
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

4GL Code Generation: A Systematic Review
Abdullah A H Alzahrani1

Department of Computer Sciences, Computing College -Alqunfuda
Umm Al Qura University, Makkah, Saudi Arabia

Abstract—Code generation is longstanding goal in software
engineering. It allows more productivity of computer
programming as it aims to provide automation of transformation
of models into actual source code. This process has been covered
adequately in many programming languages. However, this topic
has not been covered sufficiently with regards to Fourth
Generation Languages (4GL) which have a high specialized
nature. The goal of this paper is to represent a systematic
literature review of 4GL Code generation. The paper focuses on
reviewing systemically the studies published in the past 20 years
on the topic. This is to investigate the trends in the topic and the
approaches introduced in order to identify potential new
research lines.

Keywords—Software engineering; code transformation; 4GL;
code generation; Model Driven Development (MDD); Extraction
Transform Load (ETL); Model Driven Engineering (MDE); Rapid
Application Development (RAD)

I. INTRODUCTION
Fourth-generation languages (4GL) are a class of high-level

programming languages. The idea of 4GL is to make
programming as simple as possible by the mean of
programming in natural human language [2], [3]. 4GLs aim to
make programming easier, more efficient and more effective
for users with less programming skills [4].

However, most of 4GLs are proprietary or designed and
developed for a very specific scope and purpose. This has led
to a hinder in progressing research and development in the area
of 4GL. These difficulties are derived from highly-specialized
nature of 4GL. In addition, the limited target users pose
accessibility issues. Furthermore, insufficient tool support
causes a problem as 4GL needs in-house development of tools
support. Consequently, this introduces high costs for 4GL
evolvements in all areas of research [5]. The followings
summarize the reasons behind the recessions in progressing
research and development: proprietary developments,
complexity, modularity, and integrations with other interfaces
(web browsers) issues [5], [6].

A number of 4GL exist and are used in many areas from
research and industry, for example: Query languages SQL,
Oracle, Report Generator, Magic, Informix, Advanced
Business Application Programming (ABAP), MathWorks,
MATLAB, SPSS, etc. [5]. Some of these languages are
popular as they are open to use and some are not as they are
proprietary.

Code generation is longstanding goal in software
engineering [1]. However, it is not a straightforward process
nor an easy to achieve optimal solution for it [1]. Code
generation is the process of transforming a model of high-level

representation to a source code that can be read and understood
by a computer. Usually, this is done via a use of Computer-
Assisted Software Engineering (CASE) tools [5], [7], [8]. A
CASE tool can generate initial software or database code
directly from system models. Examples of 4GL CASE tools
are: Oracle2Java, Evo, Jheadstart, Pitss, Ormit [9]. Code
generation is an actual practice of forward engineering.

Several problems are often attached to the CASE code
generations. These issues are related mainly the complexity of
the models or the capability of the target language. In addition,
in the case that models gained by reverse engineering legacy
systems, code generations CASE tools are often regarded as
less useful especially if they are independent from the reverse
engineering CASE tools.

In general, the existing approaches and tools offered for
4GL code generation suffer from several limitations. First, the
majority focuses on auto-transformation of Oracle forms,
whereas many 4GL languages are not considered. Second,
majority of these approaches are semi-automated approaches
which often need experts to be involved. Finally, immaturity is
a nature for these approaches as only proof-of-concept models
and tools are presented. However, mature approaches might be
developed but for proprietary purposed and not shared for
researchers.

The systematic review is a process of addressing a research
question then finding and evaluating all available research
done with relation to it [10]. It helps highlighting the major
work conducted in the area of the research question. From such
a review, research gaps can be found in a way that assure a
satisfactory coverage of area of research.

A number of researchers [11]–[13] have considered
reviewing the topic of transformation between 4G languages
from different points of view. In addition, they have concluded
that it is non-trivial process and needs a considerable manual
effort and knowledge from all of the people involved.
However, sufficiency when authors are reviewing related work
of others is still an issue. In addition, up to the date of writing
this paper, there is no systematic review on the topic of 4GL
code generation. This leads to the importance of investigating
objectively the current state of arts in the topic of 4GL code
generation. This paper aims to provide an objective and
systematic review of the topic of 4GL code generation.
Introduction of such a review allows evolving the research in
this area and highlighting the current research gaps that are not
resolved.

This paper has been structured as follows. Section 1
introduced the topic of 4GL and code generation. In addition, it
highlights the importance of systematic review on the

178 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

considered topic. Section 2 illustrates the methodology used in
this paper and formulate the research question. Section 3
discusses the trends in the area of the 4GL code generations.
Section 4 categories the main works conducted in the 4GL
code generations and discussed the main findings. Finally,
Section 5 concludes the review with the identification of trends
and new research areas.

II. METHODOLOGY
This paper employs a systematic review methodology

demonstrated in [10], [14]. The methodology allows a
structural and objective review of a topic under consideration.
In addition, it allows providing a broad view on works which
are primary and related to the topic under consideration.

A. Research Question
What are the initiatives undertaken in relation to 4GL code

generations in the last 20 years? This research question can be
answered by identifying the approaches, models, and CASE
tools introduced, Thereafter, highlighting the major difficulties
and issues faced in order to achieve the goal of code
generations. Therefore, keywords leading the search have been
listed. These keywords are: code generation, fourth generation
languages, and 4GL. It is important to mention here that 4GL is
often referred to fourth generation languages [5].

B. Sources Selection
Having the aforementioned keywords, a search string has

been made from a combination of these keywords and been
used in the search by the search engines of the selected digital
libraries. Table I shows the formulated search string with an
OR logical operator which is one of useful operators offered by
the search engines in the digital libraries.

