = 2γ/β2u2 + 2v22w2 , 8s = 2γ/β2v2 + 2u22w2 , 8c = 2γ/β2w2 + 2v22u2 ,

28 = 3γ/β + 3w2 + 3u2 + 3v2 + 2w22u22v22γ/β .
(5.18)

9We remind the reader that the details of the computations of anomalies and indices can be found in

appendix D.
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Note that the three factors su(2)u1 × su(2)u2 , su(2)w1 × su(2)w2 , and su(2)v1 × su(2)v2 ,

appear completely symmetrically due to the triality property of so(8).

The index for TB is given by,

ITB
=1+

(
1

β2γ2t2
+
β2γ2

t2
+

β2

γ2t2
+t2β/γ

(
2u1

2
2u2

2
+2u1

3
2u2

3

)
+t2γβ2u1

1
2u2

1
(5.19)

+tγ22u1
1
2u1

3
2u1

2
+t

1

β2
2u1

1
2u2

3
2u2

2
+t2u2

1

(
2u2

3
2u1

2
+2u1

3
2u2

2

))
(pq)

2
3

+

(
β2γ2

(
3u1

2
+3u1

3

)
+

1

β2γ2

(
3u2

2
+3u2

3

)
+
γ

β
2u2

1

(
β42u1

3
2u1

2
+

1

γ4
2u2

2
2u2

3

)
+
β2

γ2
3u2

1

+
γ2

β2
3u1

1
+β4+

1

γ4
− γ2

β2
− γ

β
2u2

1

(
2u1

3
2u1

2
+2u2

2
2u2

3

)
−

3∑

i=1

2∑

l=1

3ul
i
−1−1−1

)
(pq)+. . .

Here the superconformal R symmetry admixes u(1)t and u(1)β/γ . Thus we see that the

flavor symmetry does not enhance here. We do not have any marginal operators preserving

all the symmetries.

5.5 The Gmax = su(2)diagu(1)
2 models

We can use the trinions obtained here to construct theories corresponding to arbitrary

Riemann surfaces. In this section we only glue punctures of the same sign together. In

general such a gauging is not conformal and one needs to perform a-extremization [33]

to determine the conformal R charges and anomalies for each theory. We can use the

Lagrangians to do this.

Anomalies — Since the gauging is not conformal we have to perform a-maximization for

a given theory to determine the superconformal charges and anomalies. For example, the

superconfromal R-symmetry and anomalies of a genus g theory with no punctures for

theories built from one of the types of trinions (does not matter which one) is,

Rc = R+ 0.06591(qβ ± qγ)− 0.02539qt ,

a = 7.99177(g − 1) c = 8.30369(g − 1) .
(5.20)

The sign in the mixing of R symmetry depends on whether we use only TA or only TB
trinions. These anomalies precisely match the ones we will obtain by integrating the

anomaly polynomial from six dimensions on a Riemann surface. The fact that we can use

either one of the trinions TA or TB to obtain the same results, though the theories TA and

TB are different, is a very important check of our procedure. Once we have no punctures

the theories built from the two types of trinions only differ by a choice of su(2)diag and signs

of some fluxes which group theoretically are equivalent, related by a Weyl transformation

of the so(7) symmetry. If the claimed models are to come from six dimensions thus it

better be the case that the the choice of the trinion TA or TB would not matter.

Let us discuss the index of a theory corresponding to a general Riemann surface. We

can build theories from the two trinions we described by gluing them together in different

ways. The most general theory can be obtained by gluing together trinions TB in different
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ways and then closing punctures by RG flows. We will not proceed in this way here though,

but rather focus on special cases exemplifying different types of models one can obtain.

The flows are interesting and important, for example, trinion TA can be obtained from

a four punctured sphere built from TB closing one puncture and the free trinion can be

obtained from TB by closing a maximal puncture to a minimal one. We will discuss these

flows in the appendices A and B.

Theories of type Gmax = su(2)diagu(1)
2 constructed from TA. We can compute

the index of a general theory (this is for generic genus and number of punctures with

expressions for g = 0 s = 3 and g = 1 s ≤ 1 not fitting the general pattern),

Ig,s=1+

(
2g−2+s

β2γ2
3γ/β+3g−3+s+

(
3γ/β+1+1

)
g−3γ/β−1−1

)
pq (5.21)

+

(
s∑

i=1

((
γ2β2−1

)
3
u
(i)
1

+

(
1

γ2β2
−1

)
3
u
(i)
2

))
pq

+

(
2g−2+s

t2
β2γ2+

4g−4+2s

t2β2γ2
+
3g−3+s

t2
3γ/β+t2γ/β

s∑

i=1

2
u
(i)
1

2
u
(i)
2

)
(pq)

2
3 +· · ·

First the index is manifestly invariant under the dualities, exchanging the different punc-

tures. We remind again that we use here the R-charge R and not the superconformal

R-charge.

The last line contains relevant operators. The second line contains the currents of

symmetries associated to the punctures coming with negative sign. The terms with positive

sign are charged under u(1)γβ and thus become either relevant or irrelevant.

Note that in this case all the operators of the form ΦiMj are marginal. In the first

line second term contains conserved currents for the internal symmetries su(2)γ/β×u(1)t×
u(1)γβ coming with negative sign. The term charged under u(1)βγ is relevant. Finally we

have 3g− 3+ s+(3γ/β +1+1)g marginal operators. We expect to have 3g− 3+ s exactly

marginal couplings corresponding to complex structure moduli of the Riemann surface and

we obtain them here. Next we have additional (3γ/β + 1 + 1)g marginal operators, only

3(g−1)+2g of these operators are exactly marginal since turning on an operator in 3γ/β will

break the su(2)γ/β symmetry. Three marginal operators will combine with the conserved

currents to become irrelevant. The dimension of the conformal manifold is then,

dimMsu(2)diagu(1)
2

g,s = 3g − 3 + s+ 3(g − 1) + 2g

= 3g − 3 + s+ dim(su(2)diagu(1)
2)
(
g − 1 +

s

2

)

− s

2
dim(su(2)diagu(1)

2) + dim u(1)2 . (5.22)

Note that along the complex structure moduli (3g − 3 + s moduli) and 2g additional

directions the symmetry group is su(2) × u(1)2. Along the additional 3(g − 1) directions

the symmetry is u(1)2. This is in agreement with the expectations from previous sections.
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Theories of type Gmax = su(2)diagu(1)
2 constructed with TB. We now consider

gluing TB trinions together. One has here two types of punctures, one type appearing twice

in the trinion and another appearing once. We denote the number of punctures appearing

twice by s2 and the number of punctures appearing once by s1. The index of a general

theory is given by,

Ig,(s1,s2) =1+

(
(2g−2+s1+s2)

β2

γ2
3βγ+

(
−s2

2

)
2γ2/β2 (5.23)

+
s2
2
2(γβ)2+3γβ (g−1)+2g+(3g+s2+s1−3)−1−1

)
pq

+

(
s2∑

i=1

((
γ2β2−1

)
3
u
(i)
1
+

(
1

γ2β2
−1

)
3
u
(i)
2

)
+

s1∑

i=1

((
γ2

β2
−1

)
3
ũ
(i)
1
+

(
β2

γ2
−1

)
3
ũ
(i)
2

))
pq

+

(
3g+s2+s1−3

t2
+
2g+s1+

1
2s2−2

t2
γ2

β2
+

(
4g+2s1+

3

2
s2−4

)
β2

γ2t2

+
3g+s1+

3
2s2−3

t2

(
γ2β2+

1

γ2β2

)
+t2γ/β

s2∑

i=1

2
u
(i)
1
2
u
(i)
2
+t2βγ

s1∑

i=1

2
ũ
(i)
1
2
ũ
(i)
2

)
(pq)

2
3 +· · ·

Several comments are in order. First, If we take s2 = 0 (this means in particular that

genus is higher than zero) the theories so obtained are equivalent to theories obtained from

trinion TA upon taking β → 1
β . Note also that by construction s2 is even.

We remind the reader that the R symmetry used to write the index is not superconfor-

mal. The superconformal R symmetry has admixture of u(1)γ/β and u(1)t in it and thus

operators appearing at order pq with these charges are actually either relevant or irrelevant.

The number of exactly marginal deformations is then,

dimMsu(2)diagu(1)
2

g,(s1,s2)
= 3g − 3 + s2 + s1 + 3

(
g − 1 +

s2
2

)
− s2

2
+ 2g (5.24)

= 3g − 3 + s2 + s1 +

(
g − 1 +

s2 + s1
2

)
dim(su(2)βγu(1)β/γu(1)t)

− s2
2
dim(su(2)βγu(1)β/γu(1)t ∩ su(2)β/γu(1)βγu(1)t)

− s1
2
dim(su(2)βγu(1)β/γu(1)t ∩ su(2)βγu(1)γ/βu(1)t) + dim u(1)2 .

When s2 is zero this is equivalent to what we obtained previously. Note that along the com-

plex structure moduli and 3g additional directions the symmetry group is u(1)3. Along

the additional s2 + 2g − 3 the symmetry is broken to u(1)2. Again we find the pre-

dicted expression.

Here we have in the notations of section three A = −C = 8. Note that for the puncture

appearing once on the trinion all the operators MiΦj are marginal and thus the puncture

dependence B in (3.3) is B = 1+ k(k−2)
2 = 1. For the puncture appearing twice on the other

hand the operators MiΦi are marginal but ΦjMi 6=j are not and thus B = 1 + (k−1)k
2 = 2.

This is the reason the numbers of the two punctures s2 and s1 appear differently.

5.6 Theories of type Gmax = u(1)3

Before giving examples of special types of theories let us comment on the most generic case.

We can construct these by gluing the two trinions TA and TB to each other and construct
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Riemann surfaces from both of them. The resulting theories will have no symmetry relating

the β and γ abelian symmetries as was the case when only one type of trinions was used. In

particular the anomalies will have no symmetry exchanging the two factors. This implies

that any object charged under these two will in a typical case not have an integer R-

charge, and so in particular will not be marginal. At order pq we will get thus only the

currents for puncture symmetries and the three u(1)s which are intrinsic to the surface.

In addition we will have 3g − 3 + s2 + s1 + 3g marginal operators. These operators break

no symmetries and will be exactly marginal. We can construct even more generic theories

by introducing minimal punctures through free trinions and subsequently closing minimal

punctures and gluing theories with punctures of different signs. Note that the trinions we

constructed have positive punctures, the trinions with negative punctures are obtained by

taking R→ R+2qt and flipping charges under the three abelian symmetries [9]. This will

result in theories coming from compactifications with generic choices of fluxes for the so(7)

flavor group.

6 Relations between the models

In this section we will give examples of theories with enhanced symmetries Gmax. In par-

ticular we will derive some more details about theories we have mentioned in section four.

6.1 The Gmax = so(5)u(1) models from Gmax = su(2)diagu(1)
2 ones

The general theories we discussed until now correspond to compactifications of M5 branes

probing Z2 singularity on a Riemann surface with some general choice of the bundle for

the u(1)2 Cartan subgroup of so(5) inside so(7). The resulting theories then have as their

internal symmetry only the u(1)2 symmetry (times another copy of u(1)t). In special cases

this symmetry enhanced as we have observed to su(2)×u(1). With a trivial choice for the

flux for any abelian subgroups of so(5) we expect to have so(5) as a symmetry of the four

dimensional theory, at least without punctures and on some loci of the conformal manifold.

Let us here derive the theories exhibiting this.

The derivation is guided by several observations and assumptions. First, we assume

that the free trinion can be obtained by a compactification on a sphere with two maximal

and one minimal punctures with fluxes (0, 0, 12) as was already stated. This assumption will

turn out to give consistent predictions for the map of different four dimensional theories to

6d compactifications. Second, it was argued in [9] that closing minimal punctures should

shift the fluxes of one of the u(1)s by half a unit (in certain normalization) while closing a

maximal puncture to a minimal one shifts the fluxes of both u(1)s by a quarter. Third, as

we show in appendix A, the free trinion is obtained from TB by closing a maximal puncture

to a minimal one.

From these observations we deduce that if we glue together two appropriate trinions

with maximal punctures and two free trinions and subsequently close completely two min-

imal punctures, we arrive at a theory with the topology of a sphere with four maximal

punctures which should correspond to the compactification with trivial fluxes for both

symmetries. Using such a theory we can construct any theory corresponding to genus g

surface with even number of maximal punctures.
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Let us detail then a possible construction. We glue together two TA trinions and two

free trinions and close the two minimal punctures. The matter content and the interactions

are neatly encoded in the index of the theory. For definitions and details of the computation

of supersymmetric indices [34, 35] we refer the reader to [36]. We denote the index of the

two TA theories glued together by IT . The index of the theory with vanishing flux for any

u(1) ⊂ so(5) is,

Iso(5)u(1)
0,4 (a, c,b,d) = (p; p)2(q; q)2Γe(pqβ

4)Γe(pqγ
4)Γe

(
t
β

γ
a±1
1 a±1

2

)

×
∮

dh1
4πih1

Γe(
pq
t

γ
βh

±1
1 a±1

1 )

Γe(h
±2
1 )

IT (b, c,d, {h1, a1}) (6.1)

×
∮

dh2
4πih2

Γe(
pq
t γβh

±1
2 a±1

1 )

Γe(h
±2
2 )

Γe(tγβh
±1
2 a±1

1 )Γe(β
−2a±1

2 h±1
2 )Γe(γ

−2h±1
2 h±1

1 ) .

We can compute the anomalies of this theory using a-maximization. We find that the R

symmetry (4.16) is actually the superconformal one here. Also we find that gluing two

such theories together is conformal. This in particular means that the R charges of the Φi

fields are 2
3 . The central charges are given by,

a =
125

24
, c =

71

12
. (6.2)

The vector of fluxes for this theory is F = (0, 0, 2). We can glue a theory of genus g and

an even number s of punctures from such models. The index of these theories with no

punctures is,

Iso(5)u(1)
g,0 (ui) = 1 + (3g − 3)5so(5)

1

t2
(pq)

2
3 +

(
(g − 1)10so(5) + 3g − 3 + g − 1

)
pq + · · · .

(6.3)

Here we defined the characters of so(5),

10so(5) = 1 + 1 + β4 +
1

β4
+ γ4 +

1

γ4
+

(
β2 +

1

β2

)(
1

γ2
+ γ2

)
,

5so(5) = 1 +

(
β2 +

1

β2

)(
1

γ2
+ γ2

)
. (6.4)

We see that the symmetry that the index exhibits is so(5) for any value of the genus. The

number of exactly marginal deformations is given by flat connections for so(5) (g−1)10so(5),

3g−3 complex structure moduli, and g flat connections for u(1)t. The symmetry preserved

on a generic point of the conformal manifold is only u(1)t.

