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ABSTRACT 

Depression is a multifaceted disease which is marked by cognitive and emotional 
memory impairments. It is characterised by an imbalacement of serotonergic and 
glutamatergic system in brain areas such as hippocampus and prefontal cortex. Current 
antidepressant treatments available on the market and newer candidates need a better 
understanding of their mechanism of action, both at behavioral and molecular level. 

During my PhD thesis I have tested several hypothesis: 

In paper I – 5-HT7 receptors are involved in emotional memory caused by a 

direct or indirect activation of the receptor. This was tested in the passive avoidance 
(PA) task where systemic administration of the dual 5-HT1AR/5-HT7R agonist, 8-OH-
DPAT, was combined with 5-HT1AR and 5-HT7R antagonists administration in mice. 
Local infusion of 8-OH-DPAT was administered into the dorsal hippocampus in order to 
delineate that 5-HT1AR and 5-HT7Rs potentially crosstalk in hippocampal processing 
of emotional memory. 

In paper II – lurasidone, a second generation antipsychotic, posesses 
antidepressive properties, similar to the well studied fluoxetine, a selective serotonin 

reuptake inhibitor (SSRI). Chronic effects of lurasidone and fluoxetine were tested 
using behavioral approaches, such as novelty induced hyponeophagia (NIH), as well 
as immunobloting measurements in hippocampal and prefrontal cortex areas.  

In paper III – 5-HT1BR and p11 interaction affects the hippocampal 
neurotransmission. This was tested using biosensors to measure in vivo glutamate 
release with fast analytical sensing technology (FAST). Immunoblotting 
measurements were also performed, to determine glutamate receptor phosphorylation. 
Moreover, neurochemical events associated with p11-mediated regulation of 5-HT1BR 
function were tested by a non-invasive methodology, in vivo proton magnetic 
resonance spectroscopy (1H-MRS) recordings. 

 In paper IV – N methyl-D-aspartate receptor (NMDAR) antagonists, ketamine 

and Ro25-6981, compunds with rapid antidepressive properties, modulate glutamate 

release. This was tested with FAST-subsecond glutamate release mesurements in 
hippocampal-prefrontal cortex circuitry.  

 In conclusion, the work conducted in this thesis has contributed in 
understanding  the interaction between serotonergic and glutamatergic systems in 
hippocampal and prefrontal cortex areas, providing novel insights upon mechanism of 
action of different classes of antidepressants reflected both at the behavioral and 
molecular level. 
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1 INTRODUCTION

1.1 DEPRESSION 

     Depression, the predominant form of affective or mood disorders (Kessler et 

al., 2010), is one of the leading causes of disease burden worldwide, with a 

great impact on the health status, affecting all genders, ages and backgrounds 

(Schlaepfer et al., 2012). Diagnostic criteria for depression include symptoms 

such as sadness or low mood, cognitive dysfunctions, loss of interest or 

pleasure, disturbed sleep, poor concentration, guilt or low self-worth, disturbed 

appetite, poor energy, decreased interest in and enjoyment of sex, physical 

agitation or slowing, and thoughts or acts of suicide, according to Diagnostic 

and Statistical Manual of Mental Disorders (DSM-IV) (American Psychiatric 

Association, 2000). Depression could be triggered by several factors such as 

stress, genetic factors, inflammation, seasonal affective disorders (SAD), etc. 

(Caspi et al., 2003; Raison et al., 2006; Duman, 2014). Defects in the 

serotonergic (5-HT) system, which is involved in emotion, learning and 

memory processes, have long been implicated in the pathophysiology of 

depressive disorders (Hoyer et al., 2002). Most of the available antidepressants 

on the market accomplish their effect by increasing the levels of serotonergic 

neurotransmission but, overall, there is a certain delay of the therapeutic onset, 

making it difficult to fully delineate their action (Heninger et al., 1996; Barnes 

& Sharp, 1999). The pioneering experiments of Heninger et al. (1996) were the 

basis of the monoamine theory of depression, referring to the “depletion in the 

levels of serotonin, noradrenaline, and/or dopamine in the central nervous 

system” (see Figure 1). Apart from the mentioned serotonin (5-HT) 

dysfunction in depressed patients (Hoyer et al., 2002), the noradrenergic and 

dopaminergic system are also affected, since studies have shown alterations in 

β-adrenoceptor binding in suicide victims (Zanko & Beigon, 1983) and a lower 
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dopamine transporter binding in the striatum of depressed patients (Meyer  et 

al., 2001). 

 

However, there is clinical evidence that challenges the monoamine theory, 

namely the reported decrease of γ-aminobutyric acid  (GABA)  level in the 

cortex (Sanacora et al., 2002)  or alterations of glutamatergic system of the 

depressed patients (Sanacora et al., 2008). Glutamate has been shown to be a 

key neurotransmitter in depressive pathology (Trullas & Skolnick, 1990; 

Skolnick et al., 2009). Clinical studies have found evidence for glutamatergic 

dysfunction using neuroimaging and analyses of plasma, serum, cerebrospinal 

fluid and postmortem brain tissue of depressed patients (Sanacora et al., 2011). 

Newer treatment with compounds that target the glutamate receptors, such as 

ketamine, a nonspecific NMDAR antagonist, after an acute, sub anesthetic 

Figure 1. Involvement of monoamine neurotransmitters in the modulation of different 

symptoms in depression (adapted from Nutt et al., 2007). 
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dose, indicate rapid and sustained antidepressive effects in humans (Zarate et 

al., 2006).  

During my PhD I have been involved in projects focused on 5-HT receptor-

mediated modulation of glutamate transmission in two main brain regions: 

hippocampus and prefrontal cortex. I tried to understand more about this 

interaction and its implications for cognition and depression. Previous studies 

performed in humans have identified that the excitatory neural circuits within 

the hippocampal-prefrontal cortical system, which regulate stress-

responsiveness and mood, are over-activated in patients with major depressive 

disorder (MDD) (Ressler & Mayberg, 2003). Likewise, studies in rodent 

models have shown that different types of chronic stress induce depression-like 

changes on behavioral, morphological (eg. synaptogenesis) and signal 

transduction parameters (Maeng et al., 2008; Autry et al., 2011; Li et al., 2011; 

Müller et al., 2013; Duman et al., 2012) within the glutamatergic hippocampal-

prefrontal cortical circuitry (Qi et al., 2009; Duman & Li, 2012; Schloesser et 

al., 2012). 
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1.2 HIPPOCAMPAL –PREFRONTAL CORTEX CIRCUITRY 

1.2.1 HIPPOCAMPUS 

In the mamalian brain, the hippocampus is part of the limbic system and 

consists of several anatomical subregions including the entorhinal cortex, Cornu 

Ammonis (CA) subfields, CA1, CA2 and CA3, dentate gyrus and subiculum 

(O'Mara et al., 2000), with an intrinsic excitatory network between them (Tsien 

et al., 1996) (Figure 2). 