Four well known digital libraries were selected in order to
perform the search for related studies in. These libraries are:
Springer Link, IEEE Digital Library, ACM Digital Library,
and ScienceDirect. These libraries offer variety ways of
searching for journal articles, conference papers, books, and
other publication types. In addition, these libraries offer the use
of logical operators in the searching.

C. Inclusion and Exclusion Criteria
Inclusion criteria, for studies to be considered relevant, are

the outcome of analyzing the title, research keywords, abstract,
and the conclusion of a paper. In addition, as this research aims
to investigate the work done towards 4GL code generation in
the past 20 years, an exclusion criterion of year of publication
has been applied to retrieve only the work published between
the years 2000 and 2020. Another exclusion criterion was a
non-English publication items which have been found in the
retrieved list of items from the digital libraries.

As can be seen in Table II, in the first iteration of applying
the search string in all digital libraries, the search resulted in a
total of 1925 items. Repetition of items in some between
libraries was noticed, so, it was inevitable to eliminate
repetitions. After removing repetitions, the total was 1770
items. The total become 593 when applying exclusion criterion
of publication before the year of 2000. Finally, 187 of the
publication items were relevant to this research topic by
inclusion criterion.

TABLE I. SEARCH STRING

Search string

"4G languages" OR "4G languages code generation" OR
“4GL code generation” OR “4GL” OR “fourth-generation-
languages” OR “fourth-generation-languages code
generation” OR “fourth generation languages code
generation” OR “fourth generation languages”

TABLE II. SOURCES AND STUDIES FOUND

SOURCES

STUDIES

FO
U

N
D

N
O

T
R

EP
EA

TE
D

S I
N

CE
 2

00
0

R
EL

EV
A

N
T

PR
IM

A
R

Y

%

SPRINGER LINK 793 694 216 64 6 21.43%

IEEE DIGITAL LIBRARY 35 35 15 12 7 25.00%

ACM DIGITAL LIBRARY 302 274 99 41 6 21.43%

SCIENCEDIRECT 795 767 263 70 9 32.14%

TOTAL 1925 1770 593 187 28 100%

Primary studies were, as shown Table II, 28 studies.
Complete list of primary studies is shown in (Appendix A).
The primary studies were nominated from the relevant studies
after in-depth reading and analysis of the entire list of the
relevant studies. The primary studies are only the studies which
mainly consider the 4GL code generation by introduction new
approaches, model development, evaluation of current
approaches, and branches of code generation with relation 4GL
such as code transformation. It is important to mention that
studies that are related to the 4GL code generation have been
considered to be relevant studies. Examples of which are code
quality, effort estimation, optimization, refactoring, and code
maintenance.

III. PUBLICATION IN 4GL CODE GENERATION IN THE PAST
20 YEARS

This section shows an analysis of primary and relevant
studies in general and the main aspects and remarks identified
during the reviewing process. Obviously, from the number of
relevant studies, it can be concluded that the topic of 4GL code
generation has not been considered sufficiently in the past 20
years. Fig. 1 illustrates publications trends of primaries and
relevant studies of 4GL code generation over the past 20 years
in the four digital libraries namely Springer, IEEE, ACM, and
ScienceDirect.

From Fig. 1, it can be noticed that the years of 2003, 2005,
2011 were the years were most studies were published with a
number of around 14 publications in all digital libraries
investigated. Then, the years of 2008 and 2019 come in almost
close number of the aforementioned. In addition, it can be
obvious that the average of publications related to the topic of
4GL code generation is 9 studies each year over the past 20
years. Most of these primaries and relevant studies have been
published in Springer and ScienceDirect. This highlights a lack
of studies in this topic.

179 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

Fig. 1. Run graph of publications (Relevant Studies Published in the Past 20

Years based on Number of Publications).

Table III shows the categories of the publications based on
the types of work. The main types are conference papers,
journal articles, and books and technical reports. The majority
of primaries and relevant studies are conference papers and
journal articles with the total of 153 studies. In addition, as
illustrated in Fig. 2, 59% of journal articles which are primaries
and relevant studies published in ScienceDirect library.
Furthermore, 74% of books and technical reports are published
in same library. However, 45% of conference papers which are
primaries and relevant studies published in Springer library
with 0% published in ScienceDirect library of this category of
the publications.

TABLE III. TYPES OF PUBLICATIONS OF PRIMARIES AND RELEVANT
STUDIES

 Type

Library

Conference
Paper

Journal
Article

Book and
technical reports Total

SPRINGER 35 20 9 64

IEEE 12 0 0 12

ACM 30 11 0 41

ScienceDirect 0 44 26 70

Total 77 75 35 187

Fig. 2. Studies Types (Only Relevant Studies Published in the Past 20 Years.

IV. PRIMARY STUDIES AND DISCUSSIONS
In this section the main findings of this systematic review

regarding 4GL code generation are presented and discussed.
The findings have been categorised into three main sections:
1) Transformation between 4GL languages; 2) End user
computing; 3) other related studies. In this review, the related
studies are the studies which indirectly consider the code
generation in 4GL, such as studies considering effort
estimation in producing, manually re-engineering, refactoring,
and maintaining 4GL software systems.

A. Transformation between 4GL Languages
Kicsi et al. [15] have introduced a semi-automatic approach

which extracts features from a 4GL language namely Magic
language. They have tested their approach on 2000 programs
written in Magic. However, the completed stage up-to-date is
extraction stage and the project is still ongoing. In addition,
experts are needed to provide design decisions.