When we add punctures the maximal allowed so(5) symmetry is broken to its su(2)diag×
u(1) subgroup. The index is given by,

Iso(5)u(1)
g,s (ui)=

1+



(
(3g−3+s)5so(5)+

s

2

(
β2γ2+

1

γ2β2

))
1

t2
+t2γ/β

s∑

j=1

(
u
(1)
j

)±1(
u
(2)
j

)±1


(pq)

2
3

+
((
g−1+

s

2

)
10so(5)−

s

2

(
3β/γ+1

)
+3g−3+s+g−1

)
pq

+

(
s∑

i=1

((
β2γ2−1

)
3
u
(1)
i

+

(
1

γ2β2
−1

)
3
u
(2)
i

))
pq+· · · . (6.5)
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The anomalies of the theories are,

a =
1

24
((g − 1)187 + 78s) , c =

1

12
((g − 1)97 + 42s) . (6.6)

This matches the six dimensional computation of the next section.

We can consider an alternative construction of the same models starting with TB
trinions and using the relations between different type of trinions. For example, gluing two

TB trinions along the puncture appearing once and calling the index of such a theory IT ′

the index of Iso(5)u(1)
0,4 is,

Iso(5)u(1)
0,4 (a, c,b,d) =

(p; p)2(q; q)2Γe(pqβ
−4)Γe(pqγ

4)

∮
dh1
4πih1

∮
dh2
4πih2

Γe(
pq
t (

γ
β )h

±1
1 h±1

2 )

Γe(h
±2
1 )Γe(h

±2
2 )

IT ′(b, c,d, {h2, h1})

× Γe(β
2h±1

1 a±1
1 )Γe(γ

−2a±1
2 h±1

2 )Γe

(
t
γ

β
a±1
1 a±1

2

)
. (6.7)

This index matches (6.1) at least in an expansion in fugacities. Such equalities are rather

non-trivial mathematical identities and provide checks of the physical arguments, dualities

and flows, which we used to deduce them.

We can also consider gluing the TB trinions along punctures appearing twice. Denoting

the index of this theory IT̂ , we can obtain a theory with two punctures of each type with

trivial bundles. The index is,

Iso(5)u(1)
0,(2,2) (b, c,a,d) =

(p; p)2(q; q)2Γe(pqβ
−4)Γe(pqγ

4)

∮
dh1
4πih1

∮
dh2
4πih2

Γe(
pq
t (

γ
β )

±1h±1
1 h±1

2 )

Γe(h
±2
1 )Γe(h

±2
2 )

IT̂ (b, c;d, {h2, h1})

× Γe(β
2βh±1

1 a±1
1 )Γe(γ

−2a±1
2 h±1

2 )Γe

(
t
γ

β
h±1
2 h±1

1

)(
γ−2a±1

2 h±1
2

)
Γe

(
t
γ

β
a±1
1 a±1

2

)
. (6.8)

The anomalies of these theory are exactly the same as the anomalies of the theory with

all punctures of the same type. Combining such theories together we get that the index of

a general theory with s1 punctures of first type and s2 of second and with genus g is,

Iso(5)u(1)
g,(s1,s2,m)(ui; ũi,{δi})= (6.9)

1+

((
(3g−3+s1+s2)5so(5)+m+

s1+m

2

(
β2γ2+

1

γ2β2

)
+
s2+m

2

(
β2

γ2
+
γ2

β2

))
1

t2

)
(pq)

2
3

+


t2γ/β

s1∑

j=1

(u
(1)
j )±1(u

(2)
j )±1+t2γβ

s2∑

j=1

(ũ
(1)
j )±1(ũ

(2)
j )±1+t2β2

m∑

e=1

δ−2
i +t2γ2

m∑

e=1

δ2i


(pq)

2
3

+

{(
g−1+

s1
2
+
s2
2

)
10so(5)+

m

2
(5so(5)−1)− s1

2
(3β/γ+1)− s2

2
(3βγ+1)

+3g−3+s1+s2+g−1

}
pq

+

(
s1∑

i=1

((
β2γ2−1

)
3
u
(1)
i

+

(
1

γ2β2
−1

)
3
u
(2)
i

)
+

s2∑

i=1

((
γ2

β2
−1

)
3
ũ
(1)
i

+

(
β2

γ2
−1

)
3
ũ
(2)
i

))
pq+· · · .
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Figure 8. Conformal manifold of a general theory of Gmax = so(5)u(1). At general point the

notion of type of puncture is non existent since the relevant symmetries are broken. On sub-loci

symmetries are enhanced and the punctures can be distinguished by their color.

Note that we have obtained here theories only with even number of punctures, and fur-

ther that the expressions for the index we obtained make sense only for even numbers of

punctures. Here the maximal symmetry is just u(1)3, and on a general point on the con-

formal manifold it is u(1)t. These models have the same anomalies no matter what type

the maximal punctures are. This is suggestive of theories with different types of punctures

sitting at different cusps of the conformal manifold, figure 8. We can distinguish the types

of punctures when the symmetries u(1)γ and u(1)β are not broken, and since those are

broken on a general point of the conformal manifold while enhancing at special subloci,

it is natural to conjecture that all these theories share the same conformal manifold. In

particular one can state that theories with different colors of punctures are dual to each

other for Gmax = so(5)u(1).

Although (6.9) is derived for even number of punctures, unrefining with u(1)β and

u(1)γ these make perfect sense also with odd numbers of punctures. In particular, the

trinion, as advertised in section four, is obtained by marginal deformations of the orbifold

theory breaking a symmetry. We will momentarily revisit this issue.

We can consider adding minimal punctures to the theories. This is done by forming

Riemann surfaces also with free trinions. The gaugings here will also be conformal. The

index of a theory with s1 punctures of the first type, s2 of the second, m minimal punctures

(there are even (or odd) numbers of all types of punctures), and genus g is given by,

Iso(5)u(1)
g,(s1,s2,m)(ui; ũi,{δi})= (6.10)

1+

((
(3g−3+s1+s2)5so(5)+m+

s1+m

2

(
β2γ2+

1

γ2β2

)
+
s2+m

2

(
β2

γ2
+
γ2

β2

))
1

t2

)
(pq)

2
3

+


t2γ/β

s1∑

j=1

(
u
(1)
j

)±1(
u
(2)
j

)±1

+t2γβ

s2∑

j=1

(
ũ
(1)
j

)±1(
ũ
(2)
j

)±1

+t2β2

m∑

e=1

δ−2
i +t2γ2

m∑

e=1

δ2i


(pq)

2
3

+

{(
g−1+

s1
2
+
s2
2

)
10so(5)+

m

2

(
5so(5)−1

)
− s1

2

(
3β/γ+1

)
− s2

2
(3βγ+1)

+3g−3+s1+s2+g−1

}
pq

+

(
s1∑

i=1

((
β2γ2−1

)
3
u
(1)
i

+

(
1

γ2β2
−1

)
3
u
(2)
i

)
+

s2∑

i=1

((
γ2

β2
−1

)
3
ũ
(1)
i

+

(
β2

γ2
−1

)
3
ũ
(2)
i

))
pq+· · · .

The contribution to the anomaly of the minimal punctures is half the contribution of
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the maximal punctures. On a general point of the conformal manifold the only internal

symmetry remaining is the u(1) and the maximal punctures are broken to have u(1)×u(1)
symmetry. It is informative to consider the index at a generic point turning off fugacities

of broken symmetries. We parametrize the su(2) × su(2) fugacities broken to u(1)2 as

(y1, y2) = (δ1δ2, δ1/δ2), and we treat all the punctures as minimal

Iso(5)u(1)
g,m ({δi}) = 1 +

(
3(5g − 5 +m)

1

t2
+ 2t

m∑

e=1

(δ−2
i + δ2i )

)
(pq)

2
3

+

{(
g − 1 +

m

4

)
10− m

4
2 + 3g − 3 +m+ g − 1−m

}
pq + · · · .

(6.11)

The minimal punctures behave as half maximal punctures, where a pair of minimal punc-

tures are equivalent here to a maximal one. This can be seen for instance in the conformal

manifold, where part of it is that of the complex structure moduli space of a genus g Rie-

mann surface with m minimal punctures, where each maximal puncture contributed as

two minimal ones. The other part of the conformal manifold is that of flat connections for

the so(5) and u(1) global symmetries where minimal punctures counting as half a maximal

one. We have a different way to see that the maximal punctures factorize into pairs of

minimal punctures on a general point of the conformal manifold by studying the index as

a sum over eigenfunctions of an integrable model [9]. We discuss this in appendix G.

Note that although (4.21) was derived for even number of punctures, naively consid-

ering genus zero with three maximal punctures the anomalies give us a = 47
24 and c = 29

12

which is a very compelling result. These are exactly the anomalies of the orbifold theory,

a sphere with two maximal and two minimal punctures. Now, we understand what is

going on. The orbifold theory has a one dimensional manifold of exactly marginal defor-

mations preserving all the symmetries. However, it possessed five more exactly marginal

directions along which the symmetries corresponding to maximal punctures are broken to

u(1)2 and the symmetry u(1)βγ is also broken. The maximal punctures give rise to two

minimal punctures. At a generic point of the conformal manifold we have a sphere with

six minimal punctures. At special sub-loci the u(1)βγ symmetry is recovered. In different

other sub-loci different pairs of the u(1) symmetries from minimal punctures combine to

maximal punctures. We can then conjecture that somewhere on this six dimensional con-

formal manifold all the minimal punctures combine into maximal ones. This is the trinion

for the so(5) theories we are considering here. Note that such a theory is non-Lagrangian

in a very minimalistic way. We start from the Lagrangian, the orbifold theory, and go to

special locus on the parameter space where the symmetry involves three copies of su(N)2.

Since we do not have a precise road map to that point this theory for example cannot be

put on the lattice, and that is why it is somewhat “non-Lagrangian”. Note also that some

of the symmetries are broken in order to recombine minimal punctures to maximal. We

thus observe the fact that theories with odd number of punctures with Gmax = so(5)u(1)

have in general less symmetry than theories with even number of punctures. It will be

interesting to understand this better.

A different way to obtain theories with Gmax = so(5)u(1) is to start from theo-

ries with smaller Gmax and turn on relevant deformations. For example, theories with

– 42 –



J
H
E
P
0
4
(
2
0
1
7
)
0
6
4

Figure 9. Construction of a genus four theory with one unit of u(1)t flux with Gmax = so(5)u(1).

The ± subscript denotes the sign of the theory. The squares are four punctured spheres of the

Gmax = so(5)u(1) theories. Solid lines are connecting punctures of opposite sign and dashed lines

punctures of same sign. Different dashed lines connect pairs of maximal punctures of different colors

and/ or signs.

Gmax = su(2)diagu(1)
2 built from TA trinions have, as seen in (5.21), 2g − 2 + s rel-

evant deformations in 3γ/β and charged −2 under u(1)γβ . Turning on these operators

breaks these symmetries and makes the operators marginal. These operators combine

with the (g − 1)3γ/β + g − 1 exactly marginal operators of the original theory to give

rise to (g − 1 + s
2)10 − s

2(3 + 1) dimensional component of the conformal manifold of the

Gmax = so(5)u(1) theory associated with flat connections of so(5). Turning on such a defor-

mation washes off the information about the u(1)γ and u(1)β fluxes and leaves us only with

the u(1)t flux. This follows as u(1)γ and u(1)β are broken in the resulting theory. There-

fore, assuming there are no accidental symmetries and that we remain within the class Sk=2

theories, the resulting theory must lie on the conformal manifold of a Gmax = so(5)u(1)

theory. For the index switching off fugacities for u(1)β and u(1)γ the indices (5.21) for

Gmax = su(2)diagu(1)
2 models and so(5)u(1) models (6.5) are identical. This is an example

of the way (4.8) emerges.

6.2 so(5) × u(1)t models with general u(1)t flux.

The theories above correspond to gluing copies of the same four punctured sphere together.

The fluxes of the resulting theory are multiples of the flux of that four punctured sphere.

We can consider accessing more general fluxes for u(1)t by gluing copies of the same four

punctured sphere but with the sign inverted. In such a way the flux for u(1)t will not be

proportional to g − 1 + s
2 any more. This construction is analogous to the class S N = 1

theories of [17]. For example, to construct a theory of genus g with no punctures and

more general values of flux we take a positive number k with |k| ≤ 2g − 2 and construct

so(5)u(1) theory of previous section of genus k and two punctures and a theory of genus

g− 1− k with two punctures. Then we flip the sign of the second theory. This is obtained

by flipping the signs of the charges under u(1)β × u(1)γ × u(1)t and taking R symmetry

to be R+ 2qt. Then the two theories are glued together along the two maximal punctures

with S-gluing. Since we glue punctures of different signs we use the vector fields with no

bifundamentals and turn on superpotential coupling the mesons of the two models. The

flux of the theory obtained in this way is the difference of the fluxes of the two theories,

2k − 2 + 2− 2(g − k − 1)− 2 + 2 = 4k − (2g − 2). See example of figure 9.
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Figure 10. Genus two theory with Gmax = so(7). Note that we can glue together any plus theory

to an identical minus copy and obtain Gmax = so(7) theory.

We can compute the indices and anomalies of the resulting theories. The indices and

anomalies are computed in appendix D, whereas here we only state the results. The theory

has a description in terms of a Lagrangian and thus the anomalies are computed using

a-extremization. We normalize the flux with the genus to be,

z =
2

g − 1
k − 1 . (6.12)

then the result of the a-extremization is that,

Rc = R− 1

6
qt +

√
40z2 + 9− 3

12z
qt ,

a =
8
(
5
√
40z2 + 9 + 54

)
z2 + 9

(√
40z2 + 9− 3

)

96z2
(g − 1) ,

c =

(
44
√
40z2 + 9 + 432

)
z2 + 9

(√
40z2 + 9− 3

)

96z2
(g − 1) . (6.13)

We will compare this to the computation in six dimension in the next section. Note that

taking the limit z → 0 we expect to obtain the models with Gmax being so(7). Indeed in

this limit (a, c) = (518 (g − 1), 13
2 (g − 1)) which are the anomalies for that case.

6.3 The Gmax = so(7) models from Gmax = so(5)u(1) models

As a special case of the construction with general flux when the number of plus and minus

trinions is the same the flux is zero. In such a case we expect to get a Gmax = so(7) model.

Indeed that is the case. For example, in figure 10 we have a construction of genus two

theory with so(7) symmetry.

