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Abstract

A 4D ordered-subsets maximum a posteriori (OSMAP) algorithm for dynamic SPECT is described
which uses a temporal prior that constrains each voxel’s behavior in time to conform to a
compartmental model. No a priori limitations on kinetic parameters are applied; rather, the parameter
estimates evolve as the algorithm iterates to a solution. The estimated parameters and time-activity
curves are used within the reconstruction algorithm to model changes in the activity distribution as
the camera rotates, avoiding artifacts due to data inconsistencies between projection views. This
potentially allows for fewer, longer duration scans to be used and may have implications for noise
reduction. The algorithm was evaluated qualitatively using dynamic 99mTc-teboroxime SPECT scans
in two patients, and quantitatively using a series of simulated phantom experiments. The OSMAP
algorithm resulted in images with better myocardial uniformity and definition, gave time-activity
curves with reduced noise variations, and provided wash-in parameter estimates with better accuracy
and lower statistical uncertainty than those obtained from conventional ordered-subsets expectation-
maximization (OSEM) processing followed by compartmental modeling. The new algorithm
effectively removed the bias in k21 estimates due to inconsistent projections for sampling schedules
as slow as 60 sec. per timeframe, but no improvement in washout parameter estimates was observed
in this work. The proposed dynamic OSMAP algorithm provides a flexible framework which may
benefit a variety of dynamic tomographic imaging applications.

1. INTRODUCTION

Conventional imaging with single-photon emission computed tomography (SPECT) involves
acquiring projection data of radiopharmaceutical distributions that are assumed to be fixed over
the duration of the scan. Physiological processes are dynamically changing, however, and the
kinetics of radiotracer uptake and redistribution can provide quantitative measures of
physiological processes that furnish more information than is available from static imaging.
Dynamic imaging with positron emission tomography (PET) is a well-established
methodology (Huang and Phelps 1986). More recently, developments in SPECT imaging
agents and camera hardware have sparked interest in performing dynamic imaging with that
modality (Budinger et al. 1991, Nakajima et al. 1991, Chiao et al. 1994b, Smith and Gullberg
1994, Gullberg et al. 1998, Iida and Eberl 1998, Lau et al. 1998). Dynamic imaging with
SPECT is more difficult than it is with PET for a variety of reasons. In particular, the use of
rotating gamma cameras limits temporal sampling rates and leads to data inconsistencies
between projection angles (Links et al. 1991, Smith and Gullberg 1994, Welch et al. 1995,
Ross et al. 1997, Lau et al. 1998). Likewise, the relatively high levels of statistical noise greatly
limit the confidence with which kinetic parameters can be estimated (Huesman and Mazoyer
1987, Kadrmas et al. 1999, Welch et al. 1995). The sampling and data inconsistency problems
can be reduced by using fast serial acquisitions (down to 5s. per 360° scan with a 3-head
camera), but this results in very large datasets, provides very low statistics for each timeframe,
and precludes the use of contoured orbits. From a practical standpoint slow rotation protocols
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are desirable, and they may be the only feasible option when multi-head cameras are not
available. However, slow rotation protocols result in poor temporal sampling at the
tomographic level and enhance the data inconsistency problem.

Recent efforts in dynamic SPECT research have sought to mitigate the problem of inconsistent
projections while utilizing the faster temporal sampling that occurs at the level of individual
projection views, as opposed to full tomographic scans. Many researchers have investigated
bypassing the image reconstruction step and estimating kinetic parameters directly from
projection data (Chiao et al. 1994a, Limber et al. 1994, Zeng et al. 1995, Matthews et al.

1997, Huesman et al. 1998, Meikle et al. 1998, Reutter et al. 1998, Bauschke et al. 1999, Sitek
et al. 1999). Since the tomographic sampling must be decoded in these schemes, it may be
more accurate to say that the reconstruction and parameter estimation steps have been
combined instead of the reconstruction step bypassed. The work presented here falls along
similar lines, though tomographic reconstruction remains an explicit feature of the proposed
data processing scheme.

Kinetic parameter estimation from dynamic tomographic data is a problem especially receptive
to maximum a posteriori (MAP) reconstruction methods—the nature of the problem
presupposes a priori knowledge of the form of the solution, i.e. that the temporal behaviors of
the reconstructed image voxels obey a compartmental model. We propose a MAP algorithm
for reconstructing dynamic SPECT data that uses a temporal prior based upon a compartmental
model for tracer kinetics. The algorithm is four-dimensional (3D spatial plus time) and
reconstructs each timeframe of the serial acquisition simultaneously; a related 4D algorithm
was previously proposed by Lalush and Tsui (1998) for the reconstruction of gated SPECT
data. The temporal prior encourages the time behavior of image values to match a
compartmental model. It also provides a means for modeling how the tracer distribution
changes as the camera rotates during the acquisition, thereby addressing the inconsistent
projection problem. The prior can be applied on a voxel-by-voxel or regional basis, and it
introduces a degree of temporal smoothing on the time-activity curve (TAC) for each voxel,
potentially reducing the effects of statistical noise. Calculation of the temporal prior term
involves finding the best fit TAC for the compartmental model at each iteration. This results
in kinetic parameter estimates that evolve as the algorithm iterates toward a solution, bearing
many similarities with parametric reconstruction algorithms (Carson and Lange 1985, Meikle
et al. 1998). The framework is also well-suited for accepting spatially regularizing priors, and
such priors could readily be applied to either reconstructed voxel intensities or kinetic
parameter estimates as desired.

In this paper we describe the 4D MAP reconstruction algorithm with compartmental-model
based prior and model for the inconsistent projection phenomenon, and implement it using an
ordered-subsets approach. Initial evaluation of the 4D OSMAP algorithm is then performed
using two patient studies and a series of simulation experiments for dynamic cardiac SPECT
imaging of Tc-99m teboroxime (Stewart et al. 1990, Bontemps et al. 1991, Nakajima et al.