 

Figure 2. Hippocampal-prefrontal cortex circuitry involvement in depression. Hippocampal 

network a); CA1-Subiculum projections b); hippocampal synaptic plasticity c); cellular 

morphology changes d); hippocampal neurogenesis e). mPFC- medial prefrontal cortex; 

NMDAR-Nmethyl-D-aspartate receptor; AMPAR-alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor; Glu-glutamate; BDNF- brain-derived neurotrophic factor; 

TrkB-TrkB tyrosine kinase or BDNF/NT-3 growth factors receptor; mGluR-metabotropic 

glutamate receptor.  Printed with permission from the editor. From Schloesser et al., 2012. 
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 In terms of hippocampal cell types, the majority is represented by 

glutamatergic pyramidal and granule cells whereas a small fraction includes 

GABA- releasing interneurons (Fritschy et al., 1998). The hippocampus receives 

serotonergic projections from medial and dorsal raphe nuclei (MRN & DRN) 

(Jans et al., 2007; Vertes, 2010). A plethora of electrophysiological and 

behavioral studies identified hippocampus as a critical region in forming new 

memories (Tsien et al., 1996; Vertes, 2010). In rodents, hippocampal oscillatory 

patterns, such as theta (4–12 Hz) (Kramis et al., 1975) and gamma (30–80 Hz) 

(Bragin et al., 1995; Wang & Buzsaki, 1996) have been intensively linked with 

learning and memory processes. Different serotonin receptors (5HTRs) such 5-

HT1A/B, 5-HT4 and 5-HT7R are well-represented in the CA1 region, indicating 

the involvement of the serotonergic system in learning processes (Barnes & 

Sharp, 1999; Hoyer et al., 2002; Jans et al., 2007; Roberts & Hedlund, 2012). 

Also, the serotonergic projections from MRN & DRN interfere with the 

theta/hippocampal EEG, altering memory-processing functions in hippocampus 

(Vertes, 2010). Systemic administration of ketamine in mice, at a sub-anaesthetic 

dose, produced a decrease in theta and increase in gamma power (Lazarewicz et 

al., 2010). These experiments were reproduced in human studies, where 

ketamine decreased the amplitude of low-frequency oscillations (delta 1–5 Hz, 

theta-alpha 5–12 Hz) and increased the amplitude of gamma oscillations (Hong 

et al., 2009). Interestingly, a recent study performed in rodents (Muller et al., 

2013) revealed that acute ketamine treatment regulates the presynaptic release 

machinery in the hippocampus by a similar mechanism to chronic antidepressant 

treatment (Bonanno et al., 2005; Musazzi et al., 2010). Magnetic resonance 

imaging (MRI) studies indicated a reduction in hippocampal volume in 

depressed patients and individuals suffering posttraumatic stress disorder 

(PTSD) (Zubenko et al., 1990; Gilbertson et al., 2002; Campbell et al., 2004). 
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Factors such as severe and chronic stress alter the hippocampal formation in 

animals (Sapolsky et al., 1990). 

1.2.2 SUBICULUM 

Pyramidal neurons of the CA1 area send direct projections to the subiculum 

(O'Mara et al., 2000). This pathway is known to be involved in both short- and 

long term plasticity (O'Mara et al., 2000; Behr et al., 2009), whereas exposure to 

an acute stressor disrupts this plasticity (MacDougall et al., 2013). Subiculum, 

the main output of the hippocampus, sends glutamatergic projections to the 

amygdala, nucleus accumbens, hypothalamus and prefrontal cortex, creating 

neuroanatomic circuits known to be involved in mood regulation (see Figure 2b). 

If dysfunctionality may appear in any of the regions involved in these circuits, 

the subject/patient is more prone to develop a mood disorder (Soares & Mann, 

1997). 

1.2.3 PREFRONTAL CORTEX 

Similarly to the hippocampus, the prefrontal cortex (PFC) receives projections 

from MRN & DRN (Jans et al., 2007; Vertes, 2010). It has been reported from 

postmortem and imaging studies on patients with bipolar disorder (BD), a 

decreased neuronal size and altered neuronal and glial cells density in PFC 

region (Savitz et al., 2014; Campbell & Macqueen, 2004). Furthermore, analyses 

of the PFC from patients with mood disorders have shown increased glutamate 

levels and decreased gray matter volume (Savitz et al., 2014; Hashimoto et al., 

2007). 
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1.3 NEUROTRANSMISSION 

1.3.1 Serotonin transmission 

The serotonin neurotransmitter system plays major roles in the regulation of 

mood, sex, sleep, cognition and endocrine effects (Nichols & Nichols, 2008). 

Serotonin (5-hydroxytryptamine; 5-HT) is synthesized from the amino acid, 

tryptophan (Figure 3). The highest concentration of 5-HT (aprox. 90%) is found 

in the gut (enterochromaffin cells) whereas the rest of 5-HT is found in platelets 

and in the CNS (Azmitia & Gannon, 1986). In the brain, the serotonergic 

neurons are located in the caudal and rostral raphe nuclei of the brainstem, 

thereafter projecting to different brain areas such as the hippocampus, prefrontal 

cortex, amygdala, hypothalamus, basal ganglia and cingulate cortex (Jans et al., 

2007). A significant body of data suggests an important role of 5-HT in 

hippocampal -dependent learning and memory processes (Ögren et al., 2008). 

Rodent studies indicate that changes in 5-HT neurotransmission can facilitate or 

impair learning and memory in various hippocampal tasks reflecting actions on 

multiple 5-HTRs (Ögren et al., 2008). Changes in serotonergic transmission 

implicated in affective disorders appear also to underlie the cognitive 

dysfunction observed in psychiatric disorders (Millan et al., 2012).  

Figure 3. Serotonin (5-HT) synthesis and metabolism. 



8 

After its release from the synaptic terminals, 5-HT is cleared from synaptic cleft 

by the serotonin reuptake transporters (SERT) and re-packed in vesicles, 

whereas the free cytoplasmic 5-HT is inactivated by monoamine oxidase (MAO) 

to 5-hydroxyindole-3-acetic acid (5- HIAA) (Figure 4). 