We can compute the anomalies here and they match what we have reported in section

four. The index here can be explicitly computed and exhibits the full so(7) symmetry when

punctures are not present. For example for the theory of figure 10.,

Iso(7)
g,0 = 1 +

(
(3g − 3 + (g − 1)21so(7))

∣∣
g=2

)
pq + · · · . (6.14)
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These theories have F = (0, 0, 0). The superconformal R-symmetry is the one used to

write (6.14). We can construct theories with punctures by gluing equal numbers of copies

of plus and minus theories.

We can obtain these theories also by relevant deformations starting from Gmax =

so(5)u(1) models. The theories with Gmax = so(5)u(1) have relevant deformations, as is

seen for example from (6.5), charged −2 under u(1)t. We can turn these operators on and

study the flow. The claim is that one ends on the conformal manifold of Gmax = so(7)

models. The relevant operators become marginal at the fixed point. Moreover some of

the irrelevant operators of the Gmax = so(5)u(1) model which have positive charge under

u(1)t also become marginal. For the index setting in (6.5) t → (p q)−
1
6 , not refining with

u(1)β and u(1)γ , and keeping track of irrelevant operators (which are missing in (6.5) ) one

obtains the index of the Gmax = so(7) models.

As a special example we can consider the orbifold theory. This theory is a model in

class Gmax = so(5)u(1). Turning on the mentioned relevant operators amounts to adding

masses to the Φ fields. The resulting theory is the quiver of Fig 3. with general quartic

interactions coupling the mesonic operators. This is the theory we mentioned is the starting

point, the trinion, for constructing the Gmax = so(7) models.

6.4 Models with Gmax = su(2) × su(2) × u(1)

We can construct theories from equal number of TA trinions of one sign and TB trinions of

opposite sign. The resulting theories will have only u(1)γ flux turned on. Thus, they will

correspond to compactifications preserving Gmax = su(2)× su(2)× u(1).

In figure 11. we have an example of genus three. The anomalies here are,

a =
687

100
+

61
√
61

75
, c =

1

150

(
1038 + 127

√
61
)
, (6.15)

and we will match the above to six dimensional computation. The vector of fluxes of this

theory is twice the difference of FA and FB, which is F = (1, 0, 0). We can compute the

index to give,

1+

(
(3g−3+g−1+(g−1)(3γ2+3t))

∣∣
g=3

+2γ23t

(
β2+3

1

β2

)
+

4

β4

)
pq+· · · . (6.16)

States charged under u(1)β are either relevant or irrelevant as the u(1)β is admixed to

the superconformal R-symmetry. We shift to the superconformal R-symmetry through

t→ (pq)
ℓ3
2 t, γ → (p q)

ℓ2
2 γ, and β → (p q)

ℓ1
2 β with (see appendix D)

ℓ2 = ℓ3 = 0 , ℓ1 =
1

15

(√
61− 6

)
. (6.17)

6.5 Models with Gmax = su(2)u(1)2

We can construct a representative of theories with Gmax = su(2)u(1)2 by taking two TA
and two TB trinions and gluing them together to form a genus three surface. Since the

two trinions have opposite flux under u(1)β the resulting theory has u(1)β → su(2)β and
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Figure 11. Construction of genus three theory with minimal value of flux with Gmax = u(1)su(2)×
su(2).

Figure 12. Construction of genus three theory with Gmax = u(1)2su(2).

corersponds to Gmax = su(2)β × u(1)γ × u(1)t models. In general, taking same number of

TA and TB trinions of same sign will result in such theories. We again can compute indices

and anomalies. For example for genus three model of figure 12. we get,

a = 15.7822 , c = 16.3855 . (6.18)

The vector of fluxes here is the sum of two FA and two FB, F = (0, 1, 4). The index

is computed to give,

1 +

((
3g − 3 + 2g − 2 + (g − 1)3su(2)β2

)∣∣∣
g=3

+ 2β2

(
γ2 +

3

γ2
− t2

γ2
+

7

t2γ2
+

5γ2

t2
− 3t2γ2

)
+

6

t2
+

4

γ4
− 2t2

)
pq + · · · . (6.19)

This gives the expected dimension of the conformal manifold. Note again that operators

charged under u(1)γ × u(1)t are either relevant or irrelevant. The mixing is determined as

before by si and here we have,

ℓ1 = 0 , ℓ2 = 0.0657051 , ℓ3 = 0.320467 . (6.20)

The operators charged under u(1)t with positive charge under u(1)t in (6.19) are irrelevant

and with with negative are relevant. In particular the operators giving negative contribu-

tion to (6.19) are irrelevant as expected from general arguments of [23]. This is a small

but non trivial check of the construction.
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Figure 13. Construction of genus six theory with minimal value of flux with Gmax = u(1)su(3).

6.6 Model with Gmax = su(3)u(1)

We can also construct a model with Gmax = su(3)u(1). Here we need to correlate the u(1)t
flux with one of the u(1)β or u(1)γ with the flux for the other being zero. Example of such

a construction for genus six is depicted in figure 13.

We can compute the anomalies from the Lagrangians,

a =
35

512

(
267 + 11

√
385
)
, c =

1

512

(
9425 + 401

√
385
)
. (6.21)

The index of the model in figure 13. can be computed to give,

Isu(3)u(1)
6,0 = 1 +

({
3g − 3 + s+

(
g − 1 +

s

2

)
8su(3) − s+ g − 1

}
g=6,s=0

(6.22)

+ 3t
2
3β

4
33su(3) + t

4
3β

8
33su(3) +

9

t
4
3β

8
3

3su(3) +
7

t
2
3β

4
3

3su(3)

)
pq + · · · .

We have defined,10

8su(3) = 1 + 1 + γ−4 + γ4 +

(
β2

t2
+
t2

β2

)
(γ−2 + γ2) ,

3su(3) =
t4/3

β4/3
+
β2/3

t2/3
(γ−2 + γ2) .

(6.23)

The index here is written with non superconformal R- symmetry. To shift to the super-

conformal one we need to translate t→ (pq)
s3
2 t, γ → (p q)

s2
2 γ, and β → (p q)

s1
2 β with (see

appendix D)

ℓ2 = 0 , ℓ1 = ℓ3 =
1

48

(
−15 +

√
385
)
. (6.24)

10Note the subtle issue here with identification of fugacities and symmetries. The so(7) decomposes into

su(3)× u(1)a. Although the fugacity for the u(1)a is t
2
3 β

4
3 , as far as the charges go the linear combination

of the u(1)β and u(1)t which gives u(1)a is qa ∝ qβ + qt.
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This renders operators weighed by positive powers of tβ2 irrelevant and with negative

powers relevant. Vanishing powers give marginal operators minus conserved currents. The

index of this models and similar models in Gmax = su(3)u(1) determines the conformal

manifold to have dimension,

dimMsu(3)u(1)
g,s = 3g − 3 + s+

(
g − 1 +

s

2

)
dimsu(3)− s+ g . (6.25)

This is consistent with our general prediction since su(3)u(1)∩ su(2)diagu(1)2 = u(1)3 and

L = u(1) here. Here the vector of fluxes is constructed from four FA minus four FB and the

vector for the so(5) theory of sphere with four maximal punctures (of any color). Adding

up all the terms one obtains F = (2, 0, 2).

6.7 Model with Gmax = s̃o(5)u(1)

We can construct an example of Gmax = s̃o(5)u(1) theory by taking two T+
A trinions and

gluing them with the T−
SO(5) theory, figure 14. The vector of fluxes is F = (12 ,

1
2 , 0). The

anomalies can be computed to give,

a =
23
√

23
2

6
, c =

47
√

23
2

12
. (6.26)

The mixing parameters are,

ℓ3 = 0 , ℓ2 = ℓ1 =

√
46

12
− 1

2
. (6.27)

We can compute the index of this model to give,

I = 1 +

(
5̃β2γ2 + 35̃

1

γ2β2

)
pq +

(
3g − 3 + g − 1 + (g − 1)1̃0

)∣∣∣
g=3

p q + . . . (6.28)

We have defined the characters of s̃o(5),

5̃ = 1 +

(
βt

γ
+

γ

tβ

)(
γt

β
+
β

γt

)
,

1̃0 = 1 +

(
βt

γ

)2

+

(
βt

γ

)−2

+ 1 +

(
γt

β

)2

+

(
γt

β

)−2

+

(
βt

γ
+

γ

tβ

)(
γt

β
+
β

γt

)
.

(6.29)

The contribution 3
β2γ2 5̃p q in (6.28) accounts for relevant operators due to (6.27)

whence 5̃γ2β2pq is an irrelevant term. All of this information matches what we have

discussed for the Gmax = so(5)u(1) case upon changing the identification of so(5)u(1) in

so(7). We mentioned in section four that different embeddings of so(5) lead to different

maximal punctures, and here we have an example where we can introduce new maximal

punctures for which mesons are doublets of su(2)t(β/γ)∓1 charged under u(1)βγ and singlets

with respect to su(2)t(γ/β)±1 . We will not discuss this in detail in this work.

In the next section we will study (1, 0) theory probing Zk singularity and derive the

anomalies of theories obtained in four dimensions by integrating anomaly polynomial over

a Riemann surface which for simplicity we assume to have no punctures. We will find

that anomalies obtained in six dimensions match the anomalies we derived here using four

dimensional field theoretic arguments.
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Figure 14. Construction of genus three theory with Gmax = s̃o(5)u(1). The fluxes are F =

( 12 ,
1
2 , 0).

7 Anomalies from six dimensions

We consider the 6d (1, 0) SCFT described by a Z2 orbifold of the A1 type (2, 0) theory.

This SCFT has a low-energy gauge theory description as su(2) + 4F on a generic point on

its tensor branch. It is thought that this theory has an so(7) global symmetry where the

8 half-hypermultiplets transform in the 8 dimensional representation of so(7) [7, 8]. The

anomaly polynomial for this theory was evaluated in [37]. Alternatively we can evaluate it

from the gauge theory description as done in appendix C. Either way we find:11

I
so(7)
8 =

11C2
2 (R)

12
− C2(R)p1(T )

24
+
C2(so(7))8p1(T )

24
− C2(R)C2(so(7))8

2

+
7C2

2 (so(7))8
48

− C4(so(7))8
6

+
29p21(T )− 68p2(T )

2880
.

(7.1)

We desire to calculate the central charges of the 4d theory, resulting from the compact-

ification of the above 6d theory on a genus g > 1 Riemann surface, by integrating the

6d anomaly polynomial. To preserve N = 1 supersymmetry in 4d we must perform a

twist. Particularly we decompose the 6d Lorentz group as so(5, 1) → so(3, 1) × so(2)s
where so(3, 1) is the 4d Lorentz group and so(2)s acts on the Riemann surface. Further we

decompose su(2)R to its Cartan, u(1)R, and twist so(2)s → so(2)s − u(1)R. Decomposing

the supercharges we find:

2R ⊗ 4L →
(
1 1

2
+ 1− 1

2

)
⊗
(
2 1

2
+ 2′− 1

2

)
→ 20 + 2′0 + 21 + 2′−1 , (7.2)

where the subscript states the charges under the twisted so(2)s − u(1)R symmetry.

From the above expression one can see that the twisting so(2)s → so(2)s − u(1)R will

ensure that half the spinors, those with zero charge in (7.2), are invariant and so will be

co-variantly constant. This ensures N = 1 supersymmetry in 4d.

Next we proceed with integrating the anomaly polynomial. For this we must first

decompose the various characteristic classes into the 4d Pontryagin classes of the tangent

bundle, p1(T )
′ and p2(T )

′, the first Chern class of the Riemann surface, t, and the first

Chern class of the u(1) R-symmetry bundle, C1(F ). Using the splitting principle we can

11We refer the reader to appendix C for our conventions regarding characteristic classes.
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decompose the Pontryagin classes as:12

p1(T ) = t2 + p1(T )
′ , (7.3)

p2(T ) = t2p1(T )
′ + p2(T )

′ (7.4)

For the R-symmetry the splitting principle implies:

1 + C1(R)x+ C2(R)x
2 = (1 + xn1)(1 + xn2) → C1(R) = n1 + n2, C2(R) = n1n2 , (7.5)

where we use n1 and n2 for the Chern roots. As the R-symmetry is su(2), in the untwisted

case the first Chern class must vanish leading to n2 = −n1 = C1(F ) where we have

identified the curvature as that for the 4d u(1) R-symmetry. As mentioned to preserve

supersymmetry we must perform the twist so(2)s → so(2)s − u(1)R. This implies we must

shift n2 as n2 → n2−t. Thus we set: n1 = −C1(F ), n2 = C1(F )−t. note that the total first
Chern class of the twisted bundle is indeed −t so, for spinors with the appropriate charges,

it can cancel the spacetime curvature contribution leading to a co-variantlly constant spinor

as desired.

Thus we get:

∫
I
so(7)
8 =

11(g − 1)

3
C3
1 (F ) +

g − 1

12
C1(F )p1(T )

′ + (g − 1)C1(F )C2(so(7))8 , (7.6)

where we used the Gauss-Bonnet theorem:
∫
t = 2(1− g) . (7.7)

We need to compare this against the 4d anomaly polynomial. As mentioned in appendix C,

a single Weyl fermion contributes to the anomaly polynomial as: ch(F )Â(T ). Expanding

the A-roof genus and Chern characters for the so(7) and u(1)R symmetry bundles we find

it contributes:

I6 =
Tr
(
R3
)

6
C3
1 (F )−

Tr (R)

24
C1 (F ) p1 (T )

′ − Tr
(
RF 2

so(7)

)
C1 (F )C2 (so(7)) , (7.8)

where we have defined C2(so(7))r = TrC2(so(7)), for Tr the second Casimir of the rep-

resentation r, to convert to a Chern class independent of the representation. Comparing

this with the 4d anomaly polynomial we get from integrating the 6d one, we find that:

Tr(R3) = 22(g − 1), T r(R) = −2(g − 1) and Tr(RF 2
so(7)) = −(g − 1). For the last result

we have used T8 = 1. From here the central charges are,

a =
3

32

(
3TrR3 − TrR

)
=

51

8
(g − 1) , c =

1

32

(
9TrR3 − 5TrR

)
=

13

2
(g − 1) . (7.9)

These numbers precisely match the QFT computation for theories of type Gmax =

so(7) (4.15).

12We refer the reader to appendix C for the splitting principle obeyed by the various characteristic classes.
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7.1 Models with Gmax = so(5)u(1)

In this section we consider the compactification with flux for the so(7) global symmetry.