In addition, Kicsi et al. [16] have introduced an approach
that extracted the structural and conceptual feature of legacy
systems built in Magic language. The approach aims to provide
two level of views on the legacy systems. The first level views
are for expert which show the conceptual features. The second
level views are for developer which shows structural feature.
Although, this work is a promising in the reengineering of 4GL
systems as it helps is the stage of design discovery, the work
currently provides information for different level of
stakeholders to make decisions in the re-designing of the
legacy systems when the adopting Software product line (SPL)
architecture.

Mendivelso et al. [9] have introduced an approach that
relies on Model-Driven Reverse Engineering (MDRE) in order
to reverse engineer programs in 4GL languages such as Oracle
Forms, Visual Basic and Delphi. The resulting outputs are two
different levels of views on Sirius graphical editor. The first
level is for the end user who are the developers, architects, and
testers. The second level is for MDRE experts. The approach
seems promising, however, experts are needed to validate and
verify the output model of a given source code. In addition, no
forward engineering (complete code generation) is completed
by the approach.

Newcomb et al. [17] have reported on a project called Pilot
Project which aims to transform 4GL software systems into
more standardized and modernized platforms namely Java and
JavaScript. The work has a feature of considering conversion
of non-functional requirements as well as security
requirements. Moreover, tests were done on small scale
programs to prove the concept. However, an important point is
that 4GL software are often large scale ones. So, in order to
generalize the findings this could be a point of weakness. In
addition, further manual tuning was needed as performance
issues occurred.

Sneed et al. [18] have introduced an approach that consider
re-implementing legacy systems built by 4GL languages into
object-oriented 3GL languages. This approach aim is to avoid
the risks of automated conversion of such systems and taking
into account the preserving functionalities. The approach was
tested on two 4GL languages programs, namely,

180 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

VisualAge/PL/I-DB2 and COBOL-IMS applications.
However, they have reported a number of side effects
including comprising design and possibility of re-developing
the whole architecture. This stands against the idea of
preserving the original architecture.

Garcés et al. [19] have introduced a new semi-automated
approach that transformed 4GL program to modernized
platforms namely from Oracle Forms to Java programs. The
approach has been tested on 5 medium scale 4GL programs.
Although, the approach has a tool supports and seems
promising, it has some backwards which are worth to mention
here. Firstly, the approach is semi-automated and needs a
human intervene. This might, as author reported, time
consuming and error-prone. In addition, migration is a manual
process. Finally, although, the results showed a reduction in
time with comparison with other transformation processes,
time overhead and code defects are still a considerable issue.

Salvatierra et al. [20] have introduced an indirect and semi-
automatic approach for migration of legacy systems in COBOL
into Service-Oriented Architecture (SOA). The approach is
called Assisted Migration and has been tested on a legacy
system of an Argentinean government agency. The aim of the
approach is to enhance the quality of direct migrated version of
the legacy system. However, the approach introduces a need
for human experiences to perform as intended. In addition,
accuracy is still an issue. Furthermore, legacy systems are not
transformed or replaced which means adding more layers to
use these systems.

Sánchez Ramón et al. [21] have introduced a new approach
based on Model Driven Engineering (MDE). The approach
aims to automated re-engineering process of the interfaces of
programs built in 4GL namely Oracle Forms or Borland
Delphi. Currently, the approach allows detecting the main
elements in GUI and generate a tree to represents the
arrangement of element on the GUI window. The resulting
outputs is a model in Concrete User Interface (CUI) which can
be used for further forward engineering.

Nagy et al. [22] in 2011 have investigated the lack of work
on 4GL same language version transformation. In addition, the
authors have offer a new approach to automatically transform
code from Magic older to Magic version 5. However, the focus
of the work was only on version 5 of Magic. In addition,
performance issues have been raised. In addition later, Nagy
[23] in 2013 have introduced an automated approach to
recovering architecture of data-intensive applications
developed in Magic 4GL. However, the approach only support
static reverse engineering from SQL no forward engineering or
round-trip engineering.

Martin et al. [20] introduced a new approach to transform
source code between two different 4GL platforms. The
approach aims to overcome the incompatibilities between 4GL.
Therefore, a tool, called OctaveToR, was developed to
automate the transformation from a source code written in
Octave to a target code in R language. The approach employed
TXL transformation language and was tested in a medium size
source code. Although, the approach provides almost an instant
code transformation, a number of issues are reported. These
issues are performance, readability, and information loss. In

addition, a use of TXL cannot be an ideal solution as it does
not offer a feature abstraction representation.

Yafi et al. [24] introduced a new method that allow
overcoming a problem that occurs when parsing Uniface 4GL
languages source code embedded in XML format. Although
the tool provides an automated way for reverse-engineer a 4GL
code, the work was only to improve the readability and the
work is in progress.

Nandivada et al. [25] introduced a framework that translate
4GL program in ARAP to java equivalent. This is for the
purpose of debugging fault in 4GL programs. However, the
work still incomplete and suffer from incorrectness of
transformation with some statements in selected 4GL syntax as
well as some overhead issues.

Bimonte et al. [26] introduced a new Model Driven
Development (MDD) method which combines the use of ETL
(Extraction, transform, load) and their Business Process
Modeling Notation (BPMN) approaches to transform source
from ETL to Oracle MetaBase (OMB) scripting language code
[27]. However, efficiency in resources and time is an issue.

Reus et al. [28] have introduced an approach which aids in
reverse engineer legacy systems to model-driven architecture
(MDA). In specific, reverse engineer a 4GL program to
language-independent models in UML, namely, Class, State-
chart, Collaboration diagrams. Code generation then is offered
to transform the models to Java classes. The approach has been
tested to an Oracle’s PL/SQL program of an insurance
company in Netherlands. Although, the authors have
introduced a promising approach which aims to automate
completely the re-engineering trip from a 4GL source code to
another platform, a number of pitfalls are there such as
scalability issues. Another open challenge is the representation
of business logic. In addition, the code generation is an
uncompleted goal as the approach only generate code stubs (no
functionally).