1.3.1.1 Serotonin receptors 

Serotonin transmission is mediated by fourteen different 5-HT receptor (5-HTR) 

subtypes, divided in seven subclasses: 5-HT1A-F, 5-HT2A-C, 5-HT3, 5-HT4, 5-

HT5A-B 5-HT6 and 5-HT7 (Hoyer et al., 2002) (Figure 4). They have a diverse 

signaling pathway (Nichols & Nichols, 2008) and can be grouped in: a) 5-HTRs 

that decrease cAMP formation (5-HT1- and HT5-);  b) 5-HTRs that increase 

cAMP formation (5-HT4, 5-HT6 and 5-HT7); c) 5-HTRs that increase inositol 

triphosphate (IP3) and diacylglycerol (DAG) formation (5-HT2);  d) 5-HTRs 

that play a major role in increasing Na+ and Ca2+ influx (5-HT3Rs). All the 5-

HTRs are involved in a range of adaptive behaviors (Hoyer et al., 2002).  

Figure 4. Serotonergic synapse and 

distribution of 5-HTRs (adapted from 
Nichols & Nichols, 2008). Following 
synthesis from tryptophan and in presence of 
action potential, 5-HT is released and 
activates the 5-HTRs and synaptic cascades, 
leading to conformational changes of G 
protein and its subunits. 5-HT is taken up by 
SERT into presynaptic site and degraded by 
enzymes. 5-HT- serotonin; α-,β-, γ- G-
protein subunits, SERT- serotonin transport; 
5HIAA- 5hydroxyindoacetic acid; 5HTP- 
5hydroxytryptophan; MAO- monoamine 
oxidase. 
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In the course of my PhD, I was mostly interested in the following 5-HTR 

subtypes: 

5-HT1A receptors (Paper I & II): 

5-HT1ARs are widely expressed in CNS, located either presynaptically 

(somatodendritic autoreceptors) in raphe, or postsynaptically, in other regions of 

the brain (Jans et al., 2007). 5-HT1ARs constitute a therapeutic target for multiple 

neuropsychiatric diseases such as anxiety, depression or schizophrenia (Ohno., 

2011). Also, it has been indicated that 5-HT1AR agonist treatment impaired 

memory function (Ögren et al., 2008). 

5-HT1B receptors (Paper III): 

5-HT1BRs are auto- and heteroreceptors and are expressed in different brain 

regions such as basal ganglia, striatum and hippocampus, playing a major role in 

modulation of emotional memory performance (Eriksson et al., 2008). The 

expression levels of 5-HT1BR is decreased in p11 knock-out (KO) mice, an 

animal model of depression (Svenningsson et al., 2006). Positron emission 

tomography (PET) studies performed in ventral striatal/ventral pallidal areas of 

the patients with MDD exhibit a reduced binding potential for 5-HT1BR 

(Murrough et al., 2011), indicating the importance of 5-HT1BR in depression. 

5-HT2A receptors (Paper II): 

5-HT2ARs are mostly localized at the postsynaptic site, on dendritic shafts and in 

dendritic spines (Miner et al., 2003). 5-HT2ARs are also found on the presynaptic 

site suggesting that 5-HT2ARs can modulate excitatory neurotransmission (Jakab 

& Goldman-Rakic, 1998). A small fraction of 5-HT2ARs is expressed in glial 

processes (Miner et al., 2003). 5-HT2ARs are widely localized, including 
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prefrontal cortex (Miner et al., 2003). 5-HT2ARs undergo down-regulation in 

response to either agonist or antagonist treatment (Gray & Roth, 2001). 

5-HT4 receptors (Paper III): 

The 5-HT4R was cloned in 1995 (Gerald et al., 1995) and is expressed both 

peripherally and centrally (Nichols & Nichols, 2008). In humans, 5-HT4Rs are 

expressed in cortex, hippocampus, basal ganglia and substantia nigra 

(Bonaventure et al., 2000). Electrophysiological studies performed in the CA1 

region of the hippocampus, indicated that activation of 5-HT4Rs do not influence 

long term potentiation (LTP) but only long term depression (LTD) (Kemp & 

Manahan-Vaughan, 2005). 5-HT4Rs modulate the release of various 

neurotransmitters and play a major role in learning and memory (Chapin et al., 

2002).  

5-HT7 receptors (Paper I & II): 

The 5-HT7Rs are the newest addition to the 5-HTRs family and several groups 

(Bard et al., 1993; Shen et al., 1993; Lovenberg et at., 1993; Plassat et al., 1993; 

Ruat et al., 1993) reported in parallel the cloning of the human, rat and mouse 5-

HT7 receptor. 5-HT7Rs are widely expressed in the brain, including limbic 

system, thalamus, hypothalamus and cortical areas (Vanhoenacker et al., 2000; 

Neumaier et al., 2001). 5-HT7Rs modulate hippocampus-dependent learning 

performance (Roberts & Hedlund, 2012), are involved in circadian rhythmicity 

and thermoregulation (Middlemiss et al., 2002). In particular, sleep studies in 

rats with 5HT7R antagonist, SB269970, indicated a reduction of paradoxical 

phase, as similar to the effect after a treatment with selective serotonin reuptake 

inhibitors (SSRIs) in clinical trials (Hagan et al., 2000). 
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1.3.2 Glutamatergic transmission 

 

L-Glutamate (Glu), the major excitatory neurotransmitter in the mammalian 

central nervous system (CNS), is synthesized from glutamine in the presynaptic 

compartment (Figure 5). 

 

Figure 5. Conversion of Glutamate and GABA from Glutamine. H2O- water; CO2- carbon 

dioxide; NH4
+- ammonium cation; Pi -phosphate; ADP- adenosine diphosphate; ATP- adenosine 

triphosphate; GABA- gamma-amino butyric acid. 

Upon arrival of an action potential at the presynaptic site, Glu vesicles, located in 

terminal buttons, fusion in the presence of Ca2+. This mechanism leads to 

changes in conformation of the SNARE (soluble N-ethylmaleimide-sensitive 

factor attachment protein receptor) complex (Südhof & Rothman, 2009) and 

leads to a fast release of Glu and activation of glutamate receptors located on the 

postsynaptic site (Figure 6). Glu also activates the presynaptic NMDAR, a 

mechanism that causes reinforcement of Ca2+ dependent Glu release (McGuiness 

et al., 2010). From synaptic cleft, Glu in excess is taken up by surrounding glial 

cells, with high-affinity transporters. The activity of the glial transporters, such 

as the excitatory amino acid transporter 1/2 (EAAT1/2), help in prevention of 

Glu toxicity (Danbolt, 2001). In the glial cells, Glu is converted to glutamine 

(Gln).  
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1.3.2.1 Glutamate receptors 

 

1.3.2.1 Glutamate receptors 

Glu acts on two major classes of synaptic receptors: ionotropic and metabotropic 

glutamate receptors. The ionotropic glutamate receptors include: AMPAR 

(alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor), 

NMDAR and kainate receptors. The metabotropic glutamate receptors (mGluRs) 

are part of the G-protein coupled receptor family. NMDAR receptors 

(NMDARs) and AMPAR receptors (AMPARs) are directly involved in two 

forms of synaptic plasticity, LTP and LTD. Both physiological processes have 

Figure 6. The glutamatergic tripartite synapse (adapted from Popoli et al., 2011). 