Specifically we turn on a non-trivial flux for a u(1) subgroup of so(7) with support on the

Riemann surface. This will break so(7) down to the u(1) and its commutant. Here we

consider the u(1) whose commutant in so(7) is so(5). Thus we expect the resulting theory

to have u(1)× so(5) global symmetry. We next wish to evaluate the central charges of the

resulting 4d theory by integrating the anomaly polynomial of the 6d theory.

First we must determine how the so(7) Chern classes decompose under the new symme-

try. Under its u(1)×so(5) subgroup, the 8 dimensional representation of so(7) decomposes

as: 8 −→ 4
1
2 + 4−

1
2 . Thus using the splitting principle in appendix C we find:

8− C2(so(7))8 +
1

12

(
C2
2 (so(7))8 − 2C4(so(7))8

)
= ch(so(7)8)

= ch
(
u(1) 1

2
⊗ usp(4)4 ⊕ u(1)− 1

2
⊗ usp(4)4

)

= ch
(
u(1) 1

2

)
ch(usp(4)4) + ch(u(1)− 1

2
)ch(usp(4)4)

=

(
1 +

C1(u(1)a)

2
+
C2
1 (u(1)a)

8
+
C3
1 (u(1)a)

48
+
C4
1 (u(1)a)

384

)

(
4− C2(usp(4))4 +

1

12

(
C2
2 (usp(4))4 − 2C4(usp(4))4

))

+

(
1− C1(u(1)a)

2
+
C2
1 (u(1)a)

8
− C3

1 (u(1)a)

48
+
C4
1 (u(1)a)

384

)

(
4− C2(usp(4))4 +

1

12

(
C2
2 (usp(4))4 − 2C4(usp(4))4

))
, (7.10)

where we shall refer to the u(1) as u(1)a in preparation to the latter sections where we

turn on fluxes for several u(1)’s.

Comparing forms of equal dimension we find: C2(so(7))8 = −C2
1 (u(1)a)+2C2(usp(4))4,

C4(so(7))8 =
3C4

1 (u(1)a)
8 − 1

2C
2
1 (u(1)a)C2(usp(4))4 + C2

2 (usp(4))4 + 2C4(usp(4))4.

Inserting these into the anomaly polynomial (7.1), we get:

I
so(5)
8 =

11C2
2 (R)

12
− C2(R)p1(T )

24
− C2

1 (u(1)a)p1(T )

24
+
C2(R)C

2
1 (u(1)a)

2

− C2(R)C2(usp(4))4 +
C2(usp(4))4p1(T )

12
+
C4
1 (u(1)a)

12
− C2

1 (u(1)a)C2(usp(4))4
2

+
5C2

2 (usp(4))4
12

− C4(usp(4))4
3

+
29p21(T )− 68p2(T )

2880
. (7.11)

Next we take the flux into account by setting: C1(u(1)a) = −zt+ǫ1C1(F )+C
′
1(u(1)a).

The first term is the flux on the Riemann surface whose strength is determined by z.

The remaining terms are identified with the curvature of the 4d u(1) global symmetry.

In principle it can now mix with the 6d R-symmetry so that the 4d superconformal R-

symmetry be: u(1)6d + ǫ1u(1)a, where ǫ1 is to be evaluated via a-maximization. This is

taken into account by the second term in the expansion of C1(u(1)a). Finally we denote

the curvature of the 4d u(1)a global symmetry as C ′
1(u(1)a).
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The flux z is quantized such that
∫
C1(u(1)a) = n

q , where n is an integer and q is

the smallest charge in the system. In physical language this just expresses the Dirac

quantization condition where we use the expression for the first Chern class in terms of the

connection’s field strength, C1(u(1)a) =
Fu(1)a

2π . Inserting the expression for C1(u(1)a) and

integrating over the Riemann surface we find:

z =
n

2q(g − 1)
. (7.12)

This brings us to determining the value of q. This depends on whether the global

symmetry is so(7) or Spin(7). The minimal u(1) charge for Spin(7) appears in the decom-

position of the spinor, and in our conventions is 1
2 . However for so(7), where the spinor is

projected out, the minimal charge appears in the decomposition of the vector, and in our

conventions is 1. Thus if the global symmetry is Spin(7), z must be an integer multiplet of
1

g−1 while for so(7) half-integer multiplets are allowed. Note that while the gauge theory

description has a state in the spinor of so(7), and indeed this is why all the Chern classes

we use for so(7) are framed in it, this state is gauge variant. All gauge invariant states are

made from an even number of this state and so so(7) may still be consistent.

Returning to integrating the anomaly polynomial, we next insert the decomposition of

the Chern classes into (7.11) and perform the integration finding:
∫
I
so(5)
8 =

(2ǫ31z − 6ǫ1z − 3ǫ21 + 11)(g − 1)

3
C3
1 (F )

+
(g − 1)(1− 2zǫ1)

12
C1(F )p1(T )

′ + 2(g − 1)(1− zǫ1)C1(F )C2(usp(4))4

+ 2(g − 1)(ǫ21z − z − ǫ1)C
2
1 (F )C

′
1(u(1)a) +

2(g − 1)zC ′3
1 (u(1)a)

3

+ (g − 1)(2zǫ1 − 1)C1(F )C
′2
1 (u(1)a)−

(g − 1)zC ′
1(u(1)a)p1(T )

′

6

− 2(g − 1)zC ′
1(u(1)a)C2(usp(4))4 . (7.13)

From this we can read of the anomalies. We start with those involving only the R-symmetry,

finding:

Tr
(
R3
)
= 2 (g − 1)

(
2ǫ31z − 6ǫ1z − 3ǫ21 + 11

)
, T r (R) = −2 (g − 1) (1− 2zǫ1) . (7.14)

This gives the a central charge:

a =
3 (g − 1)

(
6ǫ31z − 20ǫ1z − 9ǫ21 + 34

)

16
. (7.15)

Performing a-maximization we find that ǫ1 =
3−

√
9+40z2

6z . Inserting this value to a and

c we find:

a = (g − 1)
9
(
−3 +

√
9 + 40z2

)
+ 8z2

(
54 + 5

√
9 + 40z2

)

96z2
,

c = (g − 1)
9
(
−3 +

√
9 + 40z2

)
+ z2

(
432 + 44

√
9 + 40z2

)

96z2
.

(7.16)

This matches (6.13) from the four dimensional computation.
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For the case of z = 1, these simplify to:

a =
187

24
(g − 1), c =

97

12
(g − 1) . (7.17)

This matches the computation in four dimensions (4.21).

Another interesting value is z = 1
4 , where the central charges are given by:

a =
23

12

√
23

2
(g − 1), c =

47

24

√
23

2
(g − 1) . (7.18)

For g = 3, this matches the computation in four dimensions (6.26). Note that for this

case z is a half-integer multiple of 1
g−1 = 1

2 so this flux choice is consistent only with

so(7) and not Spin(7). This presumably is consistent with the 6d picture where the 8

half-hypermultiplet doublets of su(2) transform as a spinor of Spin(7) because the only

gauge invariant observables we can construct from them will be representations of so(7).

We can also look at other anomalies, particularly those involving the global symmetries.

These can all be read from the anomaly polynomial in (7.13). We shall not discuss all of

them rather mentioning only a selected few. As in the previous case we can consider the

contribution of a single Weyl fermion, and expand the Chern characters for the usp(4),

u(1)a and u(1)R symmetry bundles, where we find:

I6 ⊃
Tr(Q3

a)

6
C ′3
1 (u(1)a) +

Tr(RQ2
a)

2
C1(F )C

′2
1 (u(1)a) +

Tr(R2Qa)

2
C2
1 (F )C

′
1(u(1)a)

− Tr(RF 2
usp(4))C1(F )C2(usp(4)) + . . . . (7.19)

Comparing this with the the 4d anomaly polynomial we get from integrating the 6d

one, we find that:

Tr(Q3
a) = 4(g − 1)z,

Tr(RQ2
a) = 2(g − 1)(2zǫ1 − 1),

T r(R2Qa) = 4(g − 1)(ǫ21z − z − ǫ1),

T r(RF 2
usp(4)) = −(g − 1)(1− zǫ1) ,

(7.20)

where we have used T
usp(4)
4 = 1

2 .

Using the value for ǫ1 we got from a-maximization, these become:

Tr(Q3
a) = 4(g − 1)z,

Tr(RQ2
a) = −2

3
(g − 1)

√
9 + 40z2,

T r(R2Qa) =
4z

9
(g − 1),

T r(RF 2
usp(4)) = −(g − 1)

6
(3 +

√
9 + 40z2) .

(7.21)

For the special case of z = 1, these further simplify to:

Tr(Q3
a) = 4(g − 1),
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Tr(RQ2
a) = −14

3
(g − 1),

T r(R2Qa) =
4

9
(g − 1),

T r(RF 2
usp(4)) = −5(g − 1)

3
. (7.22)

We will check the anomalies here with the field theory computation in appendix D.

7.2 Models for Gmax = su(3)u(1)

Besides the u(1) in so(7) whose commutant is so(5), there are other u(1) subgroups of so(7)

with smaller commutant groups. Maintaining rank 2, the other possibilities are su(3) and

su(2) × su(2) = su(2)2. In this section we shall deal with the case of u(1) × su(3). We

shall discuss the second case, u(1)× su(2)2, later as a limit of a compactification involving

two fluxes.

Under the u(1)×su(3) subgroup of so(7) the 8 dimensional representation decomposes

as: 8 → 1−3 + 31 + 13 + 3̄−1. Employing the splitting principle, we find:

8− C2(so(7))8 +
1

12
(C2

2 (so(7))8 − 2C4(so(7))8) = ch(so(7)8)

= ch (u(1)−3 ⊕ su(3)3 ⊗ u(1)1 ⊕ u(1)3 ⊕ su(3)3̄ ⊗ u(1)−1) = ch(u(1)−3)

+ ch(su(3)3)ch(u(1)1) + ch(u(1)3) + ch(su(3)3̄)ch(u(1)−1)

=

(
1− 3C1(u(1)a) +

9C2
1 (u(1)a)

2
− 9C3

1 (u(1)a)

2
+

27C4
1 (u(1)a)

8

)

+

(
3− C2(su(3))3 +

C3(su(3))3
2

+
C2
2 (su(3))3

12

)

(
1 + C1(u(1)a) +

C2
1 (u(1)a)

2
+
C3
1 (u(1)a)

6
+
C4
1 (u(1)a)

24

)

+

(
1 + 3C1(u(1)a) +

9C2
1 (u(1)a)

2
+

9C3
1 (u(1)a)

2
+

27C4
1 (u(1)a)

8

)

+

(
3− C2(su(3))3 −

C3(su(3))3
2

+
C2
2 (su(3))3

12

)

(
1− C1(u(1)a) +

C2
1 (u(1)a)

2
− C3

1 (u(1)a)

6
+
C4
1 (u(1)a)

24

)
. (7.23)

Matching forms of equal order, we find: C2(so(7))8 = −12C2
1 (u(1)a) + 2C2(su(3))3,

C4(so(7))8 = 30C4
1 (u(1)a)− 18C2

1 (u(1)a)C2(su(3))3 +C2
2 (su(3))3 − 6C1(u(1)a)C3(su(3))3.

Similarly to the previous case we turn on the flux by setting: C1(u(1)a) = −zt +
ǫ1C1(F ) + C ′

1(u(1)a). Where again z measures the strength of the flux, ǫ1 takes into

account possible mixing with the superconformal R-symmetry and the last term is the

actual 4d curvature. Like in the previous cases z is quantized according to equation (7.12).

Now the minimal charge of the u(1) for Spin(7) in our convention is 1, and for so(7) it is 2.
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Inserting all these into (7.1) and performing the integration we find:
∫
I
su(3)
8 =

(384ǫ31z − 72ǫ1z − 36ǫ21 + 11)(g − 1)

3
C3
1 (F )

+
(g − 1)(1− 24zǫ1)

12
C1(F )p1(T )

′ + 2(g − 1)(1− 8zǫ1)C1(F )C2(su(3))3

+ 24(g − 1)(16ǫ21z − z − ǫ1)C
2
1 (F )C

′
1(u(1)a) + 128(g − 1)zC ′3

1 (u(1)a)

+ 12(g − 1)(32zǫ1 − 1)C1(F )C
′2
1 (u(1)a)− 2(g − 1)zC ′

1(u(1)a)p1(T )
′

− 16(g − 1)zC ′
1(u(1)a)C2(su(3))3 + 2z(g − 1)C3(su(3))3 . (7.24)

From this we can read off the anomalies finding:

Tr(R3) = 2(g − 1)(384ǫ31z − 72ǫz − 36ǫ21 + 11), T r(R) = −2(g − 1)(1− 24zǫ1) . (7.25)

This gives the a central charge:

a =
3 (g − 1)

(
576ǫ31z − 120ǫ1z − 54ǫ21 + 17

)

8
. (7.26)

Performing a-maximization we find that ǫ1 = 3−
√
9+640z2

96z . Inserting this value to a and c

we find:

a = (g − 1)
9
(
−3 +

√
9 + 640z2

)
+ 64z2

(
159 + 10

√
9 + 640z2

)

2048z2
,

c = (g − 1)
9
(
−3 +

√
9 + 640z2

)
+ 64z2

(
160 + 11

√
9 + 640z2

)

2048z2
.

(7.27)

For the case of z = 1
10 , we find:

a =
7(267 + 11

√
385)

512
(g − 1), c =

9425 + 401
√
385

2560
(g − 1) . (7.28)

This matches the result of (6.21) obtained in QFT. The total u(1) flux on the surface in this

case is 1. Note that this u(1) differs from the u(1)’s used in the preceding and proceeding

discussions by a factor of 2. Thus, even though the flux is 1, the flux vector is as given in

section 6.6.

We can again consider additional anomalies, specifically those considered in (7.19).

From (7.24) we find:

Tr(Q3
a) = 768(g − 1)z,

Tr(RQ2
a) = 24(g − 1)(32zǫ1 − 1),

T r(R2Qa) = 48(g − 1)(16ǫ21z − z − ǫ1),

T r(RF 2
su(3)) = −(g − 1)(1− 8zǫ1) ,

(7.29)

where we have used T
su(3)
3 = 1

2 .

Using the value for ǫ1 we got from a-maximization, these become:

Tr(Q3
a) = 768(g − 1)z,

Tr(RQ2
a) = −8(g − 1)

√
9 + 640z2,

T r(R2Qa) =
16z

3
(g − 1),
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Tr(RF 2
su(3)) = −(g − 1)

12
(9 +

√
9 + 640z2) . (7.30)

For the special case of z = 1
10 , these further simplify to:

Tr(Q3
a) =

384

5
(g − 1),

T r(RQ2
a) = −8

√
385

5
(g − 1),

T r(R2Qa) =
8

15
(g − 1),

T r(RF 2
su(3)) = −(g − 1)

60
(45 +

√
385) .

