
1Scientific RepoRts | 6:27226 | DOI: 10.1038/srep27226

www.nature.com/scientificreports

4D printing smart biomedical 
scaffolds with novel soybean oil 
epoxidized acrylate
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John P. Fisher2 & Lijie Grace Zhang1,3,4

Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based 
bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser 
printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of 
multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily 
fabricated by simply adjusting the printer infill density; superficial structures of the polymerized 
soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. 
Shape memory tests confirmed that the scaffold fixed a temporary shape at −18 °C and fully recovered 
its original shape at human body temperature (37 °C), which indicated the great potential for 4D 
printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher 
hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no 
statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to 
significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 
3D fabrication techniques.

Stereolithography is one of the most important solid freeform fabrication techniques for manufacturing con-
structs with precise geometries designed using computer-aided interfaces1. When fabricating 3D sca�olds using 
stereolithography, photo polymerization of liquid resins is spatially controlled to achieve predesigned structures. 
However, the commercial availability of liquid resins suitable for stereolithography is limited; this is considered 
one of the major limitations of this technique1. For manufacturing biomedical sca�olds, the liquid resin also has 
to possess highly biocompatible properties; this o�en proves to be another system limitation based on existing 
photo-crosslinkable polymers.

�e utilization of plant oils as feedstock for polymeric biomaterial synthesis is garnering greater attention2–5. 
As an important renewable resource, plant oils have been utilized to synthesize various polymers including pol-
yesters, polyole�ns, and polyurethanes6–8. In comparison to traditional biomaterials, plant oil polymers possess 
several desirable characteristics. Contrasted with petroleum-based biopolymers, which are from a limited and 
depleting resource, plant oil polymers are economical and renewable9. Plant oil polymers have also shown excel-
lent biocompatibility. For example, phosphoester cross-linked vegetable oils and their metabolites have shown 
good cytocompatibility when tested on murine �broblasts3. �e polymer was completely degraded and absorbed 
by rats a�er a 3 month sub-dermal implantation eliciting a normal histological response3. Unlike other renewable 
polymers such as proteins and polysaccharides which have been widely used as biomaterials10,11, plant oil poly-
mers are just emerging as suitable biomaterials for implantation. Fully exploring the use of plant oil polymers will 
provide a wide range of biomaterials which are valuable and complementary to existing natural biomaterials. To 
the best of our knowledge, studies on plant oil polymers as liquid resins for stereolithographical fabrication of 
biomedical sca�olds is rarely reported thus far.

�e emerging technique of 4D printing refers to the ability of material objects to change form and function 
a�er they are 3D printed, o�ering additional capabilities and performance-driven applications12. For instance, 
water-expansible hydrophilic materials are 4D printed into self-evolving structures which perform geometric 
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folding, curling, expansion and various other programmed shape changes a�er they are submerged in water12,13. 
4D active composite materials are developed by printing shape memory polymer �bers in an elastomeric matrix 
achieving a programmed action through the stimulation of the shape memory �bers14,15. �e time-dependent 
shape and/or functional changes realized with 4D fabrication techniques have shown great application potential 
for biomedical sca�olds16.

In this study, the key objective is to utilize soybean oil epoxidized acrylate as a liquid resin for fabricating 
3D biomedical sca�olds and evaluate their biocompatibility with human bone marrow mesenchymal stem cells 
(hMSCs) which have great potential for various functional tissue applications (Fig. 1). To the best of our knowl-
edge, we are the �rst to apply soybean oil epoxidized acrylate as an ink for fabricating biomedical sca�olds and 
evaluating their cytocompatibility. Furthermore, the fabricated sca�olds possess excellent shape memory e�ect, 
facilitating 4D functionality. �is research signi�cantly advances the development of biomedical sca�olds with 
renewable plant oils and 3D fabrication techniques.

Results
3D printing is emerging tool for fabricating complex 3D sca�olds for tissue engineering. Here, we print bio-
medical sca�olds with soybean oil epoxidized acrylate using a novel, self-developed, table-top stereolithography 
printer which mirrors or outperforms commercial stereolithography systems17. �e utilized ultraviolet (UV) laser 
is 355 nm. �e e�ect of printing parameters, including print speed (from 10 to 80 mm/s) and laser frequency 
(from 8000 to 20000 Hz), on thickness and width of cured soybean oil epoxidized acrylate (Soy) is �rst investi-
gated. As shown in Fig. 2A–D, the layer thickness decreases dramatically with the increase of print speed. When 
pint speed increases to 80 mm/s, the thickness is less than 100 µ m which is roughly 22% of the thickness noted 
at the 10 mm/s print speed. �e width also decreases with an increase in print speed; the width formed at a 
print speed of 80 mm/s is 250 µ m, about 60% of the width generated at the 10 mm/s speed. On the contrary, the 
thickness and width slightly increase with increasing laser frequency ranging from 12000 to 20000 Hz. At a laser 
frequency of 8000 Hz, the thickness and width decreased dramatically to about 78% of the highest thickness and 
width.