Following synthesis from glutamine and in presence of action potential, glutamate is released 

and activates the NMDAR, AMPAR and postsynaptic cascades. From the synaptic cleft, 

glutamate uptake occurs through EAAT1/2 dependent-transport into glial cells, converted into 

glutamine and furthermore converted back to glutamate, in the presynaptic site. Glu- 

glutamate; Ca2+ - calcium  ion; NMDAR-N-methyl-D-aspartate receptor; AMPAR- α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; EAA1/2- excitatory amino acid 

transporters 1/2.  
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been thoroughly characterized in the hippocampus (Bliss & Lomo, 1973; Lomo, 

2003; Bliss & Collingridge, 2013). 

My current PhD thesis consisted mostly in biochemical measurements and 

behavior readouts from animals experiments. Therefore, it was vital to 

understand how different classes of antidepressants exert their function and 

regulate the molecular mechanism of synaptic transmission, such as subunit 

composition of NMDAR and AMPAR, additional synaptic proteins and 

intracellular signaling pathways.  

1.3.2.1.1 NMDA receptors (NMDARs) 

 NMDARs are heterotetrametric ion channels and include three subtypes: NR1 

(with 8 subunits), NR2 (with subunits- A, B, C, D) and NR3 (with 2 subunits- A 

and B) (Ogden & Traynelis, 2011) (Figure 7). In order to be functional, the 

NMDARs contain a mandatory NR1 subunit (Monyer et al., 1992; Ogden & 

Traynelis, 2011). Normally, Mg2+ blocks NMDAR due to binding at the channel 

pore (Paoletti & Neyton, 2007). The activation of NMDARs requires the 

simultaneous presence of Glu and glicine (Lerma et al., 1990). The NR2 subunits 

form the binding sites for Glu whereas the NR1 and NR3 form the binding sites 

for glycine (Furukawa et al., 2005). NMDAR activation triggers a cascade of 

biochemical processes (Bliss & Lomo, 1973). 
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Figure 7. NMDAR subunit composition and the binding sites for agonists and antagonists. 

Printed with permission from the editor. From Paoletti & Neyton, 2007 

In rodents, the NMDAR are located in different brain regions, including 

entorhinal cortex, hippocampus and prefrontal cortex (Sjöström et al., 2003; 

McGuinness et al., 2010; Rossi et al., 2012). NMDARs are expressed 

postsynaptically, in pyramidal cells (with the NR2A and NR2B subunits 

(Skolnick et al., 2009), GABA interneurons (Bagley & Moghaddam, 1997) and 

astrocytes (Krebs et al., 2003). NMDARs are also located at the presynaptic site 

(preNMDARs), as autoreceptors (McGuinness et al., 2010; Rossi et al., 2012; 

Buchanan et al., 2012). It is known that axonal compartments contain 

preNMDARs (McGuinness et al., 2010; Rossi et al., 2012;  Buchanan et al., 

2012) and CA1-subicular axonal projections possess the preNMDAR-containing 

NR1 and NR2B subunits (Behr et al., 2009). In rodent brain, subicular pyramidal 

cells posses a particular feature, similar to humans, namely that the cells are 
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classified as bursting spiking (BS) and regular-spiking (RS) cells (Behr et al., 

2009). The BS cells are in a greater number than the RS cells and require 

presynaptic Ca2+ influx but not an increase of postsynaptic Ca2+ for induction of 

LTP, suggesting that LTP is induced via activation of presynaptic NMDAR 

(Behr et al., 2009). This aspect is very important in respect to synaptic 

neurotransmission, since it provides a rapid control over the action potential-

driven, Ca2+-dependent, glutamate release (Sjöström et al., 2003; Chamberlain et 

al., 2008; McGuinness et al., 2010).  The CA1 and subicular cells possess 

another particular feature: immunohistochemical experiments performed in 

rodents indicated the expression NR2B subunits only at the neuronal cells, 

whereas, in a normal brain, astrocytes do not express it (Krebs et al., 2003). 

However, factors such as ischemia in vivo and anoxia in vitro trigger the 

expression of NMDAR-containing NR2B subunit in astrocytes (Krebs et al., 

2003). Pharmacological studies have focused in developing compounds that 

target the Glu-blinding sites, ion-channel pore or alosteric site of the N-terminal 

domain (NTDs) (Figure 7). Over the past decades, new compounds that 

specifically target the NR2 subunits have been developed (the affinity ranking 

typically NR2A > NR2B > NR2C > NR2D) (Paoletti & Neyton, 2007). These 

studies indicate that NMDARs play a major role in the etiology of depression 

(Ogden & Traynelis, 2011). In mice, genetic inactivation of NMDAR-NR2A 

subunit leads to an anxiolytic and antidepressant-like effect, as measured by 

performance in the forced-swim test and tail suspension test (Boyce-Rustay & 

Holmes, 2006). Animal studies with ketamine (a non-selective NMDAR 

antagonist) and Ro25-6981 (a selective NMDAR NR2B-subunit antagonist) 

have shown that their fast-acting antidepressant effects involve the activation of 

the mammalian target of rapamycin (mTOR) signaling, as well as other 

pathways and proteins: mitogen activated protein kinase (MAPK), protein kinase 
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B (PKB), activity-regulated cytoskeletal-associated protein (Arc), post synaptic 

proteins, such as post synaptic density 95 (PSD-95) and GluR1 (Li et al., 2010). 

Both in vivo and in vitro experiments with D-(-)-2-amino-5-phosphonopentanoic 

acid (APV), an NMDAR selective antagonist, highlighted the involvement of 

this class of glutamate receptors in emotional memory (Stiedl et al., 2000) and 

dendritic arborization (Rocha & Sur, 1995; McAllister et al., 1996). Clinical 

trials performed in depressed patients challenged with a single intravenous 

ketamine injection, at a subanesthetic dose, showed a rapid and sustained 

antidepressant effect (Zarate et al., 2006).  