1991, Leppo et al. 1991, Chua et al. 1993, Smith et al. 1996). Teboroxime is a neutral lipophilic
compound with high myocardial extraction and rapid washout kinetics, making it well-suited
for dynamic imaging. The wash-in rate parameter for teboroxime has been shown to correlate
well with perfusion, and may potentially provide a quantitative measure of myocardial
perfusion in vivo using dynamic SPECT imaging. Imaging of other tracers was not evaluated
in this work. The bias and noise properties of the new algorithm for the teboroxime imaging
application are studied and compared with the conventional dynamic image processing method.
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2. ALGORITHM DESCRIPTION

Let x̂ and p̃ be vectors representing the image voxels and projection measurements,
respectively, including all timeframes of the dynamic acquisition. Baye’s equation relates the
a posteriori probability distribution P(x̂|p̃) to the likelihood function Pp̃|x̂):

(1)

where P(x̂) and P(p̃) are the a priori probability distributions of the images and projection
measurements, respectively. Let T be the number of individual scans acquired in the dynamic
sequence; i.e., T is the number of timeframes. The vector x̂ has NT elements, where N is the
number of voxels in a single 3D image; likewise p̃ has MT elements, where M is the number
of projection image pixels acquired per individual scan (equal to the number of bins × slices
× angles). The measurements p̃ should be normalized to units of either activity or counts per
second. In the following discussion, we index the images and measurements as follows: the
ith element of x̂ is related to spatial voxel j and timeframe n by i = j + (n−1)N; likewise, the
mth element of p̃ is related to projection image pixel l and timeframe n by m = l + (n−1)M.

In the following subsections we discuss the prior, P(x̂), which incorporates the compartmental-
model, and then the likelihood function will be described with the added feature of modeling
the dynamic changes in activity distribution in order to compensate for the inconsistent
projection phenomenon. We use the conventions that a tilde (~) denotes measured values, a
caret (ˆ) indicates a quantity that is–or will be–estimated from the measurements, and a bar (¯ )
signifies that the value results from a fit to the estimated data.

One key, and rather unique, property of the proposed algorithm is the notion of reconstructing
images that represent instantaneous activity distributions in time. Generally, tomographic data
are reconstructed to provide images that represent the average or integral activity distribution
over the time during which the scan was acquired. When using a 4D reconstruction algorithm
that uses continuous analytical models for each voxel’s temporal behavior, it is possible to
reconstruct “instantaneous” estimates of the activity distribution at given points along the
modeled time-activity curves. However, though the reconstructed images represent the activity
distribution at given instants in time, the highest temporal frequency that can be reconstructed
by the algorithm is limited by the temporal sampling rate of the measurements. In our case,
this rate is given by the acquisition time of individual projection angles. This frequency is
generally much higher than what is needed to accurately represent the time-activity curves of
most tracers, but utilization of higher sampling rates is helpful in compensating for the
inconsistent projection phenomenon. We have chosen to reconstruct one timeframe for each
full tomographic acquisition, though the proposed algorithm has considerable flexibility for
reconstructing additional timepoints as well. In order to minimize the temporal distance from
the reconstructed timepoint to the time that each projection view was acquired, images in this
work were reconstructed at the times corresponding to the midpoint of each individual scan.
The reasons for reconstructing instantaneous activity estimates are somewhat subtle but will
become evident with further examination of the algorithm and its implementation.

2.1. Compartmental-Model Based Prior

The foundation of the proposed 4D MAP algorithm is the compartmental-model based
temporal prior. We describe the prior as applied on a voxel-by-voxel basis; the framework can
easily be extended for priors defined for groups of voxels, or to eliminate the prior for some
voxels. A time-activity curve vector can be described for each spatial voxel j at each iteration
by collecting the reconstructed activity estimates of the voxel over time:
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(2)

Each TÂC(j) also includes the boundary condition that everything is zero prior to injection of
the radiotracer. The temporal prior is chosen so that the most probable TÂC(j) is the one that
best fits the compartmental model given the current image estimate. This is implemented by
first fitting TÂC(j) to the compartmental model to obtain a set of parameters {k⇀}j and a fitted

curve . The current implementation assumes that the input function is known a priori,

e.g. from vascular sampling, by estimating it from projections (Sitek et al. 1999), or by other
methods (DiBella et al. 1999). A potential function is then assigned for each space-time voxel
i (spatial voxel j, timeframe n) such that the most probable value (μ̄i) is given by the value of

the fitted curve for that spatial voxel,  at timepoint n. The choices for potential functions
are numerous (Lange 1990), and we have heuristically chosen a Gaussian function:

(3)

where σi is the standard deviation of the distribution. Details on the selection of σi are given
below. Note that μ̄i depends on the current image estimate, hence the prior probability
distribution changes with iteration. The temporal prior encourages each TÂC(j) to match the
compartmental model, but it does not assign a priori limitations on the rate parameters of the
model. Thus the rate parameters evolve as the algorithm iterates toward a solution.

It is important to note that, unlike most previous applications of MAP reconstruction to
emission computed tomography, the temporal prior of our 4D MAP algorithm encompasses
long range features of the image (in time) and is not limited to local features only. This is
significantly different than spatial smoothing priors that operate on ‘cliques’ of neighboring
voxels. A priori knowledge of the temporal behavior of image values for all times, e.g. the
expectation that they obey a compartmental model, makes such application of long range priors
practicable. On a similar note, the temporal prior has an advantage over spatial smoothing
priors in one respect. One of the difficulties of applying a spatial smoothing prior is the need
to determine which voxels come from regions of nearly uniform intensity, and which voxels
are separated by an ‘edge’ and should have greatly different values. The temporal prior has no
such limitation since the a priori knowledge extends through all time, and therefore it is known
that all timepoints on the time-activity curve are related.