Cleve et al. [29] introduced an approach for transformation
of date structure from 4GL language in legacy system to a
modular structure for other platforms. However, the main
concern was the data migration and data structure re-factoring.
In addition, it took 10 days for re-engineering which is an
obvious overhead. This can be linked to the previous work by
Canfora et al. [30] where they in the same manner introduced
their approach and noted the re-engineering risks increase
beside the costs and performance issues.

Andrade et al. [12] have introduced a tool called
Forms2Net which aims to transform the Oracle Forma and
PL/SQL code to .NET C# program bearing in mind semantics
and similarity and differences. Authors have investigated
semantics and functionality in such transformations and offer
the tool based on this. Forms2Net is a promising tools to
facilitate an automatic code transformation, however, a number
of shortcomings are impotent to mention here. First, complex
transformations decisions are not made and left to the
developer to re-engineer which introduced the human
intervention. Second, only one output architecture is allowed
which is the Model View Controller (MVC) architecture.
Third, migration process needs to be simplified as currently

181 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

Forms2Net is attached with a number of guides for explaining
it. Finally, runtime calls in the Oracle Forms are not
sufficiently represented in C# outputs program.

B. End user Computing
Waszkowski [31] have introduced Aurea BPM low-code

platform that allows users to draw in BPMN diagrams which
will be transformed into working web pages with XML and
supplementary files. The main goal is to automate the
generation of application for business processes. However,
authors stated that low-code platform is hard in manufacturing
and it raises the risk of verifications.

Related to this topic, a number of authors [4], [32] have
published a book in which they describe a number of examples
of 4GL languages for End-user programing. The books show
an exploring view on the available tools for such an approach.
Others [33] have looked at it from different viewpoints such as
the risks of privacy and errors which might be posed.
Furthermore, bridging the knowledge gap between engineers
and business users [34].

C. Other Related Topics
A number of related topics have been a focus for 4GL

community, for example, Effort Estimation, quality assurance,
testing, and distributed programming. However, it is important
to mention here that Effort Estimation in producing, manually
re-engineering, refactoring, and maintaining 4GL software
systems has gained a considerable amount of attention form
4GL community.

Although, many researchers [35]–[45] have considered
Effort Estimation, other have considered useful topics as well.
For example, Shasharina et al. [46] have considered a model
that offer ability of automating the linking the Grid Technology
and Web services for 4GL legacy systems in Interactive Data
Language (IDL). Furthermore, many researchers [47]–[49]
have introduced their models and methods on measuring
quality and have offers a number of matrices for this. However,
quality assurance for 4GL suffer from a lack of work on it.
Other have considered different related topics to 4GL. For
instance, Zaytsev [50] has reported onto a new tool which
generates test codes for a 4GL programs in specific C#
programs. It has been tested on a large scale code of a company
where the author is working. However, this is an ongoing
project of generating code of testing for 4GL languages
compiler with focus to C#. Furthermore, Albizuri-Romero [51]
discussed different factors influenced organizations when
choosing CASE tools.

V. CONCLUSIONS
In conclusion of this systematic review, four well-known

digital libraries have been used to search for research studies
that are related to the topic of 4GL code generation over the
past 20 years. These libraries are Springer, IEEE, ACM, and
ScienceDirect. Total of 593 studies were found. After applying
the criteria of inclusion and exclusion employed in this paper, a
total of 187 studies were found relevant studies. Out of these
relevant studies only 28 were found primaries studies.

The following summarizes the main findings of the primary
studies published over the past 20 years:

1) In general, there is a lack of studies in 4GL code
generation.

2) The topic of 4GL languages code generation is often
focused on transforming 4GL source codes to different 4GL or
3GL languages.

3) Lack of studies is variety of 4GL languages as the
majority focuses on auto-transformation of Oracle forms.

4) The majority of the studies introduce semi-automated
approaches which often need experts to be involved.

5) The majority of studies are Immature studies which
might be due to the specialized nature of 4GL and that most of
4GL are proprietary.

Reaching this point of this paper, the previously mentioned
research question of this paper can be answered. 4GL code
generation is a topic that has not been considered sufficiently
over the past 20 years. The offered studies and approaches are
inadequate, and more work is needed in this topic.
Furthermore, the previous section shows a detailed answer of
the research question.

For future work, this paper can be basis for researchers
interested in 4GL code generation and code transformation as
the paper aimed to cover the work done on the topic for the
past 20 years. As for authors for this paper, the future work
direction is to fill the research gap of transforming Uniface
4GL to C#.net as the limitation of coverage for this direction is
clear. In addition, a data set that allow constructing the
transformation model has been shared from one of institute
interested in the direction.

ACKNOWLEDGMENT
I would like to express my gratitude to my University

(Umm Al Qura University) which gave me the opportunity to
do this research. Secondly I would also like to thank family for
their unlimited support. In addition, I would like to thank Saudi
Digital Library (SDL) for giving me the membership to allow
accessing digital libraries used in this paper.

REFERENCES
[1] J. Krogstie, A. L. Opdahl, and S. Brinkkemper, Eds., Conceptual

Modelling in Information Systems Engineering. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007.

[2] W. H. Inmon, D. Strauss, and G. Neushloss, ‘Chapter 1 - A brief history
of data warehousing and first-generation data warehouses’, in DW 2.0,
W. H. Inmon, D. Strauss, and G. Neushloss, Eds. Burlington: Morgan
Kaufmann, 2008, pp. 1–22.