 

1.3.2.1.2 AMPA receptors (AMPARs) 

 

AMPARs are heterotetrametric ion channels and mediate the fast synaptic 

transmission in the CNS (Traynelis et al., 2010). AMPAR include four GluR 

subunits (GluR1-GluR4) which are distributed, in a functional AMPAR, as 

dimers of GluR2 and as dimers from GluR1, GluR3, or GluR4 (Traynelis et al., 

2010). At rest, the majority of AMPARs at hippocampal synapses contain a 

higher ratio of GluR1/2 heteromer rather than GluR2/3 heteromer or GluR1 

homomers (Lu et al., 2009). The GluR2 subunit regulates the permeability of 

AMPARs to Ca 2+, whereas the GluR2 inclusion or GluR2 genetic deletion alters 

the transmission at the synaptic level (Lu et al., 2009). The AMPARs function is 

regulated by antidepressants: acute and chronic treatment with fluoxetine, leads 

to increase in AMPAR phosphorylation (Svennigsson et al., 2002). The 

NMDARs regulate AMPA trafficking by either promoting AMPAR-containing 

GluR1 subunit insertion onto synapses (Hayashi et al., 2000) or removal of 

AMPAR-containing GluR1 and GluR2 subunits from the synapses (Beattie et 
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al., 2000). GluR1 double phosphomutant mice exibit an altered anxious and 

depressive-like behaviour (Kiselycznyk et al., 2013).  

 

1.3.3 GABA transmission (Paper III) 

 

GABA is the main inhibitor neurotransmitter in the brain. GABA regulates the 

activity of glutamatergic synapses and plays a major role in the generation of 

gamma oscillations and learning and memory processes (Buzsáki & Wang, 

2012). It is worth noting that glutamine is the precursor for both Glu and GABA 

(Figure 5). In clinical trials, proton magnetic resonance spectroscopy (1H-MRS) 

investigations have linked the cognitive impairments of schizophrenia with 

decreased GABAergic concentration in visual cortex (Yoon et al., 2010). Other 

studies have indicated that treatment with SSRIs in depressed patients lead to an 

increase of GABA levels in the occipital cortex area (Sanacora et al., 2002). 

 

1.3.4 Synaptic proteins (Paper  II & III) 

1.3.4.1 P11 (Paper II) 

 

P11 (S100A10, annexin II light chain) is an adapter protein which, at the cellular 

level regulates 5-HT1BR functions and recruits both 5-HT1BR and 5-HT4R to the 

cell surface (Svenningsson et al., 2006; Svenningsson et al., 2007; Warner-

Schmidt et al., 2009; Svenningsson et al., 2013). Reduced levels of p11 have 

been found both in postmortem human brain tissue from depressed individuals 

and suicide victims (Svenningsson et al., 2006; Anisman et al., 2008; Alexander 

et al., 2010), and in a rodent model of depression (Svenningsson et al., 2006). 

P11 knock-out (KO) mice exhibit a depressive-like phenotype and have reduced 

responsiveness to 5-HT1BR agonists and antidepressants (Svenningsson et al., 
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2006; Egeland et al., 2010). Chronic treatment with imipramine, a tryciclic 

antidepressant (TCA) and electroconvulsive therapy increased p11 protein level 

in cortex (Svenningsson et al., 2006). Recently, clinical trials in patients with 

MDD have indicated that chronic treatment with citalopram, an antidepressant 

from SSRI family, has been associated with decreased p11 levels in white 

blood cells (Svenningsson et al., 2014).  

1.3.4.2 Post Synaptic Densisty 95 (PSD-95) (Paper III) 

PSD-95 protein is a member of membrane-associated guanylate 

kinase (MAGUK) scaffolding protein family and is involved in the regulation of 

glutamatergic signaling at the postsynaptic site (Zhang et al., 2013), by 

interacting with NMDAR and downstream signaling proteins (Aoki et al., 2001). 

As previously mentioned, PSD-95 is also an indirect target of fast-acting 

antidepressants (the non-selective NMDAR antagonist, ketamine, and Ro25-

6981 (Li et al., 2010). PSD-95 plays a critical role by mediating the actions of 

hallucinogens and atypical antipsychotic drugs which target the 5-HT2AR and 5-

HT2CR (Zhang et al., 2013).  
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1.4. AIMS 

Based on the need to develop novel and effective therapies for depression, 
studies were undertaken to identify pharmacological targets of improved 
antidepressive medication. 

Paper I 

(1) to examine the role of 5-HT7Rs in emotional memory using direct or indirect 
activation of the receptor by combining systemic administration of the dual 5-
HT1AR/5-HT7R agonist 8-OH-DPAT, together with 5-HT1AR and 5-HT7R 
antagonists 

(2) to assess the involvement of hippocampal processing in emotional memory by 
local infusion of the 5-HT1AR/5-HT7R agonists into the dorsal hippocampus of 
mice 

Paper II 
(1) to investigate and compare the antidepressive properties of chronically 

administered lurasidone and fluoxetine 

(2) to measure protein expression differences in the hippocampus and prefrontal 
cortex, associated with antidepressive effects of lurasidone and fluoxetine 

Paper III 

(1) to investigate the mechanism(s) whereby 5-HT1BRs and p11 regulate 
hippocampal neurotransmission 

(2) to study neurochemical events associated with p11-mediated regulation of 5-
HT1BR function 

Paper IV 

(1) to investigate how local application of the NMDARs antagonists ketamine or 
Ro25-6981 affect tonic and evoked glutamate release in different brain regions 
relevant to depression 

(2) to investigate if, in a time-course of 2 hours following acute systemic 
administration of ketamine, tonic and evoked glutamate release would be 
affected in the subiculum  
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2 MATERIALS AND METHODS 

Various methodological approaches have been used in the current thesis, as they 

are enumerated below, with a full description in the corresponding papers. 

Additional methods that have been only used by the collaborators and not by the 

author of the thesis are described in detail in the corresponding paper. 

Pharmacological compounds (agonists and antagonists) used in the current thesis 

have been listed below (Table 1).  