2.2. Selection of Prior Weighting Parameters

As written in (3) above, σi must be specified for each timeframe and each voxel, and it is these
parameters that determine the “weight” of the prior. We identify two components of these
weighting parameters: , where  represents the relative uncertainty for each timepoint
in TÂC(j), and γ is the overall weight of the prior. The inclusion of the relative uncertainties
is useful because each TAC encompasses a wide range of values, the statistical uncertainty for
each datum is related to the number of detected events arising from the voxel, and therefore it
is related to the voxel intensity. Furthermore, nonlinear fitting to the compartmental-model—
performed either within the OSMAP algorithm or as a post-processing step for conventional
OSEM reconstruction—requires that the relative uncertainties for each datum be estimated.
The selection of  is somewhat arbitrary, but it is also unlikely to have a dramatic effect upon
the results. Ideally,  would be set equal to the statistical uncertainty of space-time voxel i for
the current iteration and image estimate; however, this uncertainty is not known. We have set
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each  equal to the square-root of TÂC(j) plus the mean value of TÂC(j) over all time points.
The square-root term is based upon the assumption that the statistical uncertainty of each voxel
is proportional to its intensity (Barrett et al. 1994; Wilson et al. 1994), and second term helps
ensure that noisy voxels with low values do not receive disproportionately high weights.

The prior weighting factor, γ, must be selected for each imaging situation, and its optimal value
may depend upon the count level, acquisition protocol, compartmental model, and other
factors. The lack of optimal selection criteria for γ is currently a shortcoming of the dynamic
MAP algorithm, and indeed most other MAP approaches. For the evaluations presented later
in this paper, we varied γ for each reconstruction over a broad range and analyzed the
dependencies of the resultant image quality upon γ. This is further described in the methods
section. Further work should be performed in order to evaluate the optimal value of γ for each
imaging situation.

2.3. Formulation of the Likelihood Function: Modeling Inconsistent Projections

The likelihood function, P(p̃|x̂), relates the probability of obtaining the measurement p̃ given
the image estimate, x̂. In our case the activity distribution is known to be dynamically changing
in time, hence the measurements for different timeframes, and indeed at different angles of the
same timeframe, arise from different activity distributions. Furthermore, given a priori

knowledge that each voxel's temporal behavior conforms to a compartmental model, it is
possible to predict the activity distribution for each moment in time at which a projection angle
was measured. Therefore a 4D dynamic model of the image can be used to calculate the
likelihood function more accurately than in the more common case which assumes the activity
distribution is static.

Recall that the number of photons acquired in a particular projection bin, p̃m, is a random
variable governed by Poisson statistics. The likelihood function can be written:

(4)

where p̃m is the mean of the Poisson distribution governing measurement in bin m given that
the image is x̂. In order to model changes in tracer activity as the camera rotates, p̃m is calculated
using a time-dependent correction term, Δx̄i,m, which is calculated for each space-time voxel
i and projection-time measurement m. Consider that the reconstructed image for timeframe n
represents the instantaneous activity distribution at time tn, but the projection measurements
were acquired over some finite time interval around tn. Let  be the time at which projection
measurement m was acquired (recall index m refers to projection pixel l of timeframe n). For
shorter scan durations, the projection angle which measured pixel m may be treated as an
instantaneous sample at time ; however, for longer scans, the projection view may need to
be treated as an integral over an interval in time, and an adjustment should be made accordingly.
If A(t;{k⇀}j,β(t)) is the solution to the compartmental modeling equation at time t for spatial
voxel j, where {k⇀}j are the fitted rate parameters for TÂC(j) and β(t) is the blood input
function, then the time-dependent correction term can be calculated as:

(5)

This quantity can then be added to the voxel for time tn in order to predict what the activity in
the voxel is at the time of measurement, .
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Using the model for time-varying activity, the quantity p̂m in the likelihood function is written:

(6)

where F is the projection operator. Here F describes all source-to-measurement interactions
and can be considered to be the imaging system transfer matrix. Each element Fmi is the
probability that a photon emitted at source voxel location i would be detected in measurement
bin m. Ideally, F should model for all aspects of the imaging system, including the depth-
dependent detector response function, non-uniform attenuation, and scatter.

2.4. Expectation-Maximization Algorithm

Derivation of the expectation-maximization (EM) algorithm that maximizes eq. 1 requires two
steps: formulation of the expectation of the natural logarithm of eq. 1 (using the complete-data
likelihood function), and maximization of this expectation with respect to x̂. The steps of this
derivation are similar to those appearing in (Levitan and Herman 1987), and for the sake of
brevity we present only the result of each major step here. We first introduce the complete data,
z ͂i,m, which is the (unobservable) number of photons emitted from voxel i and detected in
projection bin m. Instead of maximizing the conditional expectation of the incomplete data
posterior probability function P(x̂|p̃) directly, the MAP-EM algorithm maximizes the
conditional expectation of the log of the complete data posterior probability function, P(x̂|z̃).
Hence, we need to write the complete data likelihood function, P(z̃|x̂):

(7)

Combining equation 3 and equation 7 according to Baye's relationship, the complete-data
posterior probability function with the inconsistent projection model can be written as:

(8)

The natural logarithm of eq. 8 is:

(9)

The E-step involves taking the conditional expectation with respect to p̃ and the current image
estimate, x̂old:
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(10)

where,

(10.1)

Here, Nmi is the conditional expectation of the complete data ẑi,m given that the measurement
p̃ has been made and that the image is x̂old. The result (10.1) is obtained by recognizing that

ẑi,m is multinomially distributed given , cells are i, number of trials is p̃m,
probability for each cell depends on F and x̂old).