[3] C. Combe, ‘Chapter 2 - E-business technology’, in Introduction to e-
Business, C. Combe, Ed. Oxford: Butterworth-Heinemann, 2006, pp.
21–52.

[4] C. Shipley and S. Jodis, ‘Programming Languages Classification’, in
Encyclopedia of Information Systems, H. Bidgoli, Ed. New York:
Elsevier, 2003, pp. 545–552.

[5] B. Selic, ‘Personal reflections on automation, programming culture, and
model-based software engineering’, Autom. Softw. Eng., vol. 15, no. 3–
4, pp. 379–391, 2008.

[6] J. Jong, ‘History: How Did We Get Here?’, in Vertically Integrated
Architectures: Versioned Data Models, Implicit Services, and
Persistence-Aware Programming, J. Jong, Ed. Berkeley, CA: Apress,
2019, pp. 15–28.

[7] J. Whitten and L. Bentley, Systems Analysis and Design Methods, 7th
edition. Boston: McGraw-Hill/Irwin, 2005.

182 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

[8] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu, ‘Automatic
code generation from design patterns’, IBM Syst. J., vol. 35, no. 2, pp.
151–171, 1996.

[9] L. F. Mendivelso, K. Garcés, and R. Casallas, ‘Metric-centered and
technology-independent architectural views for software
comprehension’, J. Softw. Eng. Res. Dev., vol. 6, no. 1, p. 16, Dec.
2018, doi: 10.1186/s40411-018-0060-6.

[10] D. Budgen and P. Brereton, ‘Performing systematic literature reviews in
software engineering’, in Proceedings of the 28th international
conference on Software engineering, 2006, pp. 1051–1052.

[11] S. M. F. Ali and R. Wrembel, ‘From conceptual design to performance
optimization of ETL workflows: current state of research and open
problems’, VLDB J., vol. 26, pp. 777–801, 2017.

[12] L. Andrade, J. Gouveia, M. Antunes, M. El-Ramly, and G. Koutsoukos,
‘Forms2Net–migrating oracle forms to microsoft. NET’, in International
Summer School on Generative and Transformational Techniques in
Software Engineering, 2005, pp. 261–277.

[13] A. Kicsi, V. Csuvik, L. Vidács, Á. Beszédes, and T. Gyimóthy, ‘Feature
level complexity and coupling analysis in 4GL systems’, in International
Conference on Computational Science and Its Applications, 2018, pp.
438–453.

[14] B. Kitchenham, ‘Procedure for undertaking systematic reviews’,
Comput. Sci. Depart-Ment Keele Univ. TRISE-0401 Natl. ICT Aust. Ltd
0400011T 1 Jt. Tech. Rep., 2004.

[15] A. Kicsi et al., ‘Feature analysis using information retrieval, community
detection and structural analysis methods in product line adoption’, J.
Syst. Softw., vol. 155, pp. 70–90, 2019, doi:
https://doi.org/10.1016/j.jss.2019.05.001.

[16] A. Kicsi, L. Vidács, V. Csuvik, F. Horváth, A. Beszédes, and F. Kocsis,
‘Supporting product line adoption by combining syntactic and textual
feature extraction’, in International Conference on Software Reuse,
2018, pp. 148–163.

[17] P. H. Newcomb, D. Henke, J. LoVerde, W. Ulrich, L. Nguyen, and R.
Couch, ‘Chapter 6 - PowerBuilder/4GL Generator Modernization
Pilot**© 2010. The Software Revolution, Inc. All rights reserved.’, in
Information Systems Transformation, W. M. Ulrich and P. H.
Newcomb, Eds. Boston: Morgan Kaufmann, 2010, pp. 133–170.

[18] H. Sneed and C. Verhoef, ‘Re-implementing a legacy system’, J. Syst.
Softw., vol. 155, pp. 162–184, Sep. 2019, doi:
10.1016/j.jss.2019.05.012.

[19] K. Garcés et al., ‘White-box modernization of legacy applications: The
oracle forms case study’, Comput. Stand. Interfaces, vol. 57, pp. 110–
122, 2018, doi: https://doi.org/10.1016/j.csi.2017.10.004.

[20] G. Salvatierra, C. Mateos, M. Crasso, and A. Zunino, ‘Towards a
computer assisted approach for migrating legacy systems to SOA’, in
International Conference on Computational Science and Its
Applications, 2012, pp. 484–497.

[21] Ó. Sánchez Ramón, J. Sánchez Cuadrado, and J. García Molina, ‘Model-
driven reverse engineering of legacy graphical user interfaces’, in
Proceedings of the IEEE/ACM international conference on Automated
software engineering, 2010, pp. 147–150.

[22] C. Nagy, L. Vidács, R. Ferenc, T. Gyimóthy, F. Kocsis, and I. Kovács,
‘Solutions for Reverse Engineering 4GL Applications, Recovering the
Design of a Logistical Wholesale System’, in 2011 15th European
Conference on Software Maintenance and Reengineering, Mar. 2011,
pp. 343–346, doi: 10.1109/CSMR.2011.66.

[23] C. Nagy, ‘Static Analysis of Data-Intensive Applications’, in 2013 17th
European Conference on Software Maintenance and Reengineering,
Mar. 2013, pp. 435–438, doi: 10.1109/CSMR.2013.66.

[24] M. Z. Yafi and A. Fatima, ‘Syntax Recovery for Uniface as a Domain
Specific Language’, in 2018 UKSim-AMSS 20th International
Conference on Computer Modelling and Simulation (UKSim), Mar.
2018, pp. 61–66, doi: 10.1109/UKSim.2018.00023.