2.1 MOUSE MODELS  

2.1.1 C57BL/6J mice (I, II, IV) 

2.1.2 S100A10 knockout (P11 KO) mice (III) 

2.2 PHARMACOLOGICAL TREATMENTS  

2.2.1 Acute and repeated systemic administration (I-IV) 

2.2.2 Chronic antidepressant drug administration (II) 

2.2.3 Local brain infusion (I, III, IV)  

2.3 BEHAVIORAL METHODS  

2.3.1 Passive Avoidance Test (I) 

2.3.2 Novelty Induced Hypophagia (II)  

2.3.3 Open Field (II) 

2.3.4 Nest Building Test (II)  

2.4 BRAIN NEUROCHEMICAL MEASUREMENTS  

2.4.1 Magnetic Resonance Spectroscopy (III)  
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2.4.2 Fast Analytical Sensing Technology (FAST) (III & IV) 

2.5 STEREOTACTIC APPLICATIONS 

2.5.1 Chronic Cannulae Implantation (I) 

2.5.2 Intrahippocampal drug injection (I, III, IV)  

2.5.3 Methylene Blue intracranial infusion (I, III, IV) 

2.5.4 Enzyme-based Micro-Electrode Array (III & IV) 

2.6 HISTOLOGY 

2.6.1 Nuclear Fast Red Counterstaining (I, III, IV). 

2.7 BIOCHEMICAL TECHNIQUES 

2.7.1 Immunoblotting (II, III) 

Table 1. Agonists and antagonists used in the present work 

NAME MODE OF ACTION 

8-OH-DPAT 5-HT1AR/5-HT7R agonist 

NAD-299 HT1AR antagonist 

SB269970 5-HT7R antagonist 

CP-94253 5-HT1BR agonist 

Lurasidone 
D2, 5-HT2A, 5-HT7R antagonist; 5-HT1AR partial 
agonist 

Fluoxetine selective serotonin reuptake inhibitor (SSRI) 

Ketamine non-selective NMDAR antagonist 

Ro25-6981 selective NMDAR-NR2B-subunit antagonist 
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3 RESULTS

In this section are indicated main findings from Paper I-IV. 

3.1. In vivo 5-HT1ARs and 5-HT7Rs interaction in the modulation of 

emotional memory function (Paper I) 

We have found that pretraining (15 minutes before training) injections with 8-

OH-DPAT, a dual 5-HT1AR/5-HT7R agonist, significantly affected training 

latencies both at 0.3mg/kg and 1 mg/kg (Figure 1a) in the passive avoidance 

(PA) test. Sytemic administration of 8-OH-DPAT, together with blocking the 5-

HT1AR activity by NAD-299, lead to a marked facilitation of  PA retention due 

to the 5-HT7R stimulation (Figure 1b). 

Figure 1. Effects of pharmacological manipulation by the dual 5-HT1AR/5-HT7R agonist 

8-OH-DPAT combined with selective 5-HT1AR (NAD-299) and 5-HT7R (SB269970) 

antagonists on PA performance. Step-through latency at training after pre-training treatment 
(a). PA retention performance assessed by step-through latency performed 24 h after training 
(b). Drugs or vehicles were injected 30 min before training (NAD-299 s.c. and/or SB269970 
i.p.) and 15 min before training (8-OH-DPAT s.c.). Data represent means ±S.E.M; numbers
refer to systemic drug dosages in mg/kg; n = 8-13 mice/group and 59 controls. *p < 0.05; **p 
< 0.01; ***p < 0.001 vs. corresponding vehicle control group (white bar); ###p < 0.001 
between indicated treatments. Statistical analysis included one way ANOVA or, in cases of 
pairwise comparison of two groups, by unpaired t-test. In cases of significant overall effect on 
the ANOVA, Neuman-Keuls was used for post-hoc analysis. 
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Furthermore, to assess the involvement of hippocampal processing in emotional 

memory, 8-OH-DPAT was locally infused into dorsal hippocampus of mice. 8-

OH-DPAT impaired the PA performance similar to the effects of systemic 

administration (Figure 2a). Intrahippocampal administration of 8-OH-DPAT, 

together with blocking the 5-HT1AR activity by NAD-299, lead to a marked 

facilitation of PA retention due to the 5-HT7R stimulation (Figure 2b).  

Figure 2. Effects of intrahippocampal infusion of the dual 5-HT1AR/5-HT7R agonist  

8-OH-DPAT co-administered with selective 5-HT1AR and 5-HT7R antagonist on PA 

performance. Step-through latency at training after pre-training treatment (a). PA retention 
was determined by step-through latency 24 h after training (b). Drugs were injected 30 min 
before training (NAD-299 s.c. and/or SB269970 i.p.) and intrahippocampal infusions of 8-OH-
DPAT or aCSF occurred 15 min before training. Data represent means ± S.E.M; numbers refer 
to systemic drug dosages in mg/kg or total dose of drug in mg/mouse infused into both dorsal 
hippocampi; n = 11-25 mice/group and 76 controls. *p < 0.05; ***p < 0.001 vs. corresponding 
vehicle control group (white bar); ###p < 0.001 between indicated treatments. Statistical 
analysis included one way ANOVA or, in cases of pairwise comparison of two groups, by 
unpaired t-test. In cases of significant overall effect on the ANOVA, Neuman-Keuls was used 
for post-hoc analysis.  
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 3.2 Effects of chronic treatment with lurasidone and fluoxetine  

 in mice (Paper II) 

3.2.1 Lurasidone and fluoxetine decrease the latency to feed in the NIH 

test  

We found that lurasidone, at both doses (3mg/kg and 10mg/kg) and fluoxetine 

(20mg/kg) were able to decrease latency to feed in the novelty-induced 

hyponeophagia (NIH) test, a behavioral paradigm sensitive to chronic 

antidepressive treatment (Figure 3): 

Figure 3. Chronic lurasidone and fluoxetine decrease the latency to feed in the novelty-
induced hyponeophagia test.  Graph showing home versus novel cage difference in the latency 
to consume milk reward. Chronic treatment with both 3mg/kg and 10mg/kg lurasidone as well as 
fluoxetine significantly decreased the latency to feed in the NIH test. The data are presented as 
mean values ± S.E.M. from 6-9 animals. *p<0.05; **p<0.01; ***p<0.001, Two-way repeated 
measures ANOVA followed by Fisher’s LSD test, versus vehicle group. Legend: Veh: 
vehicle/control group (Methyl cellulose 0.5%) 10ml/kg; Lur3 - lurasidone (3mg/kg); (Lur10) - 
lurasidone (10mg/kg); F20 -fluoxetine (20mg/kg). All treatments were administered per os (p.o.). 
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3.2.2 Lurasidone and fluoxetine decrease total NMDAR subunit levels 

Protein expression differences in hippocampus and prefrontal cortex, associated 

with antidepressive effects of lurasidone and fluoxetine were measured by 

Western blot (WB). Lurasidone and fluoxetine shared the ability to decrease the 

NR1 and NR2A subunit levels in hippocampus (Figure 4A), with similar effects 

on NR2A and NR2B subunits in prefrontal cortex (Figure 4B). In addition, 

fluoxetine decreased the NR1 subunit levels in prefrontal cortex (Figure 4B).  