The M-step involves maximizing eq. (10) with respect to x̂, which is accomplished by taking
the partial derivative of eq. (10) with respect to x̂ and setting the result equal to zero. This is
done using the one-step late method of Green (Green 1990) to calculate the derivative, since
elements of both the prior term (μ ̄i) and the model for inconsistent projections (Δx̄i,m) depend
upon x̂ in a complex manner. The final result is given by:

(11)

where,

(11.1)

and

(11.2)

One can verify that, when the weighting of the prior is set to zero (γ, σi → ∞), the algorithm
given in eq. 11 is equivalent to the maximum-likelihood expectation-maximization (MLEM)
algorithm. Likewise, if the prior is given infinite weight (γ, σi → 0), then eq. 11 converges in
one step to the fitted TACs (x̂i → μ ̄i). We make no attempt to prove convergence under other
conditions, but empirical evidence from over 18 months use attest to satisfactory convergence
in practice.

Kadrmas and Gullberg Page 7

Phys Med Biol. Author manuscript; available in PMC 2010 January 19.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



2.5. Ordered-Subsets Implementation

To speed the reconstruction, we have implemented the dynamic MAP-EM algorithm using an
ordered-subsets (OS) approach (Hudson and Larkin 1994). The angles within each subset were
equally spaced about the acquisition arc, and the subsets were ordered to maximize the angular
distance between successive subsets. No effort was made to subset within timeframes in
addition to within projection angles, though future optimizations of the algorithm should
investigate this possibility. The following list summarizes the major steps of the OSMAP
algorithm:

1. Form a 4D initial estimate image including all timeframes;

2. Extract TACs from the current image estimate for each region of the prior and f it to
the compartmental-model;

3. Project the current image estimate to the current subset using the model for
inconsistent projections based upon the compartmental-model fits obtained in step 2;

4. Compare the projected data to the measured data to get the errors;

5. Update the image estimate as in eq. (11); and

6. Repeat steps 2–5 until all subsets and iterations are traversed

3. EVALUATION METHODS

The new algorithm was used to process data from two patients which received dynamic cardiac
SPECT scans with Tc-99m teboroxime. These data are presented as a reference point for
practical implementation of the algorithm in a clinical setting, and provide a comparison
between kinetic rate parameter estimates obtained using the new algorithm and more
conventional processing with ordered-subsets expectation-maximization (OSEM) (Hudson
and Larkin 1994). The bias and noise properties of the new algorithm were then quantitatively
evaluated in detail using a series of simulated dynamic cardiac SPECT scans of Tc-99m-
teboroxime. The simulation studies were also used to evaluate the effects of varying the prior
weighting factor, γ, and to identify any gross differences in iterative convergence rate of
OSMAP as compared to OSEM.

3.1. Patient Studies

Two patient with known coronary artery disease received dynamic cardiac SPECT scans on a
three head IRIX gamma camera (Marconi Medical Systems) equipped with a Beacon™
transmission device and LEHR parallel-hole collimators. Two scans with Tc-99m teboroxime
were acquired in each patient, one at rest and the other under pharmacologic stress. The
teboroxime doses ranged from 629 to 1110 MBq (17 to 30 mCi) for these studies. The dynamic
acquisition protocol consisted of acquiring 90 scans, each of 10 second duration, by rotating
the 3-head camera successively clockwise and counter-clockwise through 120°. Each scan
acquired 60 projection angles at 6° intervals using continuous gantry rotation. The scans were
started 10–20 seconds prior to bolus injection of the radiotracer in order to ensure that the initial
rise of activity was imaged. Transmission scans were acquired prior to each SPECT scan in
order to obtain non-uniform attenuation maps so that attenuation compensation could be
performed.

Imaging data was recorded onto 128 × 128 matrices using 0.467 cm pixels. The data were then
reconstructed, first with 4 iterations of conventional OSEM, and then with 4 iterations of the
OSMAP algorithm, both with 4 angles per subset. A prior weighting factor of γ =4.0 was used
for OSMAP; no specific optimization of this parameter was performed here, and the value
chosen was based heuristically upon the results of the simulation studies described below. The
effects of non-uniform attenuation and depth-dependent detector response were compensated
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for by modeling them in both the projector and backprojector of the reconstruction algorithms
(Tsui et al. 1998). The OSEM images were reoriented into short-axis slices, and then 8
symmetrical ROIs were drawn over the left ventricle (LV) wall on each of 7 adjacent pairs of
short-axis slices for a total of 56 regions in all. No regions were drawn over the most basal or
apical short axis slices. Each ROI was carefully drawn to include as much of the myocardium
as possible while excluding background tissues; voxels which contained significant portions
of myocardium and blood pool were generally included, as the blood pool effects are included
within the compartmental model (fv). The average ROI contained 26 voxels and contained a
volume of 2.7cm3. The blood input function was obtained by drawing a large (26.7cm3) ROI
on the LV blood pool. Time-activity curves were then calculated by applying the ROIs to each
timeframe of the OSEM reconstructions, and the relative uncertainties for each data point were
calculated in the same manner as described in the theory section for computing the OSMAP
prior. The time-activity curves were fit to the two-compartment model shown in figure 1 using
a modified Newton’s method for function minimization in order to obtain wash-in and wash-
out rate parameters for each region.