(7.31)

The anomalies here will be compared to four dimensional computation in appendix D.

7.3 Models for Gmax = su(2)u(1)2

In this section we consider turning on two fluxes each under a different u(1) inside so(7). We

choose the u(1)’s so as to preserve the maximal possible symmetry, which is u(1)2× su(2).

There are in fact two different ways to do this. In both we start with the previous u(1)×
so(5) case and turn on a flux in a u(1) within so(5). There are two different u(1)× su(2)

subgroups inside so(5). One is the maximal u(1) × su(2) subgroup, under which the 4

dimensional representation of so(5) decomposes as: 4 → 21+2−1. The other is taking the

su(2) × su(2) maximal subgroup and using the Cartan of one of the su(2)’s. Under this

subgroup the 4 dimensional representation of so(5) decomposes as: 4 → 11 + 1−1 + 20.

We shall first deal with the first case and latter deal with the second.

Models with Gmax = su(2)diagu(1)
2. First we must decompose the so(5) Chern

classes to those of the subgroup. For this we again utilize the splitting principle:

4− C2(usp(4))4 +
C2
2 (usp(4))4 − 2C4(usp(4))4

12
= ch(usp(4)4)

= ch (u(1)1 ⊗ su(2)2 ⊕ u(1)−1 ⊗ su(2)2)

= ch(u(1)1)ch(USp(2)2) + ch(u(1)−1)ch(USp(2)2)

=

(
1 + C1(u(1)b) +

C2
1 (u(1)b)

2
+
C3
1 (u(1)b)

6
+
C4
1 (u(1)b)

24

)

(
2− C2(su(2))2 +

C2
2 (su(2))2

12

)

+

(
1− C1(u(1)b) +

C2
1 (u(1)b)

2
− C3

1 (u(1)b)

6
+
C4
1 (u(1)b)

24

)

(
2− C2(su(2))2 +

C2
2 (su(2))2

12

)
, (7.32)

where we have denoted this u(1) as u(1)b.

By matching forms of the same order we find: C2(usp(4))4 = 2C2(su(2))2−2C2
1 (u(1)b),

C4(usp(4))4 = C4
1 (u(1)b) + 2C2

1 (u(1)b)C2(su(2))2 + C2
2 (su(2))2.
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The flux is then taken into account by setting: C1(u(1)b) = −xt+ǫ2C1(F )+C
′
1(u(1)b).

Like previously, the first term is the flux on the Riemann surface which strength is measured

by x. The second term takes into account possible mixing with the R-symmetry, while the

third is the curvature for the 4d u(1)b global symmetry. Again x needs to be quantized

according to (7.12). Now the minimal charge of the u(1) for Spin(7) in our convention is

1, and for so(7) it is 2.

Next we insert these decompositions in the anomaly polynomial (7.11), and integrate

over the Riemann surface finding:

∫
I
su(2)
8 =

(2ǫ31z+32ǫ32x−6ǫ1z+12ǫ1ǫ
2
2z+12ǫ2ǫ

2
1x−3ǫ21−12ǫ22−24ǫ2x+11)(g−1)

3
C3
1 (F )

+
(g−1)(1−2zǫ1−8xǫ2)

12
C1(F )p1(T )

′+4(g−1)(1−zǫ1−4xǫ2)C1(F )C2(su(2))2

+2(g−1)(ǫ21z+2ǫ22z+4ǫ1ǫ2x−z−ǫ1)C2
1 (F )C

′
1(u(1)a)+

2(g−1)zC ′3
1 (u(1)a)

3

+4(g−1)(ǫ21x+8ǫ22x−2x−2ǫ2+2zǫ1ǫ2)C
2
1 (F )C

′
1(u(1)b)−

2(g−1)xC ′
1(u(1)b)p1(T )

′

3

+(g−1)(2zǫ1+4xǫ2−1)C1(F )C
′2
1 (u(1)a)−

(g−1)zC ′
1(u(1)a)p1(T )

′

6

−4(g−1)zC ′
1(u(1)a)C2(su(2))2+4x(g−1)C ′2

1 (u(1)a)C
′
1(u(1)b)

+4z(g−1)C ′2
1 (u(1)b)C

′
1(u(1)a)+8(g−1)(ǫ1x+ǫ2z)C1(F )C

′
1(u(1)b)C

′
1(u(1)a)

+
32(g−1)xC ′3

1 (u(1)b)

3
+4(g−1)(8ǫ2x+ǫ1z−1)C1(F )C

′2
1 (u(1)b)

−16x(g−1)C ′
1(u(1)b)C2(su(2))2 . (7.33)

From these we see that:

Tr(R3)= 2(g−1)(2ǫ31z+32ǫ32x−6ǫ1z+12ǫ1ǫ
2
2z+12ǫ2ǫ

2
1x−3ǫ21−12ǫ22−24ǫ2x+11),

T r(R)=−2(g−1)(1−2zǫ1−8xǫ2) . (7.34)

This gives the a central charge:

a=
3(g−1)

(
34−36ǫ22−80ǫ2x+96ǫ32x−9ǫ21+36ǫ21ǫ2x+6ǫ31z−20ǫ1z+36ǫ1ǫ

2
2z
)

16
. (7.35)

Next we need to perform a-maximization with respect to both ǫ1 and ǫ2. In general

the solution is quite involved and we won’t write it here. However for the specific case of

z = 1, x = 1
4 , we find:

a = 7.99177 (g − 1) , c = 8.30369(g − 1) . (7.36)

This matches the result in four dimensions (5.20). Also note that for g even the flux for x

is consistent only with so(7) and not Spin(7).

There are a considerable number of other anomalies, which similarly to the previous

cases can be calculated from (7.33), though we shall not consider this here.
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Models with Gmax = su(2)u(1)2. The second subgroup differs in the decomposition

of the 4 dimensional representation and thus in the relation between the usp(4) and u(1)×
su(2) Chern classes. Recall that under this subgroup the 4 dimensional representation of

so(5) decomposes as: 4 → 11 + 1−1 + 20. Thus using the splitting principle for the Chern

classes we find:

1 + C2(usp(4))4 + C4(usp(4))4 = (1 + C1(u(1)b))(1− C1(u(1)b))(1 + C2(su(2))2) . (7.37)

Matching forms of the same order we determine that: C2(usp(4))4 = −C2
1 (u(1)b) +

C2(su(2))2, C4(usp(4))4 = −C2
1 (u(1)b)C2(su(2))2.

Turning on the flux is again taken into account by setting: C1(u(1)b) = −xt+ǫ2C1(F )+

C ′
1(u(1)b). Again x is quantized according to (7.12), where now the minimal charge in our

convention is 1 for both cases.

Next we insert all these in the anomaly polynomial (7.11) and integrate over the

Riemann surface finding:
∫
I
su(2)
8 =

(2ǫ31z+10ǫ32x−6ǫ1z+6ǫ1ǫ
2
2z+6ǫ2ǫ

2
1x−3ǫ21−6ǫ22−12ǫ2x+11)(g−1)

3
C3
1 (F )

+
(g−1)(1−2zǫ1−4xǫ2)

12
C1(F )p1(T )

′+2(g−1)(1−zǫ1−xǫ2)C1(F )C2(su(2))2

+2(g−1)(ǫ21z+ǫ
2
2z+2ǫ1ǫ2x−z−ǫ1)C2

1 (F )C
′
1(u(1)a)+

2(g−1)zC ′3
1 (u(1)a)

3

+2(g−1)(ǫ21x+5ǫ22x−2x−2ǫ2+2zǫ1ǫ2)C
2
1 (F )C

′
1(u(1)b)−

(g−1)xC ′
1(u(1)b)p1(T )

′

3

+(g−1)(2zǫ1+2xǫ2−1)C1(F )C
′2
1 (u(1)a)−

(g−1)zC ′
1(u(1)a)p1(T )

′

6

−2(g−1)zC ′
1(u(1)a)C2(su(2))2+2x(g−1)C ′2

1 (u(1)a)C
′
1(u(1)b)

+2z(g−1)C ′2
1 (u(1)b)C

′
1(u(1)a)+4(g−1)(ǫ1x+ǫ2z)C1(F )C

′
1(u(1)b)C

′
1(u(1)a)

+
10(g−1)xC ′3

1 (u(1)b)

3
+2(g−1)(5ǫ2x+ǫ1z−1)C1(F )C

′2
1 (u(1)b)

−2x(g−1)C ′
1(u(1)b)C2(su(2))2 . (7.38)

From these we see that:

Tr
(
R3
)
=2(g−1)

(
2ǫ31z+10ǫ32x−6ǫ1z+6ǫ1ǫ

2
2z+6ǫ2ǫ

2
1x−3ǫ21−6ǫ22−12ǫ2x+11

)
,

T r (R)=−2(g−1)(1−2zǫ1−4xǫ2) . (7.39)

This gives the a central charge:

a=
3(g−1)

(
34−18ǫ22−40ǫ2x+30ǫ32x−9ǫ21+18ǫ21ǫ2x+6ǫ31z−20ǫ1z+18ǫ1ǫ

2
2z
)

16
. (7.40)

Next we need to perform a-maximization with respect to both ǫ1 and ǫ2. In general the

solution is quite involved and we won’t write it here. However we can write the result for

specific cases. For instance for z = 1, x = 1
4 , we find:

a = 7.8911 (g − 1) , c = 8.19276(g − 1) . (7.41)

This matches the four dimensional result (6.18) for g = 3 as expected.
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Another interesting case is z = 0. Now we have turned off one of the fluxes and

so we expect symmetry enhancement. However the flux forms are different than before

leading now to the breaking of so(7) → u(1) × su(2)2 so we expect a 4d theory with

u(1) × su(2)2 global symmetry. In this case we can solve for ǫ1 and ǫ2 exactly finding:

ǫ1 = 0, ǫ2 =
3−

√
9+100x2

15x .

Inserting these values to a and c we find:

a = (g − 1)
18
(
−3 +

√
9 + 100x2

)
+ 25x2

(
117 + 8

√
9 + 100x2

)

600x2
,

c = (g − 1)
9
(
−3 +

√
9 + 100x2

)
+ 10x2

(
147 + 11

√
9 + 100x2

)

300x2
.

(7.42)

For the case of x = 1
4 , we get:

a =
2061 + 244

√
61

600
(g − 1) , c =

1038 + 127
√
61

300
(g − 1) . (7.43)

This matches (6.15) taking g = 3.

8 Summary

In this work we have studied the general structure of N = 1 SCFT’s which can be obtained

from 6d (1, 0) SCFT’s. We have seen that for each such theory, the resulting conformal

manifold is enriched, in addition to complex moduli of the Riemann surface, by the struc-

ture of the bundle associated with flavor symmetries of the 6d theory. The diversity of the

theories one obtains is further enhanced by the choice of an abelian subgroup of the flavor

group where in addition to flat holonomies one can turn on discrete fluxes for them on the

Riemann surface.

We checked the general expectation based on 6d reasoning in detail for compactifi-

cations of two M5 branes probing Z2 singularity on a genus g > 1 Riemann surface. In

particular we have detailed a field theoretic construction of a large set of models from

which we read off the anomalies and the conformal manifolds. These objects then were

matched to their six dimensional counterparts. This is a special case of a general story

but nevertheless it is rather rich. The richness is due to the fact that the compactification

outcome is determined, in addition to the number of branes and the type of the singularity,

by a choice of flux. We have obtained field theoretic descriptions of the theories in four

dimensions in terms of “strongly coupled” Lagrangians. The subtlety here is that in order

to build theories corresponding to general Riemann surfaces one has to tune couplings of

a theory with standard Lagrangian to a very specific, presumably strongly coupled, point.

There are several directions for further research. First, we have studied the different

models by defining building blocks and gluing them together in different ways. A way to

generalize the construction is to study more systematically different flows triggered by vac-

uum expectation values. Such flows geometrically correspond to shifting fluxes and closing

punctures. At the very least these should provide non trivial checks of the statements we

are making here.
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The six dimensional computations detailed here can be easily generalized to arbitrary

(1, 0) SCFT’s. In particular we can apply it to M5 branes probing arbitrary singularities,

numbers of branes, and choices of flux. For example, the conformal and flavor anomalies for

N M5 branes on Zk singularity with no fluxes for any abelian subgroup of the su(k)×su(k)×
u(1)t symmetry can be computed, and the a, c values are (see appendix F for derivation),

a =
1

32
(N − 1)(12 + k2(9N2 + 9N − 6))(g − 1) ,

c =
1

32
(N − 1)(8 + k2(9N2 + 9N − 4))(g − 1) .

(8.1)

These anomalies generalize [16] when k = 1, as well as the N = 2 k = 2 case of this

work. On the field theory side however the construction we used in this work is very fine

tuned to the special case of two branes and Z2 singularity. There are several ways in

which one can attempt to address the question from four dimension nevertheless. One

is straightforward but technically involved. The indices of the four dimensional theories

were shown in [9] to be written in terms of eigenfunctions of certain integrable models for

any number of branes and k of Zk (there should be also a generalization for any ADE

type of singularity). See [38, 39] for explicit expressions for the Hamiltonians of these

integrable models and [40–42] for the k = 1 N = 2 case. Moreover knowing the index of

a theory one can in principle extract its anomalies [43–46]. However, technically finding

the eigenfunctions of the integrable models is a difficult task even in the class S (k = 1)

case. The different limits in which the problem can be solved more easily [9, 42] are blind

to exactly marginal deformations though capture the relevant deformations.

Another road to generalizations is to understand better the dualities leading to rela-

tions between theories with Lagrangians and strongly coupled building blocks. This is the

study of the superconformal tails. Such tails were studied for the Zk orbifold case in [9].

In particular, if relevant dualities can be harnessed to isolate the strongly coupled building

blocks one would be able to write “strongly coupled” Lagrangians of the type discussed

in [28] and in this work. Technically this requires analyzing integral kernels arising from

supersymmetric tails and finding procedures to invert them extending the results of [31].

The theories with more branes and general singularities will be classified in addition

by a choice of an abelian symmetry where we turn on flux embedded in G × G(×u(1)t)
symmetry of the M5 brane setup. In addition we will have a rich choice of punctures,

recently addressed in [19], which will further come in different “colors” (corresponding to

choices of abelian fluxes) classified by the subgroups of G×G(×u(1)t) which they preserve.

Other challenges include making contact with the different limits one can consider.