[25] V. K. Nandivada, M. G. Nanda, P. Dhoolia, D. Saha, A. Nandy, and A.
Ghosh, ‘A framework for analyzing programs written in proprietary
languages’, in Proceedings of the ACM international conference
companion on Object oriented programming systems languages and
applications companion, 2011, pp. 289–300.

[26] S. Bimonte, É. Edoh-Alove, H. Nazih, M.-A. Kang, and S. Rizzi,
‘ProtOLAP: rapid OLAP prototyping with on-demand data supply’, in
Proceedings of the sixteenth international workshop on Data
warehousing and OLAP, 2013, pp. 61–66.

[27] Z. El Akkaoui, E. Zimànyi, J.-N. Mazón, and J. Trujillo, ‘A model-
driven framework for ETL process development’, in Proceedings of the
ACM 14th international workshop on Data Warehousing and OLAP,
2011, pp. 45–52.

[28] T. Reus, H. Geers, and A. Van Deursen, ‘Harvesting software systems
for MDA-based reengineering’, in European Conference on Model
Driven Architecture-Foundations and Applications, 2006, pp. 213–225.

[29] A. Cleve, J. Henrard, and J.-L. Hainaut, ‘Co-transformations in
Information System Reengineering’, Electron. Notes Theor. Comput.
Sci., vol. 137, no. 3, pp. 5–15, Sep. 2005, doi:
10.1016/j.entcs.2005.07.001.

[30] G. Canfora, A. Cimitile, A. De Lucia, and G. A. Di Lucca,
‘Decomposing legacy programs: a first step towards migrating to client–
server platforms’, J. Syst. Softw., vol. 54, no. 2, pp. 99–110, Oct. 2000,
doi: 10.1016/S0164-1212(00)00030-3.

[31] R. Waszkowski, ‘Low-code platform for automating business processes
in manufacturing’, IFAC-Pap., vol. 52, no. 10, pp. 376–381, 2019, doi:
https://doi.org/10.1016/j.ifacol.2019.10.060.

[32] J. Stigliano and M. Bruni, ‘End-User Computing Tools’, in
Encyclopedia of Information Systems, H. Bidgoli, Ed. New York:
Elsevier, 2003, pp. 127–139.

[33] R. R. Panko and D. N. Port, ‘End User Computing: The Dark Matter
(and Dark Energy) of Corporate IT’, in 2012 45th Hawaii International
Conference on System Sciences, Jan. 2012, pp. 4603–4612, doi:
10.1109/HICSS.2012.244.

[34] G. Baster, P. Konana, and J. E. Scott, ‘Business components: a case
study of bankers trust Australia limited’, Commun. ACM, vol. 44, no. 5,
pp. 92–98, 2001.

[35] P. A. Whigham, C. A. Owen, and S. G. Macdonell, ‘A baseline model
for software effort estimation’, ACM Trans. Softw. Eng. Methodol.
TOSEM, vol. 24, no. 3, pp. 1–11, 2015.

[36] L. Song, L. L. Minku, and X. Yao, ‘A novel automated approach for
software effort estimation based on data augmentation’, in Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering, 2018, pp. 468–479.

[37] S. Amasaki and C. Lokan, ‘A replication study on the effects of
weighted moving windows for software effort estimation’, in
Proceedings of the 20th International Conference on Evaluation and
Assessment in Software Engineering, 2016, pp. 1–9.

[38] L. L. Minku and X. Yao, ‘An analysis of multi-objective evolutionary
algorithms for training ensemble models based on different performance
measures in software effort estimation’, in Proceedings of the 9th
international conference on predictive models in software engineering,
2013, pp. 1–10.

[39] P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, ‘An effective
approach for software project effort and duration estimation with
machine learning algorithms’, J. Syst. Softw., vol. 137, pp. 184–196,
2018.

[40] T. Tran, V. Nguyen, T. Truong, C. Tran, and P. Le, ‘An Evaluation of
Parameter Pruning Approaches for Software Estimation’, in Proceedings
of the Fifteenth International Conference on Predictive Models and Data
Analytics in Software Engineering, 2019, pp. 26–35.

[41] M. Tanrıverdi and Ö. Ö. Tanrıöver, ‘An experimental comparison of
software effort estimation methods of ORM based 4GL software
applications’, in 2017 International Conference on Computer Science
and Engineering (UBMK), 2017, pp. 239–243.

[42] P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobyliński, ‘Application
of function points and data mining techniques for software estimation-a
combined approach’, in Software Measurement, Springer, 2015, pp. 96–
113.

[43] P. Rijwani and S. Jain, ‘Enhanced Software Effort Estimation Using
Multi Layered Feed Forward Artificial Neural Network Technique’,
Procedia Comput. Sci., vol. 89, pp. 307–312, 2016, doi:
https://doi.org/10.1016/j.procs.2016.06.073.

183 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

[44] F. Ferrucci, C. Gravino, and F. Sarro, ‘Exploiting prior-phase effort data
to estimate the effort for the subsequent phases: a further assessment’, in
Proceedings of the 10th International Conference on Predictive Models
in Software Engineering, 2014, pp. 42–51.

[45] C. Nagy, L. Vidács, R. Ferenc, T. Gyimóthy, F. Kocsis, and I. Kovács,
‘MAGISTER: Quality assurance of Magic applications for software
developers and end users’, in 2010 IEEE International Conference on
Software Maintenance, Sep. 2010, pp. 1–6, doi:
10.1109/ICSM.2010.5609550.