Figure 2E shows the super�cial SEM images of the fabricated sca�olds. �e super�cial structure of the sca�old 
is highly controlled by print speed and laser frequency. �e sca�olds depicted in Fig. 2E(a–d) were constructed 
with a laser frequency of 20000 Hz at a print speed of 10 mm/s; the surfaces of these sca�olds are very coarse. 
Figure 2E(e–j) depicts sca�olds constructed with a laser frequency of 12000 Hz. For these sca�olds, the print 
speed varied from 10 to 80 mm/s. In Fig. 2E(k,l), the sca�olds were printed using a laser frequency of 16000 and 
8000 Hz respectively with a speed of 10 mm/s. It is clear from these images that the struts in the sca�old become 
thinner when the laser frequency decreases and the fabricating speed increases. Figure 2F shows the resultant 
sca�olds which were printed with a laser frequency of 12000 Hz at a speed of 10 mm/s. When the in�ll density 
(represented in percentages indicating how much the resulting solid model is �lled in with material) is 20–50%, 
visible pores are observed while no porous structure is noticed when the in�ll density is 70%. Considering that 
lower print speeds provide thicker and stronger struts, sca�olds printed with 10 mm/s at various laser frequencies 
were further analysed for this study.

Figure 1. Schematic of soybean oil epoxidized acrylate fabrication process from raw material through 
resin fabrication and application. 
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Figure 2. �e e�ects of printing speed and laser frequency on printed sca�olds. (A) �e e�ect of various 
printing speeds on thickness of struts at a laser frequency of 12000 Hz. (B) �e e�ect of various laser frequencies 
on thickness of struts at a printing speed of 10 mm/s. (C) �e e�ect of various printing speeds on width of struts 
at a laser frequency of 12000 Hz. (D) �e e�ect of various laser frequencies on width of struts at a printing 
speed of 10 mm/s. (E) SEM images of printed sca�olds, red scale bar 100 µ m. (a–d) Printing speed 10 mm/s, 
laser frequency 20000 Hz, in�ll density 20%, 30%, 40% and 50%, respectively; (e–j) Laser frequency 12000 Hz, 
in�ll density 20%, printing speeds 10, 20, 30, 40, 60, and 80 mm/s, respectively; (k,l) In�ll density 20%, printing 
speed 10 mm/s, laser intensity 16000 and 8000 Hz, respectively. (F) �e photos are of the printed sca�olds 
fabricated with laser frequency 12000 Hz and printing speed 10 mm/s with in�ll density 20%, 30%, 40% and 
50% respectively. (G) FTIR analysis of soybean oil epoxidized acrylate and printed sca�olds with various laser 
frequencies at a printing speed of 10 mm/s. Data are mean ±  standard deviation, n =  6.
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FTIR analysis con�rms the polymerization of soybean oil epoxidized acrylate, as shown in Fig. 2G. �e signals 
from 1620 to 1640 cm−1 are corresponding to the C= C stretching in acrylic acid residues in soybean oil epoxi-
dized acrylate. �ese signals decrease signi�cantly a�er reaction, which indicates the polymerization of double 
bonds. �e consumption of double bonds is further con�rmed by the decrease of signals at 1407 and 810 cm−1 
which are attributed to the oscillation of unsaturated double bonds. Another phenomenon is the signal shi�s 
from 1186 cm−1 to 1177 cm−1 a�er reaction; this corresponds to the oscillation of C-O-C in ester group. As shown 
in Fig. 1, the C-O-C is next to the double bond; the consumption of double bonds has a great e�ect on the oscilla-
tion of C-O-C. No di�erence is noticed between the samples printed with di�erent laser frequencies.