Examples are the holographic limits [47, 48] and the compactification limits to lower di-

mensions. One can also consider studying general partition functions. On general grounds

we would expect that various indices (lens index [49], T 2 × S2 index [50, 51]) should be

derivable in terms of a corresponding TQFT structure (see [52, 53] for the lens index for

k = 1). The S4 partition function is expected to pose a more serious challenge. In this

work we have concentrated on genus larger than one though studying genus one should be

also feasible and it would be interesting to make contact to the results of [6–8].
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A Free trinion from TB

Starting from the TB trinion we can obtain the free trinion by partially closing the maximal

puncture, which appears twice, to a minimal one. The puncture is closed by giving a

vacuum expectation value to one of the M operators associated to the puncture. Let us

choose the component of M with charges t γβ z
−1
1 z−1

2 . This means that a combination of the

puncture su(N)2 symmetries and u(1)t is broken. In terms of fugacities we have t γβ = z1z2

which can be solved by taking z1 = t
1
2 γǫ−1 and z2 = t

1
2
1
β ǫ. We use the Lagrangian we

discussed for TB to understand the IR fixed point of this flow. It is easiest to perform the

analysis at the level of the index since it captures all the relevant details of the physics.

Here we simply need to figure out what is the residue of the index when z1 = t
1
2 γǫ−1 and

z2 = t
1
2
1
β ǫ [40]. The residue gives the index of the theory in the IR. The index is given by,

Iu
zv = Γe(pq

β2

γ2
)Γe(t(βγu2)

±1u±1
1 )(p; p)(q; q)

∮
dz

4πiz

Γe(
pqβ
tγ (βγu2)

±1z±1)

Γe(z±2)
Γe(

γ

β
z±1u±1

1 )I
z,v,

√
zu2,

√
u2/z

.

(A.1)

Here I
z,v,

√
zu2,

√
z/u2

is the index of the orbifold theory which we will soon write down. We

are using here the choice of R symmetry giving the bi-fundamental chirals Φ charge two in

this and next appendix. The function Γe(z) is the elliptic Gamma function and we refer

the reader to [9] for all the definitions used here. We need to compute the residue in z

which appears only in the orbifold theory. This index gives us the index of an su(2) SYM

with four flavors and a bunch of singlet fields. Let us see how this comes about. First we

write the index of this theory in detail,

Iz,v,a,b = (p; p)2(q; q)2
∮

dw1

4πiw1

∮
dw2

4πiw2

Γe(
pq
t (βγ)

±1w±1
1 w±1

2 )

Γe(w
±2
1 )Γe(w

±2
2 )

r (A.2)

Γe(t
1
2βb−1w±1

1 z±1
1 )Γe(t

1
2 γ−1bw±1

1 z±1
2 )Γe(t

1
2 γbw±1

2 z±1
1 )Γe(t

1
2β−1b−1w±1

2 z±1
2 )

Γe(t
1
2 γaw±1

1 v±1
1 )Γe(t

1
2β−1a−1w±1

1 v±1
2 )Γe(t

1
2βa−1w±1

2 v±1
1 )Γe(t

1
2 γ−1aw±1

2 v±1
2 ) .
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We see that,

Γe

(
t
1
2βb−1w±1

1 z±1
1

)
Γe

(
t
1
2 γ−1bw±1

1 z±1
2

)

Γe

(
t
1
2 γbw±1

2 z±1
1

)
Γe

(
t
1
2β−1b−1w±1

2 z±1
2

)∣∣∣
z1→t

1
2 γǫ−1,z2→t

1
2 1

β
ǫ
→

Γe

(
bǫw±1

2

)
Γe

(
tb−1β−2ǫw±1

2

)
Γe

(
b−1ǫ−1w±1

2

)
Γe

(
tγ2bǫ−1w±1

2

)

Γe

(
β

γ
b−1ǫw±1

1

)
Γe

(
tγβb−1ǫ−1w±1

1

)
Γe

(
β

γ
bǫ−1w±1

1

)
Γe

(
t
1

γβ
bǫw±1

1

)
. (A.3)

By usual pinching of contour integrals logic we have a pole when w2 = (bǫ)±1. The residue is

Iz,v,a,b → Γe

(
tβ−2ǫ2

)
Γe

(
tβ−2b−2

)
Γe

(
tγ2b2

)
Γe

(
tγ2ǫ−2

)
Γe

(
t
1
2 γ−1a (bǫ)±1 v±1

2

)

Γe

(
t
1
2βa−1 (bǫ)±1 v±1

1

)
(p; p) (q; q)

∮
dw1

4πiw1

Γe

(
pq
t (βγbǫ)±1w±1

1

)

Γe

(
w±2
1

) Γe

(
β

γ

(
bǫ−1

)±1
w±1
1

)

Γe

(
t
1
2β−1a−1w±1

1 v±1
2

)
Γe

(
t
1
2 γaw±1

1 v±1
1

)
. (A.4)

According to the prescription to close maximal puncture one also has to introduce five

singlet fields and couple them through superpotential. In the index this amounts to mul-

tiplying the above by Γe(pqβ
−2γ2)Γe(tβ−2ǫ−2)Γe(tγ2ǫ2)

Γe(tβ−2ǫ2)Γe(tγ2ǫ−2)
. Although it is not obvious from the

expression after this multiplication it is symmetric under the exchange of the u(1) fugac-

ities a, b, and ǫ. This follows from Seiberg duality. Let us denote the residue above by

Iz,a,b,ǫ and use the symmetry to write the residue of (A.1) as,

Iu
zv → Γe

(
pq
β2

γ2

)
Γe

(
pq
γ2

β2

)
Γe

(
t (βγu2)

±1 u±1
1

)
(p; p)2 (q; q)2 Γe

(
t
1
2 γ−1ǫu±1

2 v±1
2

)

Γe

(
t
1
2βǫ−1u±1

2 v±1
1

)∮ dz

4πiz

1

Γe (z±2)
Γe

(
γ

β
z±1u±1

1

)∮
dw1

4πiw1

Γe

(
pq
t (βγu2)

±1w±1
1

)

Γe

(
w±2
1

)

Γe

(
β

γ
z±1w±1

1

)
Γe

(
t
1
2β−1ǫ−1w±1

1 v±1
2

)
Γe

(
t
1
2 γǫw±1

1 v±1
1

)
. (A.5)

We see now that the z su(2) theory has only two flavors and thus is described by the

quantum deformed moduli space which in the index implies a delta function identifying u1
with w1. We thus get the index for the fixed point to be,

Iu
zv → Γe

(
t
1
2 γ−1ǫu±1

2 v±1
2

)
Γe

(
t
1
2βǫ−1u±1

2 v±1
1

)
Γe

(
t
1
2β−1ǫ−1u±1

1 v±1
2

)
Γe

(
t
1
2 γǫu±1

1 v±1
1

)
.

(A.6)

This is the index of a free trinion. We thus deduce that the theory TB under an RG flow

triggered by a vacuum expectation value for one of the mesonic operators associated to the

maximal puncture flows to free trinion.

B Trinion TA from trinion TB

We can also obtain trinion TA starting from a four punctured sphere built from TB trinions.

As we saw when one considers RG flow triggered by vacuum expectation values for puncture
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appearing twice on TB the fixed point is given by a free trinion. Let us glue together two

TB along the puncture appearing once and then close one of the remaining punctures to

minimal one,

Iwc;u · Iu
zv → (q; q)2 (p; p)2

∮
du1
4πiu1

∮
du2
4πiu2

Γe

(
pq
t (βγ/u2)

±1 u±1
1

)

Γe

(
u±2
1

)
Γe

(
u±2
2

) (B.1)

Γe

(
t
1
2 γ−1ǫu±1

1 v±1
2

)
Γe

(
t
1
2βǫ−1u±1

1 v±1
1

)
Γe

(
t
1
2β−1ǫ−1u±1

2 v±1
2

)
Γe

(
t
1
2 γǫu±1

2 v±1
1

)

Γe

(
pq
β2

γ2

)
(p; p) (q; q)

∮
dz

4πiz

Γe

(
pqβ
tγ (βγu2)

±1 z±1
)

Γe (z±2)
Γe

(
γ

β
z±1u±1

1

)
I
c,w,

√
zu2,

√
u2/z

.

We close the u(1) puncture completely by giving a vacuum expectation value to baryonic

operator implying ǫ = t
1
2
1
β . We need to add a single field coupled to the rest through

superpotential. The index becomes,

Iwc;u · Iu
zv → Γe

(
t
γ

β
v±1
2 v±1

1

)
Γe

(
pqβ−4

)
Γe

(
pq
β2

γ2

)

(q; q) (p; p)

∮
du1
4πiu1

Γe

(
pq
t

v2
βγu

±1
1

)

Γe

(
u±2
1

) Γe

(
tβ−1γ−1v−1

2 u±1
1

)
Γe

(
β2u±1

1 v±1
1

)

(p; p) (q; q)

∮
dz

4πiz

Γe

(
pqβ
tγ (βγv2)

±1 z±1
)

Γe (z±2)
Γe

(
γ

β
z±1u±1

1

)
I
c,w,

√
zv2,

√
v2/z

. (B.2)

The u1 su(2) gauge part has three flavors and thus is described in the IR by quadratic

gauge invariant composits,

Iwc;u · Iu
zv → Γe

(
t

(
γ

β
v2

)±1

v±1
1

)
Γe

(
p q

1

β2γ2

)

(p; p) (q; q)

∮
dz

4πiz

Γe

(
pq
tγβ

(
βγ−1v−1

2

)±1
z±1
)

Γe (z±2)
Γe

(
γβz±1v±1

1

)
I
c,w,

√
zv2,

√
v2/z

. (B.3)

This is exactly the index of TA. The trinion TA can be obtained thus as a fixed point of

RG flow starting from theories built from TB trinions, and the same of course holds for

any theory built from TA trinions.

The equation (B.2) implies also that TA trinion is obtainable from TB trinion by

gauging an su(2) subgroup of the latter. There is also an inverse relation giving TB from

TA. The operation of gauging an su(2) subgroup is a color-changing operation for a single

puncture. Note that if for some reason the β u(1) is broken the kernel of (B.2) is trivial

and the two theories are the same.

C Calculating the 6d anomaly polynomial

In this appendix we briefly review and collect the various formulas that we use in this article

to calculate and manipulate anomaly polynomials. For a more comprehensive discussion
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about the calculation of the anomaly polynomial for 6d SCFT’s see [37] and references

within. The anomaly polynomial receives contributions from the various fields in the theory.

For 6d SCFT’s the relevant possible fields are the vector, hyper and tensor multiplets. Their

contributions can be evaluated using the known contribution of a Weyl fermion [54]:

ch(E)Â(T ) , (C.1)

where in 6d we must project to the 8 form part.

Â(T ) is the Dirac A-roof genus conveniently given by:

Â(T ) = 1− p1(T )

24
+

7p21(T )− 4p2(T )

5760
+ . . . , (C.2)

where p1(T ), p2(T ) are the first and second Pontryagin classes of the tangent bundle re-

spectively.

ch(E) is the Chern character of the total bundle for any additional local or global

symmetries. It is convenient to expand it in terms of the Chern classes of the bundle:

ch(E) = rank(E) + C1(E) +
C2
1 (E)− 2C2(E)

2
+
C3
1 (E)− 3C1(E)C2(E) + 3C3(E)

6

+
C4
1 (E) + 4C1(E)C3(E)− 4C2

1 (E)C2(E) + 2C2
2 (E)− 4C4(E)

24
+ . . . , (C.3)

where Ci(E) stands for the i’th Chern class.

A useful property of the Chern character is its decomposition under the direct sum

and product of vector bundles:

ch(U ⊕ V ) = ch(U) + ch(v), ch(U ⊗ V ) = ch(U)ch(v) . (C.4)

There are similar formulas also for the Chern and Pontryagin classes. These are collectively

known as the splitting principle. For the Chern classes, defining the total Chern class as:

C(E) =
∑
Ci(E), it obeys:

C(U ⊕ V ) = C(U)C(v) . (C.5)

For the Pontryagin classes, given a decomposition of the bundle as a sum of complex line

bundles with first Chern classes ei, then:

p1(T ) =
∑

e2i , p2(T ) =
∑

i<j

e2i e
2
j . (C.6)

For the theories we consider the additional symmetries we encounter are the su(2)R R-

symmetry, gauge symmetries G and flavor symmetries F . Using (C.4) we see that ch(E) =

ch(R)ch(G)ch(F ). We next evaluate the contribution to the anomaly polynomial for each

multiplet in turn.
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Hyper. We consider a single hypermultiplet in a representation rG of the gauge symmetry

and rF of the flavor symmetry. It contains a single Weyl fermion which is an su(2)R singlet.

Thus its addition to the anomaly polynomial receives contributions from the tangent, gauge

and flavor symmetry bundles. Using the formulas presented in this section, it is given by:

drGdrF
7p21(T )−4p2(T )

5760
+drF

C2
2 (G)rG−2C4(G)rG

12
+drF

p1(T )C2(G)rG
24

−drG
p1(T )

48
(C2

1 (F )rF −2C2(F )rF )−
1

2
C2(G)rG(C

2
1 (F )rF −2C2(F )rF )+

1

2
C1(F )rFC3(G)rG

+drG
C4
1 (F )rF +4C1(F )rFC3(F )rF −4C2

1 (F )rFC2(F )rF +2C2
2 (F )rF −4C4(F )rF

24
, (C.7)

where we use Ci(G)rG for the i’th Chern class of the G-bundle with representation rG
whose dimension we denote by drG . We have also set C1(G) = 0 as all the gauge groups

we consider are simple.

Vector. We consider a single vector multiplet. It contains a single Weyl fermion which

is an su(2)R doublet and is in the adjoint representation of the gauge group. Thus its

addition to the anomaly polynomials receives contributions from the tangent, gauge and

R-symmetry bundles. Note that the chirality of the spinor is opposite to that of the fermion

in the hyper and tensor multiplets, and so contribute to the anomaly polynomial with a

minus sign. Using the formulas presented in this section, it is given by:

− dAd
7p21(T )− 4p2(T )

5760
− C2

2 (G)Ad − 2C4(G)Ad

12
− dAd

C2
2 (R)

24

− p1(T )C2(G)Ad

24
− dAd

p1(T )C2(R)

48
− C2(R)C2(G)Ad

2
, (C.8)

where we use C2(R) for the second Chern class of the su(2)R bundle in the doublet repre-

sentation.

Tensor. We consider a single tensor multiplet. It contains a single Weyl fermion which

is an su(2)R doublet. In addition it contains a self dual tensor which is also chiral and

thus contribute to the gravitational part of the anomaly, where the exact contribution was

evaluated in [55]. Using this and the formulas presented in this section, one finds:

23p21(T )− 116p2(T )

5760
+
C2
2 (R)

24
+
p1(T )C2(R)

48
. (C.9)

Besides the contributions of the field content one must also add the Green-Schwartz term.