The OSMAP reconstructions were performed using the same ROIs as for the OSEM analysis,
reoriented back to transaxial slices. Note that the OSMAP prior was only defined for voxels
included in the LV ROIs, hence we expect the algorithm to impose regularization only in the
vicinity of these ROIs and not across the entire image. The blood input function for the OSMAP
reconstructions was also taken from the OSEM analysis. Since the OSMAP algorithm performs
the compartmental-model fitting for each region internally at each iteration, the algorithm
outputted reconstructed images and kinetic parameter estimates for each region directly.

3.2. Simulation Experiment

3.2.1. MCAT Phantom—The series of simulation experiments was performed using the
mathematical cardiac torso (MCAT) phantom (Terry et al. 1990, Tsui et al. 1994). A static
version of the phantom was first created, and time-activity curves were later assigned to each
organ as described below to create a dynamic version of the phantom; this dynamic phantom
is based on the static MCAT and should not be confused with other dynamic versions of the
MCAT phantom such as the beating-heart phantom of Pretorius et al. (1997). The phantom
had a 36 × 24 cm body contour with small breasts and was initially discretized onto a 256 ×
256 × 128 grid using cubic 0.178 cm voxels. The phantom was separated into five ‘organs’:
blood, body, heart, liver and lungs; where ‘blood’ indicates the blood pools of the heart
chambers, and ‘body’ includes the soft tissue background and all organs not otherwise
specified. Sample images of the phantom organs and attenuation map for a transaxial slice
through the middle of the heart are shown in figure 2.

3.2.2. Projection Data—Static projection data for each organ were calculated using a
matrix-driven rotation-based projector that modeled the effects of non-uniform attenuation and
depth-dependent collimator-detector response. The effects of scatter were not included in the
simulation. The camera was modeled with a round-hole equivalent low-energy high resolution
parallel hole collimator and had an intrinsic spatial resolution of 0.4 cm full-width at half
maximum. A circular orbit was used with radius 19.0 cm to the front face of the collimator,
and 120 projection angles were acquired at 3° intervals. The phantom images were first
projected onto 256 × 128 projection matrices, and then collapsed to form 128 × 64 projection
images with 0.356 cm pixels. This pixel size was used for all remaining image reconstruction
and analysis.

3.2.3. Time-Activity Curves—Using the static versions of the MCAT phantom and
simulated projection data, corresponding dynamic versions were created by weighting and
summing the data for each organ according to simulated time-activity curves (TACs). Realistic
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TACs were uniformly assigned to all voxels of each organ based upon dynamic teboroxime
cardiac SPECT scans performed at our institution. The blood input function was modeled as
the sum of three decaying exponentials preceded by a 10 second ramp function, mimicking a
slow-bolus intravenous injection. The myocardium TAC was generated using the two
compartment model shown in figure 1, where k21 and k12 are the wash-in and wash-out rate
parameters, respectively, that describe exchange between the blood and extravascular tissue
compartments (Smith 1994,Gullberg et al. 1998). The rate constants are functions of the
permeability coefficient for flux out of and into the capillary (kij′, unit of length/time), the
volume per unit length of capillary (ø, unit of volume/length), and the volume of the exchanging
compartment (V, unit of volume) as given by:

(12)

The units of k21 and k12 are volume of exchanging blood in capillary per unit of time divided
by the volume of the extravascular compartment (i.e., ml/min/ml). Under this model, the
activity concentration A(t) in the myocardium is related to the activity concentration in the
blood, B(t), and the kinetic parameters by:

(13)

where fv is the vascular fraction in the myocardial region. Kinetic rate parameters of k21 = 1.4
ml/min/ml and k12 = 0.5 ml/min/ml were used for the simulations, and the vascular fraction
within myocardial tissue was set to be 0.1. The simulated TACs for each organ of the dynamic
phantom are plotted in figure 3.

3.2.4. Dynamic SPECT Acquisitions—The static projections for each organ were
weighted by the corresponding TACs and summed one angle at a time in order to simulate
serial SPECT acquisitions using a three head gamma camera. Four sets of acquisition protocols
were simulated, ranging from fast rotation to slow rotation serial acquisitions: 60 scans @ 10
sec. each, 30 scans @ 20 sec. each, 20 scans @ 30 sec. each, and 10 scans @ 60 sec. each.
Successive scans alternated between clockwise and counter-clockwise rotations of the gantry,
which has some implications with respect to sampling but is required unless a camera with
‘slip-ring’ capability is available. Each individual scan had 120 projection angles evenly spaced
over 360°. Note that the time at which each individual projection angle was acquired was
calculated and used to determine the weighting factor for that view. This leads to inconsistent
projection sets, as shown in figure 4, because the activity distribution changes as the camera
rotates.

3.2.5. Statistics—Since each acquisition protocol used a total acquisition time of 10 minutes,
the total count levels that would be acquired in practice for each protocol are nearly identical.
The simulated noise-free projection sets were scaled to have approximately 800,000 total
counts per typical cardiac slice over all time frames, and Poisson noise was simulated for each
data set. The noisy data were then reconstructed and used to study the bias and noise properties
of each data processing method as described below.

3.2.6. Reconstructions—The data for each acquisition protocol were reconstructed using
three methods: (i) conventional OSEM reconstruction of each timeframe separately; (ii) 4D
OSEM reconstruction using the model for inconsistent projections (identical to 4D OSMAP,
but not using a Bayesian update); and (iii) 4D OSMAP reconstruction with both the inconsistent
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projection model and Bayesian updates. Method (ii) provides a measure of the effectiveness
of the inconsistent projection model separate from the Bayesian update scheme. Since the
model requires knowledge of the predicted time-activity curves, the OSMAP reconstruction
code was used; however, the "weight" of the prior was set to zero (γ → ∞) so that OSEM
updates were performed. For the OSMAP reconstructions, the prior was applied on a region-
by-region basis as described in the next section so that each voxel in a given region shared the
same prior. Both algorithms used 4 angles per subset, and model-based compensation for the
effects of non-uniform attenuation and depth-dependent detector response was performed.