�e water contact angle of Soy is compared to poly lactic acid (PLA) and polycaprolactone (PCL), as shown in 
Fig. 3A. �e water contact angle of Soy is signi�cantly higher than that of PLA, but there is no statistical di�erence 
from PCL. No dramatic di�erence is noticed between the Soy samples printed with di�erent laser frequencies. 
�e compression modulus of Soy, compared to PLA and PCL, is shown in Fig. 3B. �e compression modulus of 
Soy is lower than both PLA and PCL, and no dramatic di�erence is noticed between the Soy samples printed with 
di�erent laser frequencies.

DSC analysis indicates that the Soy samples have a glass transition temperature (Tg) of 20 °C (Fig. 4A). No 
melting peak is noticed, which indicates that the obtained polymer is highly cross-linked and has no crystalline 
domains. �erefore, Soy samples have two phases, glass and rubber, which are separated by the Tg. In the glass 
phase (temperature < 20 °C), the material is rigid and cannot be easily bent. On the other hand, when the temper-
ature increases beyond Tg the material enters the so� rubber phase and its malleability increases. No di�erence is 
observed between Soy samples which are printed with various laser frequencies.

�e printed Soy sca�olds also display temperature sensitive shape memory e�ect. As shown in Fig. 4B, the 
sample is bent into a U shape at 37 °C, and kept at this temperature for 10 min (II–III). Next the temperature is 
reduced to − 18 °C and the sample is maintained at this temperature for 10min (III–IV). �e external mechanical 
force, which is applied to restrict the U shape, is then removed (IV–V) revealing a �xed, temporary shape for 
all of the samples. �e sample printed with 8000 Hz has the highest shape �xity of 99%; the sample printed with 
20000 Hz exhibits the lowest shape �xity of 92%. When the samples are placed in 37 °C (V–VI), all fully recover 
their initial and permanent shape within 1 min. �e shape memory process is demonstrated in Fig. 4C. �is fur-
ther con�rms that the printed Soy samples have excellent shape memory e�ect.

�e attachment of hMSCs on Soy samples is further evaluated and compared to polyethylene glycol diacrylate 
(PEGDA), PLA and PCL. �e Soy sample is printed with 70% in�ll, 12000 Hz frequency, and a speed of 10 mm/s. 
As shown in Fig. 5A, the Soy sample has signi�cantly higher attachment capability than PEGDA, but is not sta-
tistically di�erent from PLA and PCL. �e hMSC proliferation results are shown in Fig. 5B. Similarly, PEGDA 

Figure 3. Water contact angle (A) and compression modulus (B) of the polymerized soybean oil epoxidized 
acrylate printed with various laser frequencies and in�ll density of 70% at a print speed of 10 mm/s compared 
with polylactic acid (PLA) and polycaprolactone (PCL). Data are mean ±  standard deviation, n =  6. * p <  0.05.
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Figure 4. (A) DSC curves of the polymerized soybean oil epoxidized acrylate printed with a speed of 10 mm/s 
at various laser frequencies. (B) Shape memory circle of fabricated sca�olds at various laser frequencies:  
(I–II) �e sca�old was kept at 37 °C for 10 min; (II–III) �e sca�old was bent 180° and kept at 37 °C for 10 min; 
(III–IV) �e bent sca�old was kept at − 18 °C for 10 min; (IV–V) �e external support was released and the 
sca�old was kept at − 18 °C for another 10 min to determine the shape �xity; (V–VI) �e sca�old was kept at 
37 °C for 10 min to recover its original shape. (C) Shape memory circle demonstrated with a printed sample 
(laser frequency 12000 Hz, printing speed 10 mm/s) which was stained black to enhance the contrast with the 
background.
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Figure 5. hMSC attachment (A) and proliferation (B) on PEGDA, PLA, PCL and Soy. Confocal images 
of hMSCs spreading on di�erent materials (C) and printed sca�olds from soybean oil epoxidized acrylate 
(printing speed 10 mm/s, laser frequency 20000 Hz) with di�erent in�ll density (D). Data are mean ±  standard 
deviation, n =  6. * p <  0.05, * * p <  0.01, * * * p <  0.001. Scale bars are 100 µ m.
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has the lowest hMSC proliferation potential while there is no statistical di�erence among the other samples. �e 
hMSC performance is further observed on the di�erent materials with confocal analysis; the results are shown in 
Fig. 5C. PEGDA is almost void of cells. In contrast, all other materials support excellent attachment and spread-
ing. Again, there is no noticeable di�erence among Soy, PLA and PCL groups. Figure 5D displays the cell spread-
ing on the surfaces with varied in�ll patterns as shown in Fig. 2E(a–d). All the samples display favourable hMSC 
proliferation. It appears that the hMSCs tend to grow along the wrinkled structures on the surface, especially with 
the 20% in�ll; this may indicate a novel method for cell alignment but is beyond the range of this study.