[46] S. G. Shasharina, O. Volberg, P. Stoltz, and S. Veitzer, ‘GRIDL: high-
performance and distributed interactive data language’, in HPDC-14.
Proceedings. 14th IEEE International Symposium on High Performance
Distributed Computing, 2005., Jul. 2005, pp. 291–292, doi:
10.1109/HPDC.2005.1520980.

[47] Z. Tóth, L. Vidács, and R. Ferenc, ‘Comparison of static analysis tools
for quality measurement of rpg programs’, in International Conference
on Computational Science and Its Applications, 2015, pp. 177–192.

[48] M.-A. Côté, W. Suryn, C. Y. Laporte, and R. A. Martin, ‘The evolution
path for industrial software quality evaluation methods applying
ISO/IEC 9126: 2001 quality model: example of MITRE’s SQAE
method’, Softw. Qual. J., vol. 13, no. 1, pp. 17–30, 2005.

[49] G. C. Green, A. R. Hevner, and R. W. Collins, ‘The impacts of quality
and productivity perceptions on the use of software process
improvement innovations’, Inf. Softw. Technol., vol. 47, no. 8, pp. 543–
553, 2005.

[50] V. Zaytsev, ‘An industrial case study in compiler testing (tool demo)’, in
Proceedings of the 11th ACM SIGPLAN International Conference on
Software Language Engineering, 2018, pp. 97–102.

[51] M. B. Albizuri-Romero, ‘A retrospective view of CASE tools adoption’,
ACM SIGSOFT Softw. Eng. Notes, vol. 25, no. 2, pp. 46–50, 2000..

APPENDIX A

PRIMARY STUDIES

Item Bibliography Source

PS1 H. Sneed and C. Verhoef, ‘Re-implementing a legacy system’, Journal of Systems and Software, vol. 155, pp. 162–184, Sep. 2019,
doi: 10.1016/j.jss.2019.05.012. ScienceDirect

PS2 R. Waszkowski, ‘Low-code platform for automating business processes in manufacturing’, IFAC-PapersOnLine, vol. 52, no. 10, pp.
376–381, 2019, doi: https://doi.org/10.1016/j.ifacol.2019.10.060. ScienceDirect

PS3 A. Kicsi et al., ‘Feature analysis using information retrieval, community detection and structural analysis methods in product line
adoption’, Journal of Systems and Software, vol. 155, pp. 70–90, 2019, doi: https://doi.org/10.1016/j.jss.2019.05.001. ScienceDirect

PS4 L. F. Mendivelso, K. Garcés, and R. Casallas, ‘Metric-centered and technology-independent architectural views for software
comprehension’, J Softw Eng Res Dev, vol. 6, no. 1, p. 16, Dec. 2018, doi: 10.1186/s40411-018-0060-6. SPRINGER

PS5 M. Z. Yafi and A. Fatima, ‘Syntax Recovery for Uniface as a Domain Specific Language’, in 2018 UKSim-AMSS 20th International
Conference on Computer Modelling and Simulation (UKSim), Mar. 2018, pp. 61–66, doi: 10.1109/UKSim.2018.00023. IEEE

PS6 V. Zaytsev, ‘An industrial case study in compiler testing (tool demo)’, in Proceedings of the 11th ACM SIGPLAN International
Conference on Software Language Engineering, 2018, pp. 97–102. ACM

PS7 A. Kicsi, L. Vidács, V. Csuvik, F. Horváth, A. Beszédes, and F. Kocsis, ‘Supporting product line adoption by combining syntactic and
textual feature extraction’, in International Conference on Software Reuse, 2018, pp. 148–163. SPRINGER

PS8 K. Garcés et al., ‘White-box modernization of legacy applications: The oracle forms case study’, Computer Standards & Interfaces, vol.
57, pp. 110–122, 2018, doi: https://doi.org/10.1016/j.csi.2017.10.004. ScienceDirect

PS9 R. R. Panko and D. N. Port, ‘End User Computing: The Dark Matter (and Dark Energy) of Corporate IT’, in 2012 45th Hawaii
International Conference on System Sciences, Jan. 2012, pp. 4603–4612, doi: 10.1109/HICSS.2012.244. IEEE

PS10 G. Salvatierra, C. Mateos, M. Crasso, and A. Zunino, ‘Towards a computer assisted approach for migrating legacy systems to SOA’, in
International Conference on Computational Science and Its Applications, 2012, pp. 484–497. SPRINGER

PS11
C. Nagy, L. Vidács, R. Ferenc, T. Gyimóthy, F. Kocsis, and I. Kovács, ‘Solutions for Reverse Engineering 4GL Applications,
Recovering the Design of a Logistical Wholesale System’, in 2011 15th European Conference on Software Maintenance and
Reengineering, Mar. 2011, pp. 343–346, doi: 10.1109/CSMR.2011.66.

IEEE

PS12
V. K. Nandivada, M. G. Nanda, P. Dhoolia, D. Saha, A. Nandy, and A. Ghosh, ‘A framework for analyzing programs written in
proprietary languages’, in Proceedings of the ACM international conference companion on Object oriented programming systems
languages and applications companion, 2011, pp. 289–300.

ACM

PS13 Z. El Akkaoui, E. Zimànyi, J.-N. Mazón, and J. Trujillo, ‘A model-driven framework for ETL process development’, in Proceedings of
the ACM 14th international workshop on Data Warehousing and OLAP, 2011, pp. 45–52. ACM

PS14 Ó. Sánchez Ramón, J. Sánchez Cuadrado, and J. García Molina, ‘Model-driven reverse engineering of legacy graphical user interfaces’,
in Proceedings of the IEEE/ACM international conference on Automated software engineering, 2010, pp. 147–150. SPRINGER

PS15
P. H. Newcomb, D. Henke, J. LoVerde, W. Ulrich, L. Nguyen, and R. Couch, ‘Chapter 6 - PowerBuilder/4GL Generator Modernization
Pilot**© 2010. The Software Revolution, Inc. All rights reserved.’, in Information Systems Transformation, W. M. Ulrich and P. H.
Newcomb, Eds. Boston: Morgan Kaufmann, 2010, pp. 133–170.