Figure 4: Chronic lurasidone and fluoxetine decrease the total NMDA receptor subunit 

levels 10mg/kg lurasidone and 20mg/kg fluoxetine decreased the levels of NMDA receptor 
subunits in hippocampus (A) and prefrontal cortex (B). The data are normalized by β-actin and 
presented as mean percentage of vehicle control ± S.E.M from 7-9 animals. *p<0.05; **p<0.01; 
***p<0.001, One-way ANOVA followed by Fisher’s LSD test, versus vehicle group. NMDAR 
subunits: T-NR2A, T-NR2B, T-NR1; AMPAR subunit:  T-GluR1. Legend: Veh: vehicle/control
group (Methyl cellulose 0.5%) 10ml/kg; Lur3 - lurasidone (3mg/kg); (Lur10) - lurasidone 
(10mg/kg); F20 -fluoxetine (20mg/kg).  
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3.2.3 Lurasidone and fluoxetine modulate NMDAR phosphorylation 

Fluoxetine increased the P-Ser896-NR1 in hippocampus and prefrontal cortex 

(Figure 5 A, B). Both compounds decreased the P-Ser1303-NR2B in prefrontal 

cortex (Figure 5B). Also, fluoxetine increased the P-Ser897-NR1 in prefrontal 

cortex (Figure 5B).  

Figure 5: Chronic lurasidone and fluoxetine modulate the phosphorylation state of 

NMDAR subunits. Fluoxetine (20mg/kg) exerts post-translational modification on the 
phosporylation states of NMDAR subunits in hippocampus (A). Lurasidone (10mg/kg) and 
fluoxetine (20mg/kg) affects NMDAR phosphorylation in prefrontal cortex B). NMDAR 
phosphorylation states: P-Ser1303-NR2B, P-Ser1472-NR2B, P-Ser896-NR1, P-Ser897-NR1. The 
data are normalized by β-actin and presented as mean percentage of vehicle control ± S.E.M 
from 7-9 animals. *p<0.05; **p<0.01, ***p<0.001, One-way ANOVA followed by Fisher’s 
LSD test, versus vehicle group. Legend: Veh: vehicle/control group (Methyl cellulose 0.5%) 
10ml/kg; Lur3 - lurasidone (3mg/kg); (Lur10) - lurasidone (10mg/kg); F20 -fluoxetine 
(20mg/kg). 
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3.2.4 Lurasidone and fluoxetine decrease PSD-95 levels 

Moreover, lurasidone and fluoxetine shared the ability to decrease the PSD-95 

levels both in hippocampus (Figure 6A) and prefrontal cortex (Figure 6B).    

Figure 6: Chronic lurasidone and fluoxetine decrease synaptic protein levels Lurasidone 
(10mg/kg) and fluoxetine (20mg/kg) decreased the PSD-95 levels both in hippocampus (A) and 
prefrontal cortex (B). Lurasidone and fluoxetine did not affect the P-Thr286 -CamKII-α/β levels in 
hippocampus (C) and prefrontal cortex (D). syn I: synapsin I; PSD-95: post synaptic density 95. 
The data are normalized by β-actin (see methods) and presented as mean percentage of vehicle 
control ± S.E.M from 7-9 animals. *p<0.05; **p<0.01, ***p<0.001, One-way ANOVA followed 
by Fisher’s LSD test, versus vehicle group. Legend: Veh: vehicle/control group (Methyl cellulose 
0.5%) 10ml/kg; Lur3 - lurasidone (3mg/kg); (Lur10) - lurasidone (10mg/kg); F20 - fluoxetine 
(20mg/kg). 
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3.3 HT1BRs and p11 regulate hippocampal neurotransmission (Paper III) 

3.3.1 5-HT1BR agonist, CP-94253, increase presynaptic release of Glu in 

hippocampus of p11KO mice 

Using in vivo amperometric recordings with fast analytical sensing technology 

(FAST), we found that 5-HT1BR agonist, CP-94253, increased presynaptic 

glutamate release both in dentate gyrus and CA1 regions in  p11KO mice (Figure 

7a). The FAST is able to record, in real-time, sub-second potassium chloride 

(KCl) depolarization- evoked Glu release (Figure 7b). 

Figure 7. Increased presynaptic hippocampal glutamate neurotransmission by 5-HT1BR 

stimulation in p11KO mice. Glutamate-oxidase enzyme based MEA recordings of potassium-
evoked glutamate release amplitudes in hippocampal CA1 and DG subregions of anesthetized 
mice (a). Real-time in vivo amperometric responses of reproducible glutamate dynamics 
recorded at 2Hz, with glutamate recording sites (corresponding to responses in red and black) 
and sentinel or reference sites (corresponding to responses in blue and green) (b). Event 
markers indicated by arrows mark depolarization-induced responses evoked by 120mM KCl 
with and without co-administration of 10 mM of CP94253 (b), with 60 s between each local 
application of KCl. For glutamate release amplitudes in the DG, an interaction was found 
between CP94253 and genotype (a). In the CA1, CP94253 resulted in a higher KCl-evoked 
glutamate release amplitude in P11KO mice compared to baseline depolarization-evoked 
release of glutamate in P11KO mice (a).  Data are presented as means ±s.e.m. (a) 3–5 
reproducible peaks with n=10–14 (DG) and 8–10 (CA1) recordings per group. CA1: cornu 
ammonis 1 of hippocampus, DG: dentate gyrus of hippocampus, CP: CP94253 (5-HT1BR 
agonist), G: genotype, P11KO: p11 knock-out mice, WT: wild type mice, K: KCL (potassium 
chloride, 120mM), MEA: microelectrode array. *p<0.05; **p<0.01 between indicated 
treatments, Two-way ANOVA followed by Newman-Keuls test. 
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3.3.2 CP-94253 increases phosphorylation at P-Ser
831-

GluR1 and P-Ser
845

-

GluR1 in the hippocampus of p11KO mice 

The effects of  5-HT1BR agonist, CP-94253, upon postsynaptic glutamatergic 

neurotransmission in the hippocampus of p11 KO mice were investigated by 

WB measurements. CP-94253 did not produce significant changes in total 

AMPAR and NMDAR levels (Figure 8c), but increased the phosphorylation of 

AMPAR, in particular the Ser831 and Ser845 of the GluR1 subunit (Figure 8d). 