Discussion
Soybean oil epoxidized acrylate is a novel liquid resin for biocompatible scaffold fabrication using 
multi-dimensional stereolithography. PEGDA is one of the most commonly investigated resins for biomedical 
sca�olds thus far, in spite of well known challenges due to its inherent bio inert properties. Nearly all types of cells 
cannot e�ectively adhere and grow on its surface18. PLA and PCL are highly biocompatible polymers, but they 
can’t be directly used as resins for stereolithography because of their lack of photo sensitive chemical groups. Great 
e�orts have been made to synthesize PLA and/or PCL based liquid resin for stereolithography. �e macromers 
based on trimethylene carbonate and caprolactone oligomers are utilized to develop three-dimensional cartilage 
regeneration sca�olds by microstereolithography19. PLA oligomers end-functionalized with an unsaturated moiety  
such as a methacrylate-, acrylate-, and fumarate- groups are mostly utilized to develop photo-curable resin20–23. 
However, these macromers need to be heated or diluted with reactive diluents such as methyl methacrylate and 
butane-dimethacrylate to make liquid resin24,25. In comparison to these liquids, soybean oil epoxidized acrylate 
possesses advantages on both processing and biocompatibility. Soybean oil epoxidized acrylate is liquid at room 
temperature, and doesn’t need any heating and/or reactive diluents for stereolithography. �e printed sca�old 
in this study has signi�cantly higher attachment and proliferation of hMSCs than PEGDA, and performs on par 
with PLA and PCL. �e excellent cytocompatibility of the Soy samples may be related to contact angle or chemi-
cal groups, among other reasons. �e water contact angle for the Soy samples closely resembles that of PCL which 
might partially contribute to good cell attachment and growth comparable with the excellent biocompatibility of 
PCL (Fig. 3A). Also, in the Soy resin there are only two types of chemical groups, hydroxyl and ester (Fig. 1); both 
groups are mostly cyto-benign.

Laser frequency a�ects struts’ thickness and width, but no di�erence is observed between the Soy samples 
printed with various laser frequencies in the FTIR, water contact angle, compression modulus and DSC analyses. 
�is may be due to the soaking of the printed samples in 95% ethanol to remove unreacted soybean oil epoxi-
dized acrylate a�er printing; the remaining polymerized soybean oil epoxidized acrylate may have too slight of a 
di�erence to be detected.

�e printed sca�olds have excellent shape memory e�ect, which is dependent on the Tg of the polymerized 
soybean oil epoxidized acrylate. �e high shape �xity and recovery are attributed to the chemical cross-linking 
induced by laser printing. It has been reported that covalently cross-linked polymers generally exhibit superior 
properties compared with thermoplastic elastomers26. �e shape memory circle of regular Tg-based polymers is 
illustrated in Fig. 6. When the temperature is lower than its Tg, the linear segments between cross-linking points 
are frozen, which �xes a temporary shape. �e sample will recover its original shape, attributed to the chemical 
cross-linking, a�er the temperature is increased to greater than the Tg. For the polymerized soybean oil epoxi-
dized acrylate, the speci�c pendant groups may also play an important role in shape memory e�ect. As shown in 
Fig. 6, in soybean oil there are three major fatty acid residues: stearic, oleic and linoleic acids, which have pendant 
alkane groups. At − 18 °C, these groups may freeze bene�tting the shape �xity; at 37 °C, the oscillation of these 
groups may contribute to the full shape recovery. �e function of the pendant groups is also observed in soybean 
oil-based polyurethanes27,28.

Bio-based chemicals are getting increased attention as liquid resins for stereolithography of biomedical 
sca�olds. Most of the macromers for stereolithography are petroleum-based, although bio-based biomedical 
polymers have received increasing attention in recent years2. PLA and PCL can be produced from renewable 
resources, but modi�cation of PLA and PCL to form photo-curable resins is tedious and involves toxic chemicals, 
as mentioned earlier. Plant oils have unsaturated double bonds which are easily reactive and induce functional 
groups including epoxy and other more active double bonds2. �e utilization of soybean epoxidized acrylate in 
this study inspires the exploration of other plant oils and bio-based chemicals as liquid resins for constructing 
biomedical sca�olds.