ScienceDirect

PS16 T. Reus, H. Geers, and A. Van Deursen, ‘Harvesting software systems for MDA-based reengineering’, in European Conference on
Model Driven Architecture-Foundations and Applications, 2006, pp. 213–225. SPRINGER

PS17 A. Cleve, J. Henrard, and J.-L. Hainaut, ‘Co-transformations in Information System Reengineering’, Electronic Notes in Theoretical
Computer Science, vol. 137, no. 3, pp. 5–15, Sep. 2005, doi: 10.1016/j.entcs.2005.07.001. ScienceDirect

PS18
S. G. Shasharina, O. Volberg, P. Stoltz, and S. Veitzer, ‘GRIDL: high-performance and distributed interactive data language’, in HPDC-
14. Proceedings. 14th IEEE International Symposium on High Performance Distributed Computing, 2005., Jul. 2005, pp. 291–292,
doi: 10.1109/HPDC.2005.1520980.

IEEE

184 | P a g e
www.ijacsa.thesai.org

https://doi.org/10.1016/j.jss.2019.05.012
https://doi.org/10.1016/j.ifacol.2019.10.060
https://doi.org/10.1016/j.jss.2019.05.001
https://doi.org/10.1186/s40411-018-0060-6
https://doi.org/10.1109/UKSim.2018.00023
https://doi.org/10.1016/j.csi.2017.10.004
https://doi.org/10.1109/HICSS.2012.244
https://doi.org/10.1109/CSMR.2011.66
https://doi.org/10.1016/j.entcs.2005.07.001
https://doi.org/10.1109/HPDC.2005.1520980

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

PS19 C. Nagy, ‘Static Analysis of Data-Intensive Applications’, in 2013 17th European Conference on Software Maintenance and
Reengineering, Mar. 2013, pp. 435–438, doi: 10.1109/CSMR.2013.66. IEEE

PS20 L. Andrade, J. Gouveia, M. Antunes, M. El-Ramly, and G. Koutsoukos, ‘Forms2Net–migrating oracle forms to microsoft. NET’, in
International Summer School on Generative and Transformational Techniques in Software Engineering, 2005, pp. 261–277. SPRINGER

PS21
J. Martin and J. Gutenberg, ‘Automated source code transformations on fourth generation languages’, in Eighth European Conference on
Software Maintenance and Reengineering, 2004. CSMR 2004. Proceedings., Mar. 2004, pp. 214–220,
doi: 10.1109/CSMR.2004.1281422.

IEEE

PS22 J. Stigliano and M. Bruni, ‘End-User Computing Tools’, in Encyclopedia of Information Systems, H. Bidgoli, Ed. New York: Elsevier,
2003, pp. 127–139. ScienceDirect

PS23 C. Shipley and S. Jodis, ‘Programming Languages Classification’, in Encyclopedia of Information Systems, H. Bidgoli, Ed. New York:
Elsevier, 2003, pp. 545–552. ScienceDirect

PS24 A. Arkusinski and E. Green, ‘A software port from a standalone communications management unit to an integrated platform’, in
Proceedings. The 21st Digital Avionics Systems Conference, Oct. 2002, vol. 1, pp. 6B3-6B3, doi: 10.1109/DASC.2002.1067987. IEEE

PS25 G. Baster, P. Konana, and J. E. Scott, ‘Business components: a case study of bankers trust Australia limited’, Communications of the
ACM, vol. 44, no. 5, pp. 92–98, 2001. ACM

PS26 G. Canfora, A. Cimitile, A. De Lucia, and G. A. Di Lucca, ‘Decomposing legacy programs: a first step towards migrating to client–
server platforms’, Journal of Systems and Software, vol. 54, no. 2, pp. 99–110, Oct. 2000, doi: 10.1016/S0164-1212(00)00030-3. ScienceDirect

PS27 S. Barker and A. Monday, ‘Business students in information systems: wizards or apprentices?’, in Proceedings of the Australasian
conference on Computing education, 2000, pp. 6–11. ACM

PS28 M. B. Albizuri-Romero, ‘A retrospective view of CASE tools adoption’, ACM SIGSOFT Software Engineering Notes, vol. 25, no. 2,
pp. 46–50, 2000. ACM

185 | P a g e
www.ijacsa.thesai.org

https://doi.org/10.1109/CSMR.2013.66
https://doi.org/10.1109/CSMR.2004.1281422
https://doi.org/10.1109/DASC.2002.1067987
https://doi.org/10.1016/S0164-1212(00)00030-3

	I. Introduction
	II. Methodology
	A. Research Question
	B. Sources Selection
	C. Inclusion and Exclusion Criteria

	III. Publication in 4GL Code Generation in the Past 20 Years
	IV. Primary Studies and Discussions
	A. Transformation between 4GL Languages
	B. End user Computing
	C. Other Related Topics

	V. Conclusions
	1) In general, there is a lack of studies in 4GL code generation.
	2) The topic of 4GL languages code generation is often focused on transforming 4GL source codes to different 4GL or 3GL languages.
	3) Lack of studies is variety of 4GL languages as the majority focuses on auto-transformation of Oracle forms.
	4) The majority of the studies introduce semi-automated approaches which often need experts to be involved.
	5) The majority of studies are Immature studies which might be due to the specialized nature of 4GL and that most of 4GL are proprietary.