The OSMAP and OSEM algorithms may have different rates of iterative convergence, and it
is important to account for this when comparatively evaluating the algorithms. We used the
following stopping criterion: for each case studied, the number of iterations was chosen to
maximize the accuracy-to-noise ratio (ANR) for k21 (see next section on data analysis) with
the constraint that at least 3 iterations were performed in order to ensure suitable resolution
recovery. For OSEM, the ANR for k21 was maximized using between 3 and 5 iterations for
the different acquisition protocols studied. However, for OSMAP more iterations were required
to maximize the ANR, and this number varied dependent upon the acquisition protocol used:
10 iterations for the 60 × 10 sec. protocol; 9 iterations for the 30 × 20 sec. protocol; 7 iterations
for the 20 × 30 sec. protocol; and 3 iterations for the 60 × 10 sec. protocol.

The OSMAP reconstructions were repeated using numerous choices of the prior weighting
factor, γ, ranging from 0.001 to 100. The results showed that the performance of the OSMAP
algorithm was fairly insensitive to the choice of γ, and no significant changes in performance
were observed for choices of γ on or about the same order of magnitude as its optimal value.
Larger values of γ gave performance closer to OSEM, and smaller values of γ tended to slow
iterative convergence so that more iterations were required. Based on this non-intensive search,
we found the following values provided high (but not necessarily maximal) accuracy-to-noise
ratios (as described in the next section): γ =0.1 for the 60 × 10 sec. protocol; γ =0.7 for the 30
× 20 sec. protocol; γ =0.75 for the 20 × 30 sec. protocol; and γ =100 for the 10 × 60 sec. protocol.
Note that the value of γ for the slowest acquisition protocol was much higher than for the faster
protocols. A value of γ =100 gave slightly better results than γ =10, but using values of γ < 5
led to greater levels of bias. We postulate that, due to the low number of timeframes for this
slowest acquisition protocol, heavy weighting of the prior (i.e. γ < 5) slowed iterative
convergence to the point that excessive bias remained in the images.

3.2.7. Data Analysis—Eight regions-of-interest (ROIs) were placed on each of 12 short-
axis slices of the LV, for a total of 96 regions in all. Each region was drawn to encompass as
much of the myocardial tissue as possible while excluding background tissues outside of the
LV, though voxels containing part myocardium and part LV blood pool tended to be included
in the ROIs. The mean ROIs size was 32.5 ± 14.6 voxels (1.47 ± 0.66 cm3). Time-activity

curves was calculated for each region by computing the mean voxel value in the ROI over all

timeframes, and the resulting TACs were fit to the two compartment model to obtain estimates

of k21, k12, and fv. This fitting procedure is done automatically during reconstruction by the

OSMAP algorithm, and it was done after reconstruction for the OSEM cases. No post-

reconstruction smoothing filter was applied before calculating the kinetic rate parameters.

The mean and standard deviation of each rate parameter over the 96 regions was calculated for

each acquisition protocol for both OSEM and OSMAP. The mean values were used to estimate

the bias in the rate parameter estimates, and the standard deviations over the 96 regions were

treated as measures of the statistical noise. As a combined measure of bias and noise, the

accuracy-to-noise ratio, , was also calculated for each case.
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4. RESULTS

4.1. Patient Studies

Figure 5 shows example transaxial images for a single timeframe of one of the dynamic cardiac

SPECT patient studies reconstructed using conventional OSEM (no model for inconsistent

projections) and the proposed OSMAP algorithm. The high levels of noise in the images are

due to the very short acquisition time for this timeframe, only 10 sec. The images of figure 5

show differences in uniformity and definition of the myocardium, where the prior was defined,

but these effects are difficult to visualize given the very high levels of statistical noise present

in the images. As a measure of myocardial uniformity, we calculated the standard deviation

over the 56 ROIs drawn on the myocardial wall. For the timeframe shown in figure 5, the inter-

region standard deviation was 0.12 and 0.07 for OSEM and OSMAP, respectively. The average

inter-region standard deviation over all timeframes was 0.015 for OSEM and 0.011 for

OSMAP. These results show that the dynamic OSMAP algorithm produced images with better

myocardial uniformity than did OSEM, which is due to the regularizing effect of the OSMAP

algorithm. Note that this regularization occurs only in the temporal direction, and that no spatial

regularization due to either Bayesian reconstruction or linear filtering has been applied to these

images. Also note that the OSEM and OSMAP images appear very similar in the regions away

from the LV where no OSMAP prior was defined. Similar qualitative effects were seen on the

images of other timeframes (not shown).

Sample time-activity curves for a single ROI and both data processing schemes are given in

figure 6. The TAC for the OSMAP algorithm shows markedly reduced noise variations as

compared to the OSEM TAC. Similar effects were seen for the TACs from other regions. These

data suggest that the OSMAP algorithm has successfully imposed a temporal regularization

upon the reconstructed images due to the compartmental-model based prior.

In order to provide an example of the differences in kinetic parameter estimates obtained by

the two data processing methods, scatter plots of the rate parameter estimates and distribution

volumes (Vd=k21/k12) for OSMAP versus OSEM are given in figure 7. The data indicate that

there is a strong correlation in rate parameter estimates for a large subset of the data, but there

are also a fair number of regions for which the OSMAP algorithm gave parameter estimates

substantially different than the OSEM estimates. The distribution volume was more stable in

this regard but displayed similar behavior. These differences are likely due to the OSMAP

algorithm’s compensation for inconsistent projections and temporal regularization; however,

since no gold standard for flow values was available for the patient studies, it cannot be

determined from these data which algorithm gave more accurate results. We have performed

a series of simulation experiments in order to address this issue.