This term takes into account the effect of modifying the Bianchi identity for the tensor

multiplet. It is a complete square and is chosen so as to make all gauge anomalies vanish.

C.1 The anomaly polynomial for the Z2 orbifold of the A1 (2, 0) theory

Using the above formulas it is now straightforward to calculate the anomaly polynomial

of the Z2 orbifold of the A1 (2, 0) theory using its gauge theory description. The matter

content includes: a single tensor multiplet, a vector multiplet in the adjoint of su(2)G and

8 half-hyper multiplets in the doublet representation of su(2)G. These are rotated with an
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so(7) global symmetry where they transform as the 8 dimensional spinor representation

of so(7).

Using the previous formulas we find after a little algebra:

Ifield8 = −C
2
2 (su(2))

4
− C2(R)p1(T )

24
− C2

2 (R)

12
− C2(R)C2(su(2))

+
C2(su(2))C2(so(7))8

4
+
C2(so(7))8p1(T )

24
+
C2
2 (so(7))8 − 2C4(so(7))8

12

+
29p21(T )− 68p2(T )

2880
, (C.10)

where we have used C2(su(2)r) = TrC2(su(2)), Tr being the second Casimir of the repre-

sentation r, to convert to a second Chern class that is independent of the representation.

To this we need to add the Green-Schwartz term given by:

IGS
8 =

(
C2(su(2))

2
+ C2(R)−

C2(so(7))8
4

)2

. (C.11)

Summing both terms we finally get:

I8 = Ifield8 + IGS
8

=
11C2

2 (R)

12
− C2(R)p1(T )

24
+
C2(so(7))8p1(T )

24
− C2(R)C2(so(7))8

2

+
7C2

2 (so(7))8
48

− C4(so(7))8
6

+
29p21(T )− 68p2(T )

2880
.

(C.12)

D Computation of anomalies and indices from field theory

In this appendix we give the details of the computations of the anomalies and indices from

the field theory side using the “strongly coupled” Lagrangians. Here we use the assignment

of R-charges giving R charge 1 to the Φ fields. The assignments giving other convenient

charges, 2 or 2
3 , can be obtained from this by admixing a proper multiple of u(1)t charge.

Anomalies. Let us define,

aχ(R) =
3

32
(3(R− 1)3 − (R− 1)) , cχ(R) =

1

32
(9(R− 1)3 − 5(R− 1)) ,

av(G) =
3

16
dimG , cv(G) =

1

8
dimG ,

(D.1)

For anomalies of chiral fields of R charge R and vector fields for group G. The supercon-

formal R charge will be denoted,

Rc(R, qβ , qγ , qt) = R+ ℓ1qβ + ℓ2qγ + ℓ3qt , (D.2)

and is a function of three variables ℓi to be determined by a maximization for each theory.

We also define,

a±v = av(su(2)× su(2)) + 4aχ(Rc(1, 1,∓1,−1)) + 4aχ(Rc(1,−1,±1,−1)) ,

c±v = cv(su(2)× su(2)) + 4cχ(Rc(1, 1,∓1,−1)) + 4cχ(Rc(1,−1,±1,−1)) ,
(D.3)
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as the anomalies for contributions of fields, bifundamental chirals and vectors, introduced

when we glue two punctures of the same color. The subscript denotes the color of puncture.

We warm up by computing the anomalies of the orbifold theory. The chiral matter,

Q±
i and Q′±

i , of table (4.16) determine the anomalies to be

aOrb = a−v + 8

(
aχ

(
Rc

(
1

2
, 1, 0,

1

2

))
+ aχ

(
Rc

(
1

2
,−1, 0,

1

2

))
+ aχ

(
Rc

(
1

2
, 0,−1,

1

2

))

+aχ

(
Rc

(
1

2
, 0, 1,

1

2

)))

= −3

8

(
3ℓ33 + 9ℓ23 + 36ℓ1ℓ2ℓ3 − 7ℓ3 + 18

(
ℓ21 + ℓ22

)
− 4
)
. (D.4)

Maximizing aOrb as a function of ℓi gives us ℓi = (0, 0, 13) and aOrb =
47
24 . For c we define

cOrb = c−v + 8

(
cχ

(
Rc

(
1

2
, 1, 0,

1

2

))
+ cχ

(
Rc

(
1

2
,−1, 0,

1

2

))
+ cχ

(
Rc

(
1

2
, 0,−1,

1

2

))

+cχ

(
Rc

(
1

2
, 0, 1,

1

2

)))

= −1

8

(
9ℓ33 + 27ℓ23 + 108ℓ1ℓ2ℓ3 − 17ℓ3 + 54

(
ℓ21 + ℓ22

)
− 17

)
. (D.5)

We insert the value of ℓi maximizing a and obtain cOrb =
29
12 .

From now on we will only consider the a anomaly as c can be obtained in a similar

manner. We start from the first non trivial theory, the TA trinion. It is constructed from

the orbifold theory by gauging an su(2) group with chiral fields listed in table (5.5) and

the fields φ′ which are flipping the Φ′ fields and thus have opposite charges and their R

charges sum up to two. The central charge is then given by,

aTA
= aOrb + av(su(2)) + 2

(
2aχ(Rc(0, 1, 1, 0)) + aχ(Rc(1, 1,−1, 1)) + aχ(Rc(1, 1, 1, 1))

+ aχ(Rc(1, 2, 0,−1)) + aχ(Rc(1, 0,−2,−1))

)
+ aχ(Rc(2,−2,−2, 0)) . (D.6)

Extremizing this with respect to ℓi we obtain the result reported in the bulk of the pa-

per (5.15). For the TB trinion we obtain again from the Lagrangian in section five,

aTB
= aOrb+av(su(2))+2

(
2aχ(Rc(0,−1,1,0))+aχ(Rc(1,−1,−1,1))+aχ(Rc(1,−1,1,1))

+aχ(Rc(1,−2,0,−1))+aχ(Rc(1,−2,0,−1))

)
+aχ(Rc(2,2,−2,0)) . (D.7)

This upon maximization reproduces (5.15).

We can compute the anomalies for theories with enhanced symmetry. The four punc-

tured sphere with Gmax = so(5)u(1) can be constructed as in section six from TA and

free trinions with subsequent closure of minimal punctures. It has the following confor-
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mal anomaly,

aTso(5)
=(2aTA

+a+v )+2av(su(2))+4

(
aχ(Rc(1,−1,1,−1))+aχ(Rc(1,1,1,−1))

+aχ(Rc(1,1,1,1))+aχ(Rc(1,1,−1,1))+aχ(Rc(0,−2,0,0))+aχ(Rc(0,0,−2,0))

)

+aχ(Rc(2,0,4,0))+aχ(Rc(2,4,0,0))

=−3

8

(
12ℓ33+18ℓ23−16ℓ3+36(1+ℓ3)(ℓ

2
1+ℓ

2
2)+72ℓ3ℓ2ℓ1−11

)
. (D.8)

Upon maximization it produces the anomalies (6.2). Moreover the conformal R symmetry

here is obtained by {ℓi} = (0, 0, 13). Gluing such theories together and computing anomalies

one discovers that these are consistent with the gauge coupling being exactly marginal.

For the so(7) theory of figure 10 we glue TA theory with plus sign to TA theory with

minus sign. The contribution to the anomaly of the minus theory is the same as the plus

one with ℓi flipping signs. The anomaly is then

aTso(7)
= aTA

(ℓ1, ℓ2, ℓ3)+aTA
(−ℓ1,−ℓ2,−ℓ3)+2av(su(2))+a

+
v (ℓ1, ℓ2, ℓ3)+a

+
v (−ℓ1,−ℓ2,−ℓ3)

=−3

8

(
18(2ℓ21+2ℓ22+ℓ

2
3)−17

)
. (D.9)

Maximizing this expression we get that all ℓi = 0 consistently with so(7) symmetry.

Let us now consider the anomaly for the su(3)u(1) example we discussed in section

six. This theory is given by combining together four copies of T−
B , four copies of T+

A , and

Tso(5). We have different types of punctures glues together and have to be careful about

that. Combining the ingredients we obtain the following anomaly,

aTsu(3)
=4(aTA

(ℓ1, ℓ2, ℓ3)+aTB
(−ℓ1,−ℓ2,−ℓ3)+2av(su(2)))+aso(5)(ℓ1, ℓ2, ℓ3) (D.10)

+6a+v (ℓ1, ℓ2, ℓ3)+2a−v (−ℓ1,−ℓ2,−ℓ3)+2a+v (−ℓ1,−ℓ2,−ℓ3)

=−3

8

(
120ℓ31+24ℓ33+90ℓ23−20(ℓ3+2ℓ1)+36(ℓ21+ℓ

2
2)(5+2ℓ3)+9ℓ1(ℓ

2
3+ℓ

2
2)−85

)
.

Maximizing this we obtain the ℓi given in (6.24) and anomalies of (6.21).

We can compute anomalies for flavor symmetries and mixed R-symmetry flavor sym-

metry anomalies. Let us give several examples. Since the theories are built iteratively

from orbifold theory we start with it. The computation is completely standard and we give

the result,

(TrRu(1)2t )orb = −4(1 + ℓ3) ,

(TrRu(1)2tβ)orb = −4(3 + 4ℓ2 + ℓ3) ,

(TrR2u(1)t)orb = −4(ℓ23 + 2ℓ3 − 1 + 4ℓ1ℓ2) ,

(TrR2u(1)tβ)orb = −4(ℓ23 + 2(1 + 2ℓ2)(ℓ3 + 2ℓ1)− 1)

(Tru(1)3t )orb = −4 ,

(Tru(1)3tβ)orb = −4 ,

(TrRu(1)2γ)orb = −8 .

(D.11)
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The symmetry u(1)tβ is the diagonal combination of u(1)t and u(1)β . We have written

down the dependence on mixing parameters since we will have to plug in the different

values for different theories obtained through the maximization procedure. One should

use the expressions we derived for the a anomaly above for various theories and change

the functions a for other anomalies for the different ingredients. One point to be cautions

about is that when a minus type theory is taken and anomaly of odd number of currents for

flavor u(1)s is considered then in addition to switching the signature of ℓi the anomaly has

to be taken with a minus sign. Let us quote the results for subset of the different models

and we mentioned till now and a sub-set of anomalies. For the TB trinion we obtain,

(TrRu(1)2t )TB
= 4(ℓ1 − ℓ2 − ℓ3 − 1) ,

(TrRu(1)2tβ)TB
= 4(4(ℓ1 − ℓ2)− 3) ,

(TrR2u(1)t)TB
= −4(ℓ21 + ℓ23 + ℓ22 + 2ℓ2(ℓ1 + ℓ3)− 2ℓ3(ℓ1 − 1)− 1) ,

(TrR2u(1)tβ)TB
= 2

(
8ℓ21 − 8ℓ1(ℓ2 + 1)− 4(2ℓ2 + 1)ℓ3 + 1

)

(Tru(1)3t )TB
= −4 ,

(Tru(1)3tβ)TB
= 16 ,

(TrRu(1)2γ)TB
= 4(ℓ1 − ℓ3 + 5ℓ2 − 2) .

(D.12)

For TA trinion we have,

(TrRu(1)2t )TA
= −4(ℓ1 + ℓ3 + ℓ2 + 1) ,

(TrRu(1)2tβ)TA
= −4(8(ℓ1 + ℓ2) + 4ℓ3 + 3) ,

(TrR2u(1)t)TA
= −4(ℓ21 + ℓ23 + ℓ22 + 2ℓ3(ℓ2 + ℓ1 + 1) + 6ℓ2ℓ1 − 1) ,

(TrR2u(1)tβ)TA
= −2(12ℓ21 + 8ℓ1(1 + 2ℓ2 + ℓ3) + 4ℓ3(ℓ3 + 4ℓ2 + 1)− 3) ,

(Tru(1)3t )TA
= −4 ,

(Tru(1)3tβ)TA
= −48 ,

(TrRu(1)2γ)TA
= −4(ℓ1 + ℓ3 + 5ℓ2 + 2) .

(D.13)

The so(5) theory for sphere with four maximal punctures gives,

(TrRu(1)2t )Tso(5)
= −8(1 + 2ℓ3) ,

(TrRu(1)2tβ)Tso(5)
= −8(4(ℓ1 + ℓ2 + ℓ3) + 3) ,

(TrR2u(1)t)Tso(5)
= −8(2((ℓ1 + ℓ2)

2 + ℓ23) + 2ℓ3 − 1) ,

(TrR2u(1)tβ)Tso(5)
= −8(2((ℓ1 + ℓ2)

2 + ℓ23) + 2ℓ3(2ℓ2 + 2ℓ1 + 1) + 4ℓ1 − 1) ,

(Tru(1)3t )so(5) = −16 ,

(Tru(1)3tβ)Tso(5)
= −64 ,

(TrRu(1)2γ)so(5) = −16(ℓ3 + 2ℓ2 + 1) .

(D.14)

For Gmax = so(5)u(1) theories the a maximization as we mentioned gives ℓi to be (0, 0, 13).

We can construct anomalies for genus g surface by gluing g − 1 four punctured spheres
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together. Summing the contributions of the spheres and the vectors we derive,

(TrRu(1)2t )Tso(5),g
= (g − 1)(TrRu(1)2t )Tso(5)

+ (2g − 2)

(
−8

3

)
= −56

3
(g − 1) ,

(TrR2u(1)t)Tso(5),g
= (g − 1)(TrR2u(1)t)Tso(5)

+ (2g − 2)

(
−8

9

)
= −8

9
(g − 1) ,

(Tru(1)3t )Tso(5),g
= (g − 1)(Tru(1)3t )Tso(5)

+ (2g − 2)(−8) = −32(g − 1) .

(D.15)

This agrees with (7.22) up to relative normalization (−1
2) of u(1)t and u(1)a charges which

is a matter of convention.

Taking all the results and computing the anomalies for the su(3) example of section 6

we obtain,

(TrR2u(1)tβ)Tsu(3)
= −8

3
, (TrRu(1)2tβ)Tsu(3)

= −8
√
385 ,

(Tru(1)3tβ)Tsu(3)
= −384 , (TrRu(1)2γ)su(3) = −4

3
(45 +

√
385) .

(D.16)

This is in perfect agreement with (7.31) up to sign for u(1)tβ which is again a matter

of convention.