4D fabrication is receiving increasing attention in the past two years. With 4D printing, the fabricated object 
can change their shape and/or function on-demand and over time, which may have great potential for devel-
oping sca�olds that only become active when encounter particular environments in the body16,29. �e two 4D 
approaches investigated the most thus far are designing multi material architectures and using functional mate-
rials. However, functional resin is extremely limited in its ability to achieve a 4D self-assembly construct. Shape 
memory polymers show great potential for additional morphological changes achieving the desirable 4D e�ect, 
but liquid resins for fabricating shape memory sca�olds via stereolithography is rarely reported. In this study, 
soybean epoxidized acrylate based shape memory sca�olds were easily obtained. �is signi�cantly advances the 
investigation of various compositions from plant oils and other renewable chemicals to achieve advanced 4D 
fabrication techniques.

Conclusions
Soybean oil epoxidized acrylate is a novel and renewable liquid resin for multi-dimensional stereolithography 
of biomedical sca�olds. Soybean oil epoxidized acrylate is readily polymerizable by ultraviolet laser, and the 
solidi�ed resin possesses excellent shape memory e�ects, which has great potential for additional 4D e�ects. 
�e fabricated sca�old is highly biocompatible with signi�cantly higher attachment and proliferation of hMSCs 
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compared to PEGDA, and has no statistical di�erence from PLA and PCL which are highly biocompatible and 
clinically approved biomaterials. �is research will signi�cantly advance the utilization of renewable resources for 
constructing biomedical sca�olds using the stereolithography printing technique; additionally the contribution of 
this material toward realizing novel, advanced 4D constructs provides additional signi�cance.

Methods
Preparation of 3D printing ink. 100 g soybean oil epoxidized acrylate (contains 4,000 ppm monomethyl  
ether hydroquinone as inhibitor, Sigma-Aldrich, USA; used as received) was mixed with 100 mL acetone. �en 
1.26 g bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide (Ciba Irgacure 819) (Ciba Specialty Chemicals, 
Switzerland) was added. �e mixture was shaken mildly to get a homogenous yellow solution which was subse-
quently put into a vacuumed container overnight to remove acetone. �e obtained yellow liquid was used as ink 
for 3D printing.

3D Printing of biomedical scaffolds. Sca�olds were printed via stereolithography with a table top SL 
system developed in our lab, based on the existing Solidoodle®  3D printer platform17. Open source so�ware 
(Prontrface® ) was employed to control the 3 stepper motors with an e�ective resolution of 100 µ m in x, y, and 
z-axis. �e major modi�cation to the existing platform is the incorporation of a 110 µ m �ber optic-coupled 
solid-state UV (355 nm) laser (MarketTech, Scotts Valley, CA). Per the manufacturer’s speci�cations, the e�ective 
spot size of the emitted light is 190 ±  50 µ m with an energy output of ∼ 20 µ J at 15 kHz. A glass petri dish �xed on 
the print bed acted as a minivat for the addition of liquid photocurable resin. �e ability to alter the frequency of 
the pulsed signal facilitates power control at the material’s surface ranging ∼ 40–110 mW. �e ink was cured by 
activating the laser and drawing lines at various print speeds. A�er polymerization, the sca�old was li�ed o� the 
petri dish and was soaked in 95% ethanol for overnight to remove unpolymerized ink and photo initiator. �en 
the sca�old was sterilized with 70% ethanol for 30 min and soaked in phosphate bu�ered saline (PBS) overnight 
prior to cell culturing.

Characterization. A Fourier transform infrared spectroscopy spectrometer (Nicolet Series II Magna-IR 
System 750, Nicolet Instrument Inc.) equipped with a horizontal germanium attenuated total re�ectance acces-
sory (ATR-FTIR) was used to evaluate samples. �e scan range used was 600 to 4000 cm−1 with a resolution of 
4 cm−1. Surface topography analysis of the synthesized polymers was performed via a focused ion beam operating 
in scanning electron microscopy (SEM) mode (Zeiss NVision 40 FIB) under an accelerating voltage of 1–2 kV. All 
samples for SEM were sputter-coated with gold. Surface wettability of test specimens was measured using a con-
tact angle analyzer (DSA4; Krüss). Approximately 3 µ L of ultrapure H2O was deposited on the samples’ surface 
and recorded. Static water contact angle measurements were obtained from the �rst image of every recording. 
All experiments were conducted in ambient conditions and repeated �ve times per sample. Uniaxial compression 
tests were conducted using a uniaxial mechanical tester from MTS Systems Corporation (Eden Prairie, MN). A 
�at 2 cm diameter platen attached to a 100 N load cell was advanced upon the sample (8 mm diameter cylinder, 
2 mm high) at a test speed of 10 mm/min and strain endpoint of 5 mm/mm. Data were taken using LabView 