4.2. Simulation Experiments

Example reconstructed images for the simulation experiments are shown in figure 8. The

relative differences in image quality for the OSMAP versus OSEM reconstructions were

similar to, but more pronounced than, those presented earlier for the patient studies, and the

temporal smoothing of the time-activity curves imposed by OSMAP was also similar for both

the simulation and patient studies. Note that, for the simulation studies, the prior was also

defined for a large ROI drawn over the LV blood pool. The compartmental modeling equations

still hold for this ROI due to the inclusion of the vascular fraction fv (= 1.0 in this case). The

images of figure 8 also show improved uniformity in the blood pool, demonstrating the

regularizing effect of the prior even in blood-only regions.

The series of simulated phantom experiments was performed in order to quantitatively evaluate

the bias and noise properties of the new algorithm as compared to conventional processing
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with OSEM followed by compartmental modeling. The compartmental-model fit failed to

converge for one ROI of the fastest acquisition protocol, hence this data point was excluded

from the analysis. The estimated wash-in and wash-out parameters for each acquisition

protocol and reconstruction method are summarized in Table I, and the mean values of each

are plotted in figure 9. Scatter plots of OSMAP versus OSEM parameter estimates for the 60

× 10 sec. protocol are also provided in figure 10. There is less variability in the scatter plots

for the simulation experiments (figure 10) as compared to for the patient data (figure 7), largely

because the simulation study had a higher count level than did the patient data. However, in

both cases the scatter plots indicate that there was some degree of correlation between rate

parameters estimated by OSMAP versus OSEM, but the linear correlation analysis indicated

some substantial differences between the two algorithms.

In order to evaluate these differences, a detailed quantitative analysis of the data in Table I was

performed. Here, it was assumed that the parameters estimated for each of the 96 LV regions

were independent samples of the myocardium, which was uniform in truth. The error in the

mean values provides a measure of the bias in the rate parameters for each case, and the standard

deviation over the 96 regions was considered to represent variability due to statistical noise.

The accuracy-to-noise ratio was also calculated to provide a combined measure of bias and

noise. Finally, a t-test was performed in order to test the hypothesis that the rate parameter

estimates accurately represented the true values, versus the alternative that the parameter

estimates were biased away from the true values. The attained significance levels are listed for

cases that had significant bias, and the remaining cases are labeled NS (not significant),

indicating that these parameter estimates were not significantly different from the true values.

The results of the simulation experiments show some interesting trends, both with respect to

the data processing scheme applied as well as the dynamic acquisition protocol employed. In

most cases the bias in the k21 estimates was lower for OSMAP versus conventional OSEM,

and likewise the bias in k21 was lower for the OSEM reconstructions that used the model for

inconsistent projections than for conventional OSEM. The statistical hypothesis tests

demonstrated that there was no significant bias in OSMAP k21 estimates, whereas k21 estimates

from conventional OSEM were significantly biased in two of the four cases studied. The

accuracy-to-noise ratio measures for k21 showed an improvement for OSMAP versus OSEM

in 3 out of 4 cases. These results indicate that the OSMAP model for inconsistent projections

has achieved a fair degree of compensation, leading to more accurate wash-in rate parameter

estimates. This was especially true when Bayesian updates were applied, though a lesser degree

of compensation was achieved by the OSEM method which included the model for inconsistent

projections.

Considering statistical noise, the uncertainties in the k21 estimates shown in Table I were higher

for OSMAP than for OSEM. However, recall that these data were based upon stopping the

iterative algorithms at the iteration number which maximized the ANR. More iterations were

required to maximize the ANR for OSMAP than for OSEM. Though it turns out that the

OSMAP uncertainties were higher than those for OSEM when using this stopping criterion,

the ANR values for OSMAP were still better in 3 out of 4 cases. The ANR figure of merit used

here provides only an example of the relative importance of bias and noise; in many instances

the high levels of statistical noise encountered in dynamic SPECT necessitate the use of

processing methods which sacrifice some degree of accuracy in exchange for a reduction in

noise. In such cases, a different iterative stopping criterion would arise, and the OSMAP

algorithm may provide k21 estimates with considerably lower standard deviations. Consider

the plot of k21 standard deviation versus iteration number shown in figure 11. The OSMAP

algorithm resulted in wash-in parameter estimates with substantially lower standard deviations

at all iterations as compared to OSEM. Also note that the OSMAP results were more stable

with iteration, which lessens the importance of optimizing the exact number of iterations to
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use. We attribute these effects to the temporal regularization imposed by the OSMAP prior. It

is likely that further reductions in noise effects could be obtained by adding spatial

regularization as well, such as forming cliques of neighboring regions with similar kinetic

behaviors.

The OSMAP algorithm had a different effect upon wash-out parameter estimates, where

OSMAP k12 estimates tended to have somewhat higher bias than the OSEM k12 estimates. The

exception was for the slowest acquisition protocol, for which OSMAP gave the k12 estimate

with lowest bias. Interestingly, this was also the only case in which the bias in the k12 estimate

was not statistically significant. The reasons that OSMAP provided worse performance for

wash-out parameter estimates are not well understood. We have focused our efforts upon

obtaining improved wash-in estimates, because k21 has been shown to be a much better measure

of myocardial perfusion than k12 for dynamic teboroxime imaging (Smith and Gullberg

1994, Smith et al. 1996). Further work is required in order to evaluate the dynamic OSMAP

algorithm for tracers in which washout parameter estimates are of greater interest.