Indices. The computation of the indices is structurally identical to the computation of

the anomalies. We have already computed the indices of the trinions TA and TB in appen-

dices A and B. The indices of the other theories in the paper are obtained by combining

these using the usual rules of index computations. We state here the basic rules of the

computations. Gluing two theories, indices of which are given by Ia(u) and Ib(u), depends
on the colors and the signs of the two punctures. If the signs are the same we use the

Φ-gluing and the index of the combined theory is (here we assign R charge one to the Φ in

contrast to two in appendices A and B),

Ia⊕b = (q; q)2 (p; p)2
∮

du1
4πiu1

∮
du2
4πiu2

Γe

(
(pq)

1
2 1

tS

(
βγC

)±1
u±1
1 u±1

2

)

Γe

(
u±2
1

)
Γe

(
u±2
2

) Ia (u1, u2) Ib(u2, u1)

(D.17)

Here the number C takes value in ±1 and denotes the color of the maximal punctures.

Number S takes also value in ±1 and denotes the sign of the punctures. If the signs of the

two punctures are opposite then the index of the combined theory takes the form,

Ia⊕b = (q; q)2 (p; p)2
∮

du1
4πiu1

∮
du2
4πiu2

1

Γe

(
u±2
1

)
Γe

(
u±2
2

)Ia (u1, u2) Ib (u2, u1) . (D.18)

If we are given a theory of a particular sign index of which is I(ul, β, γ, t) the index of

the theory of opposite sign is I(u†
l ,

1
β ,

1
γ , t

−1). Employing these simple rules all the indices

reported in the file can be easily derived.
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E Conformal manifold of the orbifold theory

There are several ways to study the conformal manifold of the orbifold theory. We can

analyze it for example at the vicinity of free point. At that point the symmetry of the

theory is H = su(8) × su(8) × su(2) × u(1)t. The fields Q1 = {Q+
1 , Q

−
2 , Q

′+
1 , Q

′−
2 } and

Q2 = {Q−
1 , Q

+
2 , Q

′−
1 , Q

′+
2 } are in the 8 of one of the two su(8)s. The su(2) group rotates

the two Φs. The u(1)t was defined in section four, and under it the Φs have charge −1

and all the other chirals have charge 1
2 . We have two additional abelian symmetries which

are anomalous once the gauge interactions are switched on. The marginal operators are,

λ Q1 · Φ · Q2. In addition we have two gauge couplings. The coupling λ are singlets of

u(1)t and transform as (8,8,2) under the non abelian factors. We find the dimension of

the conformal manifold by performing the hyper Kahler quotient [26] (λ, g1, g2)/H and

computing its dimension. This amounts to counting independent holomorphic invariants

built from λs and the two gauge g1 and g2. This can be easily done. The invariants under

the two su(8)s are the “baryons” built from the λs. These baryons form the 9 of su(2).

There are six independent invariant built from these “baryons” and this is the dimension

of the conformal manifold. We have 130 couplings we start with and the dimension of

the group including anomalous symmetries is 132. We have eight symmetries, all abelian,

preserved on a generic point of the manifold. This gives us again conformal manifold of

dimension six as the broken symmetries must be consumed by marginal operators.

One of the exactly marginal directions preserves the su(4) × su(4) × u(1) × u(1) ×
u(1) symmetry mentioned in the file. At generic point of this manifold we have marginal

deformations in (15,1, 0, 2) and (1,15, 0,−2). This can be deduced for example by writing

down the index of the orbifold theory which at order pq gives,

1 + (β2γ2 − 1)151 +

(
1

γ2β2
− 1

)
152 − 1− 1− 1 . (E.1)

The negative terms are the conserved currents, the first terms is the exactly marginal de-

formation preserving the symmetries. the rest of the terms are the marginal deformations.

We again can perform the quotient looking for holomorphic invariants. We can construct

six singlets of the su(4)s charged under the u(1)s plus and minus four, six and eight. From

the singlets we can build five invariants. With the addition of the deformation we started

with this again gives us six dimensional manifold.

Let us also count the dimension of the conformal manifold preserving (su(2)2)3 of the

so(7) trinion. The E7 surprise theory has 1463 marginal deformations forming a single

representation of E7. This decomposes into so(12)× su(2)γ/β ,

1463 = (66,1) + (77,3) + (352′,2) + (462,1) .

The different representations of so(12) decompose to su(2)× su(2)× so(8),

66 = (3,1,1) + (1,3,1) + (2,2,8v) + (1,1,28) ,

352′ = (2,1,8c) + (1,2,8s) + (2,3,8c) + (3,2,8s) + (2,1,56c) + (1,2,56s)

462 = (1,1,28) + (3,1,35s) + (1,3,35c) + (2,2,56v)

77 = (1,1,1) + (3,3,1) + (2,2,8v) + (1,1,35v) (E.2)
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Representation 35v decomposes under su(2)4 as

(2,2,2,2) + (3,3,1,1) + (1,1,3,3) + (1,1,1,1)

Thus the 1463 has only two singlets, which we denote as λ and λ′, of su(2)6 decomposition

(of so(12)) which are both adjoints of su(2)β/γ . From these singlets we can construct three

independent holomorphic invariants of su(2)6× su(2)γ/β (Trλ2, Trλ′2, and Trλλ′). These

give the three deformations preserving the su(2)6 symmetry. These are the exactly marginal

deformations of our interest.

F Anomalies for more general case

In this appendix we consider the calculation of the 4d anomaly polynomial from the 6d

one in the case of general N and k. This differs from the N = k = 2 calculation performed

previously only by the different (1, 0) 6d SCFT, here being the Zk orbifold of the 6d AN−1

type (2, 0) theory. This SCFT has an N − 1 dimensional Tensor branch along which the

theory can be effectively described by an NF + su(k)N−1 +NF quiver gauge theory. For

general N and k the theory has an su(k)×su(k)×u(1) global symmetry. This is enhanced

to su(2k) when N = 2, su(2)3 when k = 2 and further to so(7) when N = k = 2.

We will need the 6d anomaly polynomial for this theory to perform the calculation,

where for simplicity we shall set the curvature of the flavor symmetries to zero. The

anomaly polynomial for this case was derived in [37] and reads:

I8 =
(N − 1)(2 + k2(N2 +N − 1))C2

2 (R)

24
− (N − 1)(k2 − 2)p1(T )C2(R)

48

+
(7k2 + 30N − 30)p21(T )− 4(k2 + 30N − 30)p2(T )

5760
. (F.1)

Next we integrate this on the Riemann surface. For this we need to include the twist

and decompose C2(R) and p1(T ), p2(T ) exactly as done in section 7. The result is:

I6=
(N−1)(2+k2(N2+N−1))(g−1)C3

1 (F )

6
+
(N−1)(k2−2)(g−1)p1(T )C1(F )

24
. (F.2)

From which we find that Tr(R3) = (N − 1)(2 + k2(N2 + N − 1))(g − 1), T r(R) =

−(N − 1)(k2 − 2)(g − 1). Combining these we find:

a=
1

32
(N−1)(12+k2(9N2+9N−6))(g−1),

c=
1

32
(N−1)(8+k2(9N2+9N−4))(g−1) .

(F.3)

There is one final issue we need to address. For general N and k the global symmetry

of the resulting 4d theory includes a u(1) coming from the 6d flavor one. Thus one might

worry it can mix with the R-symmetry and so invalidates (F.3). However, by inspection

one can see that the only terms in the 6d anomaly polynomial that can contribute to the

4d one are proportional to C2(R). Furthermore the only term that can appear in the

6d anomaly polynomial containing both C2(R) and the curvature for the u(1) symmetry,

C1(u(1)t), is C2(R)C
2
1 (u(1)t). Therefore the only non-trivial anomaly for u(1)t in 4d will

be Tr(Ru(1)2t ) implying that a will be extremized at zero mixing.
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G Maximal punctures as two minimal punctures and integrable models

The supersymmetric indices of theories discussed in this paper can be neatly written in

terms of eigenfunctions of certain difference operators [9]. This makes the duality properties

of the theories manifest through a TQFT structure of the index [40, 42, 56]. The different

properties of the theories are encoded in the index in a duality invariant way and imply

certain mathematical identities. Let us for completeness present this structure here.

We can write the index of the free trinion as [9],

I(u,v, δ; t, β, γ) =
∑

λ

ψλ(u; t, β, γ)ψλ(v; t, β
−1, γ)φλ(δ; t, β, γ) . (G.1)

Here we use the choice of R charge giving value two for the fields Φ. Each one of the three

functions appearing in this sum is associated to a puncture, with two ψλs associated to the

two different colors of maximal puncture [9], and φλ to the minimal one. The functions ψλ

are orthonormal eigenfunctions of a set of difference and integral operators with the index

λ parametrizing the set. For example defining,

T (v1, v2;β, γ, t) =

θ

(
tv−1

1 v−1
2

q

(
γ
β

)±1
; p

)
θ
(
tβv1
γv2

; p
)
θ
(
tβ3γv2

v1
; p
)

θ
(
v21; p

)
θ (v22; p)

, (G.2)

the functions ψλ are eigenfunctions of

S
(β,−)
(0,1) · f(v1, v2) =

∑

a,b=±1

T
(
va1 , v

b
2;β, γ, t

)
f
(
q

a
2 v1, q

b
2 v2

)
. (G.3)

For more details we refer to [9]. The functions φλ can be understood as defined by the

relation (G.1). The different functions satisfy some relations. For example, since minimal

puncture can be obtained by RG flows from maximal punctures, taking residues of ψλ one

should obtain φλ [9]. As additional neat feature let us consider the splitting of maximal

punctures into pairs of minimal punctures when Gmax is so(5)u(1). When we go on the

conformal manifold of these models and break the u(1)β × u(1)γ symmetry, the minimal

punctures, as we have seen, look as half a maximal puncture. Conversely, the deformations

breaking su(2)βγ (su(2)β/γ) split the maximal punctures of first (second) color into two

minimal punctures. Turning deformations splitting both colors breaks u(1)β and u(1)γ .

Taking β = γ−1 or β = γ we expect to obtain relations between functions ψ and φ. Here

we take take both specializations, β = γ = 1, and obtain first,

φλ(α; t, 1, 1)φλ(δ; t, 1, 1) = Cλ(t)ψλ(δα, δ/α; t, 1, 1) . (G.4)

This is the manifestation of two simple punctures combining into a maximal one when

β = γ = 1. Explicitly computing the eigenfunction one can verify this property [9], at least

in some limits of the fugacities (p or q vanish). The proportionality factor Cλ can be fixed

by studying flows triggered by vacuum expectation values. The index of the Gmax equal

so(5)u(1) sphere with three maximal punctures is then,

I =
∑

λ

Cλ(t)ψλ(u; t, 1, 1)ψλ(v; t, 1, 1)ψλ(w; t, 1, 1) . (G.5)
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Note that this implies a neat product relation on the eigenfunctions. Defining ψ̂λ = Cλψλ

we obtain that,

ψ̂λ(u; t, 1, 1)ψ̂λ(v; t, 1, 1) = (q; q)2(p; p)2
∮

dz1
4πiz1

∮
dz2
4πiz2

Γe(
p q
t z

±1
1 z±1

2 γ±2)

Γe(z
±2
1 )Γe(z

±2
2 )

I
u,v,

√
z1z2,

√
z2/z1

(t, 1, 1) ψ̂λ(z; t, 1, 1) . (G.6)

We can take advantage of this non linear integral equation in principle to solve for the

eigenfunctions in similar manner to what was done in [57]. The index of a general theory

with Gmax being so(5)u(1) is,

Ig,s =
∑

λ

(Cλ(t, γ))
2g−2+s

s∏

j=1

ψλ(uj; t, 1, 1) . (G.7)
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[55] L. Álvarez-Gaumé and E. Witten, Gravitational Anomalies, Nucl. Phys. B 234 (1984) 269

[INSPIRE].

[56] A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2d Topological QFT,

JHEP 03 (2010) 032 [arXiv:0910.2225] [INSPIRE].

[57] S.S. Razamat, On the N = 2 superconformal index and eigenfunctions of the elliptic RS

model, Lett. Math. Phys. 104 (2014) 673 [arXiv:1309.0278] [INSPIRE].

– 77 –

http://dx.doi.org/10.1007/JHEP05(2013)122
https://arxiv.org/abs/1301.7486
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.7486
http://dx.doi.org/10.1007/JHEP10(2013)048
http://dx.doi.org/10.1007/JHEP10(2013)048
https://arxiv.org/abs/1306.1543
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.1543
https://arxiv.org/abs/hep-th/0509097
http://inspirehep.net/search?p=find+EPRINT+hep-th/0509097
http://dx.doi.org/10.1016/0550-3213(84)90066-X
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B234,269%22
http://dx.doi.org/10.1007/JHEP03(2010)032
https://arxiv.org/abs/0910.2225
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.2225
http://dx.doi.org/10.1007/s11005-014-0682-5
https://arxiv.org/abs/1309.0278
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.0278

	Introduction
	Basic setup
	Adding punctures
	M5 branes probing ADE compactified on a surface
	N=2 sub case and the resolution of a puzzle

	Four dimensional perspective: preliminaries
	Linear and circular quivers
	Higher genus theories
	Marginal directions

	Two M5 branes on A(1) singularity: preliminaries and summary
	Symmetries and group theory
	Punctures and gluings
	The G**(max)=so(7) models
	The G**(max)=so(5)u(1) models

	The G**(max)=su(2)(diag)u(1)**(2) models: derivation from dualities
	The Z(2) orbifold of the N=2 SYM
	IR dual descriptions A
	IR dual descriptions B
	Supersymmetric index and anomalies
	The G**(max)=su(2)(diag)u(1)**(2) models
	Theories of type G**(max)=u(1)**(3)

	Relations between the models
	The G**(max)=so(5)u(1) models from G**(max)=su(2)(diag)u(1)**(2) ones
	so(5) x u(1)(t) models with general u(1)(t) flux.
	The G**(max)=so(7) models from G**(max)=so(5)u(1) models
	Models with G**(max)=su(2) x su(2) x u(1)
	Models with G**(max)=su(2)u(1)**(2)
	Model with G**(max)=su(3)u(1)
	Model with G**(max)=tilde(so(5))u(1)

	Anomalies from six dimensions
	Models with G**(max)=so(5)u(1)
	Models for G**(max)=su(3)u(1)
	Models for G**(max)=su(2)u(1)**(2)

	Summary
	Free trinion from T(B)
	Trinion T(A) from trinion T(B)
	Calculating the 6d anomaly polynomial
	The anomaly polynomial for the Z(2) orbifold of the A(1) (2,0) theory

	Computation of anomalies and indices from field theory
	Conformal manifold of the orbifold theory
	Anomalies for more general case
	Maximal punctures as two minimal punctures and integrable models