Figure 6. Schematic illustration of the di�erence between polymerized soybean oil epoxidized acrylate and 
regular polymer on shape memory mechanism. 
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so�ware (National Instruments Corporation, Austin, TX) and Young’s modulus were determined by the linear 
elastic region. �e Tgs of the synthesized polymers were measured with a multi-cell di�erential scanning calorim-
eter (MC DSC) from TA Instruments (New Castle, DE) at a programmed ramp rate of 1 °C/min. �e sample was 
�rst heated from 25 to 150 °C, and held at 150 °C for 1 min. �en the sample was cooled from 150 to − 30 °C, and 
held at − 30 °C for 1 min. A second cycle was conducted: heating from − 30 to 150 °C, holding 1 min and decreas-
ing from 150 to − 30 °C. �e second cycle was used to determine the Tgs. Shape memory tests were conducted 
according to a reported method with slight modi�cation30. �e sca�old was printed into 75 ×  10 mm strips with 
an in�ll density of 30%. �e edges of the strips were stained with black dye for increased optical contrast. �e 
strips were folded 180° at 37 °C into a “U” shape using a mold possessing an inner radius of 10 mm, and kept at 
this temperature for 10 min. �e samples were then immediately cooled to a preset temperature (−18 °C) and 
maintained at this temperature for an additional 10 min. �e mold was removed and the test strips were kept at 
the − 18 °C preset temperature for another 10 min. �e �xed angle of the specimen was determined and recorded 
as θ �xed. �e strips were then immersed in 37 °C PBS immediately to recover the permanent shape. �e �nal angle 
of the specimen was determined and recorded as θ �nal. Shape �xity (Rf) and shape recovery (Rr) were calculated 
by the following equations:

= θ ×R /180 100%f fixed

= θ − θ θ ×R ( )/ 100%r fixed final fixed

Cytotoxicity evaluation. Primary human bone marrow mesenchymal stem cells (hMSCs) were obtained 
from healthy consenting donors at the Texas A&M Health Science Center, Institute for Regenerative Medicine. 
hMSCs (passage No. 3–6) were cultured in complete media composed of alpha minimum essential medium 
(Gibco) supplemented with 16.5% fetal bovine serum (FBS) (Atlanta Biologicals), 1% (v/v) l-glutamine 
(Invitrogen), and 1% penicillin:streptomycin solution (Invitrogen) and cultured under standard cell culture con-
ditions (37 °C, a humidi�ed, 5% CO2/95% air environment). For hMSC attachment studies, the polymer test 
samples were cut into 8 mm diameter specimens. hMSCs were seeded at a cell density of 50,000 cells/specimen, 
and cultured under standard cell culture conditions for 4 h. �e specimens were washed three times with PBS to 
remove non-adherent cells. �e adhered cells were li�ed with trypsin-ethylenediaminetetraacetic acid and quan-
ti�ed with CellTiter 96″ Aqueous Non-Radioactive Cell Proliferation Assay and analyzed spectrophotometrically 
using a �ermo Scienti�c Multiskan GO Spectrophotometer at 490 nm. For proliferation studies, hMSCs were 
seeded at a density of 10,000 cells/sca�old and cultured for 1, 3, and 5 days, respectively. Media was exchanged 
every other day and cells were li�ed for analysis via MTS assay as previously described. Furthermore, confocal 
microscopy was used to characterize hMSC growth and spreading morphology for 1, 3, and 5 days. At each time 
point, samples were washed twice with PBS, �xed with 10% formalin and permeabilized in 0.1% Triton X-100. 
A�er rinsing with PBS, the remaining cells were stained with Texas red �uorescent dye (to stain the cells’ cytoskel-
eton) for 30 min and then DAPI blue �uorescent dye (to stain the cells’ nuclei) for 15 min. �e double-stained 
samples were imaged on a Zeiss LSM 710 confocal microscope.

Statistical Analysis. Statistics for quantitative tests were performed using ANOVA and Tukey’s multiple 
pairwise comparison (p <  0.05 for signi�cance) unless otherwise stated. Values reported are mean ±  standard 
deviation, and signi�cant di�erences are speci�ed in �gures.
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