5. DICSUSSION AND CONCLUSIONS

The OSMAP algorithm proposed in this work was specifically designed to address two of the

difficulties associated with dynamic SPECT imaging, namely the issue of high statistical noise

and the problem of data inconsistencies caused by dynamic changes in tracer distribution that

occur during rotational acquisition. The algorithm addresses these difficulties by utilizing the

expectation that the temporal behaviors of the reconstructed image voxels obey a

compartmental-model for tracer kinetics within a Bayesian reconstruction framework. Though

application of the new algorithm in this paper was limited to dynamic cardiac SPECT imaging

with teboroxime, the OSMAP algorithm is readily applicable to other dynamic SPECT and

dynamic PET imaging applications, and it may potentially bring the benefits of reduced noise

and improved temporal modeling to such applications. In its current state, the algorithm

requires a priori knowledge of the blood input function, obtainable e.g. from vascular sampling,

by estimating it from projections, or by other methods. Note, also, that the algorithm is also

applicable to dynamic imaging applications which do not use compartmental-modeling, e.g.

those that use spectral mixture models, in which case the need for a blood input function may

be obviated.

The algorithm was evaluated qualitatively using dynamic Tc-99m teboroxime SPECT scans

in two patients, and quantitatively using a series of simulated phantom experiments. Promising

results were obtained for wash-in rate parameter estimates, but wash-out parameter estimates

were not improved. The reasons that the new algorithm failed to improve wash-out estimates

are not fully understood, but we emphasize that the goal of this work was to improve wash-in

estimates for dynamic teboroxime imaging, which have been shown to provide good

correlation with flow. We conclude that the proposed algorithm is able to achieve some degree

of compensation for the inconsistent projection phenomenon, and that its temporal

regularization can provide wash-in parameter estimates with higher accuracy-to-noise ratios

than those obtained with conventional OSEM processing. We emphasize that no direct spatial

regularization was applied in this work, though the OSMAP framework readily lends itself to

adding spatial cliques or other spatially regularizing priors. Further improvements may be

effected by adding such spatial regularizations, and also by optimizing the weight of the prior

for different imaging situations.

The simulation experiments included an analysis of the effects of using different acquisition

protocols for dynamic teboroxime SPECT. Recall that fast sampling protocols provide better

temporal sampling but very high levels of noise in each timeframe, whereas slower sampling

protocols suffer from data inconsistencies between individual projection angles. The results of
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this work demonstrate that the OSMAP algorithm effectively removed the bias in k21 estimates

by compensating for inconsistent projections, a result which held true for each of the sampling

protocols studied. The data also suggest that the 30 × 20 sec. acquisition protocol gave the best

k21 estimates in term of accuracy-to-noise ratio, but further work would be required to

exhaustively optimize the acquisition protocol for dynamic teboroxime SPECT.
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Figure 1.

A two-compartment model for the wash-in (k21) and wash-out (k12) of teboroxime between

the blood and the extravascular myocardial tissue.
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Figure 2.

Example transaxial images of the MCAT phantom (from left to right): attenuation map,

myocardium, heart blood pool, lungs, and soft tissue background. The liver was in more inferior

slices and is not shown here.
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Figure 3.

Simulated time-activity curves for teboroxime as used to form the dynamic MCAT phantom.
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Figure 4.

Simulated noisy sinograms for a single slice of the dynamic phantom as acquired over the

following timeframes (left to right): 0–120 sec., 120–240 sec., 240–360 sec., 360–480 sec.,

and 480–600 sec. This example of a slow-rotation dynamic acquisition was chosen to

demonstrate the inconsistent projection phenomenon, which is most easily seen for the first

timeframe—abrupt discontinuities are visible between the sections of the sinogram acquired

by each of the three camera heads.
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Figure 5.

Example transaxial reconstructed images of a dynamic SPECT scan reconstructed with OSEM

(top row) and OSMAP (bottom row). The images are for a single 10 second duration timeframe

acquired 6 minutes after injection of 540 MBq (18 mCi) Tc-99m teboroxime, and no post-

reconstruction filter has been applied. Differences in the uniformity and definition of the

myocardial wall between OSMAP and OSEM can be visualized in these images.
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Figure 6.

Example time-activity curves for one LV region for a dynamic SPECT teboroxime patient

study obtained under pharmacologic stress. The TAC for the OSMAP algorithm appears

considerably smoother and much better defined than does the one from the OSEM data. This

effect was observed for all regions of the left ventricle.
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Figure 7.

Scatter plots of wash-in (A), wash-out (B), and distribution volume (C) for one of the patient

studies calculated using the dynamic OSMAP algorithm versus conventional OSEM

processing. The line of identity is shown on each plot (solid, light gray), and the results of

linear correlation analysis for each case are also shown.
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Figure 8.

Example transaxial slices through the heart for the simulation experiment reconstructed using

conventional OSEM (top row) and the dynamic OSMAP algorithm (bottom row). The data are

for the 30 × 20 sec. acquisition protocol, and the reconstructed timeframe shown is at 5 min.

10 sec. post-injection. The OSMAP images show greatly improved uniformity across the left

ventricle where the compartmental-model based prior was defined.
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Figure 9.

Mean wash-in (k21) and wash-out (k12) rate parameter estimates for each of the three

reconstruction methods obtained from the simulation studies. Additional information regarding

the parameter estimates is provided in Table I.
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Figure 10.

Scatter plots of wash-in (A), wash-out (B), and distribution volume (C) for the simulation

experiment with 60 × 10 sec. acquisition protocol using the dynamic OSMAP algorithm versus

conventional OSEM processing. The line of identity is shown on each plot (solid, light gray),

and the results of linear correlation analysis for each case are also shown.
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Figure 11.

Standard deviation of wash-in estimates for each algorithm plotted as a function of iteration.

The OSMAP curve shows less dependence upon iteration, and provides lower uncertainty at

all iterations. The data are for the 30 × 20 sec. acquisition protocol.
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