Figure 8. Increased postsynaptic hippocampal glutamate neurotransmission by 5-HT1BR 

stimulation in p11KO mice. Histograms quantifying total protein levels and phosphorylated form 

of the protein normalized to the total level of the protein (c–d) in the hippocampus. Representative 

western blots are shown above each histogram. Genotype-dependent effects were found for 

phosphorylation at Ser831 of the GluR1 subunit and increased phosphorylation at Ser845-GluR1 by 

CP94253 in p11KO mice (d). n=5–6 per group. Data are presented as means±S.E.M; V: vehicle 

(saline), CP: CP94253 (5-HT1BR agonist), G: genotype, P11KO: p11 knock-out mice, WT: wild 

type mice, *p<0.05; **p<0.01 between indicated treatments, Two-way ANOVA followed by 

Newman-Keuls test. 
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3.3.3 Decreased GABA and Gln upon (
1
H-MRS) measures in hippocampus 

of p11KO mice  

Upon in vivo proton magnetic resonance spectroscopy (1H-MRS) measurements 
of neurochemical events, it was found that in the hippocampus of p11KO mice 
there is a decrease in GABA and Gln level (Figure 9d).  

 
 

 
 

 

 

 

 

 

 

 

 

 

Representative MRI (magnetic resonance image) 

featuring coronal, axial and sagittal slices through a 

mouse brain (a). Placement of the voxel, the volume 

of interest (VOI) sized 3.0x1.8x1.8 mm3, for 

spectroscopy in the hippocampus 1H-MR spectra 

acquired from the voxel centered in the hippocampus 

of WT (b) and p11KO mouse (c). Mean 

neurochemical concentration in WT (white bars) and 

p11KO mice (filled bars) (d). Relative concentrations 

of glutamine and GABA were reduced in the 

hippocampus of p11KO mice when compared to WT 

mice. P11KO   (n=8). NAA+NAAG:N-

Acetylaspartate+N-Acetylaspartatylglutamate, 

Glu:Glutamate,Gln: Glutamine,GABA;gamma-

amino butyric acid, 

GPC+PCh:GlyceroPhosphocholine+Phosphocholine, 

WT: wild type mice, P11KO: p11 knock-out mice. 

Data are presented as means±S.E.M for WT (n=7); 

*p<0.05 between indicated groups, Student’s t test.

Figure 9. Reduced hippocampal inhibitory transmitters detected by in vivo proton 

magnetic resonance spectroscopy (1H-MRS). 
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3.4 Effects of NMDARs antagonists, ketamine and Ro25-6981, upon 

glutamate release in hippocampal prefrontal cortex circutry (Paper IV) 

3.4.1 Local application of ketamine or Ro25-6981 decreases the evoked 

glutamate release in subiculum  

Local application of either ketamine or Ro25-6981 (100µM) altered the evoked 

glutamate release in the hippocampal-prefrontal cortical circuitry, in particular 

subiculum (Figure 10c, e), with no effect on tonic level of glutamate (Figure 10d, 

f).  

Figure 10. Evoked and tonic glutamate release after local application of ketamine and 

Ro25-6981. Representative glutamate peaks from the subiculum (a). Photomicrograph showing 
histological verification of the MEA recording site by local methylene blue injection in a 50-μm 
coronal brain section of the subiculum (indicated on the right hemisphere), after counterstaining 
with Nuclear Fast Red (b). The depolarizing solution (70mM KCl) was pressure-ejected (↑) in the 
absence (vehicle) or presence of ketamine or Ro25-6981 (100 μM) for 1-s duration with 1-min 
interval between each application. The evoked glutamate (c, e) and the tonic levels (d, f) are 
depicted per studied region. Note that local application of ketamine caused a significant decrease 
in presynaptic glutamate release in the subiculum and prelimbic area of the prefrontal cortex (c), 
whereas local application of Ro25-6981 caused a significant decrease in the subiculum and 
dentate gyrus (e). Tonic extracellular glutamate levels did not change after local application of 
either ketamine (d) or Ro25-6981 (f) in any of the regions analyzed. Data represent mean±S.E.M 
from five glutamate peaks from 8–14 animals. *p<0.05; **p<0.01, paired Student’s t-test versus 
vehicle within region. CA1: cornu ammonis 1, DG: dentate gyrus, SUB: subiculum, PreL: 
prelimbic region of the prefrontal cortex, IL: infralimbic region of the prefrontal cortex. 
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3.4.2 Acute, systemic, subanesthetic dose of ketamine decreases the evoked 

Glu release in subiculum  

 

We have also found that, an acute, systemic administration of ketamine, at an 

antidepressant-like dose (10mg/kg), led to a decrease in evoked glutamate 

release (Figure 11a) but not in tonic Glu levels in subiculum (Figure 11b). 

 

Figure 11. Evoked and tonic glutamate release in the subiculum after subanesthetic 

injection of ketamine. The depolarizing solution (70mM KCl) was pressure ejected for 1-s 
duration with 1-min interval between each application. The evoked glutamate (a) and the tonic 
levels (b) are depicted as a percentage of control before the intraperitoneal (i.p.) injection of either 
S-ketamine (15 mg kg− 1) or saline. Note that the subanesthetic dose of S-ketamine caused a 
significant decrease in presynaptic glutamate release in the subiculum 120 min after the 
administration but not after 30 min (a). Tonic extracellular glutamate levels did not significantly 
change at any time post injection. Data represent mean ±S.E.M from five glutamate peaks from 
six to nine animals. *p<0.05, unpaired Student’s t-test versus vehicle within region. 
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4 GENERAL DISCUSSION 

In paper I, by using systemic and intrahippocampal administration, we 

have shown PA impairment by hippocampal 8-OH-DPAT in mice. The PA 

facilitation was due to activation of 5-HT7R through 8-OH-DPAT and 

blockade of 5-HT1AR by NAD-299; this effect was blocked by the 5-HT7R 

antagonist, SB269970. These results indicate the crosstalk between 5-HT1ARs 

and 5-HT7Rs, in particular modulation of PA retention in this hippocampus-

dependent memory task.  

In paper II, by using behavioral and biochemical approaches, we have 

investigated and confirmed the antidepressant properties of lurasidone and 

fluoxetine. Lurasidone exerts its effects upon D2, 5-HT2A and 5-HT7, as a 

receptor antagonist, and upon 5-HT1A, as a receptor agonist (Huang et al., 2014). 

Lurasidone has been recently approved for treatment of bipolar depression by the 

food and drug administration (FDA). Clinical trials indicated that lurasidone 

alleviated both positive and negative symptoms of schizophrenia (Meltzer et al., 

2011). As previously studied, the homozigous SERT knockout (SERT-/-) rats 

show an anxious and depressive-like behavior when tested in paradigms such as 

the forced swim test and sucrose consumption (Olivier et al., 2008). In this 

particular rat model of depression, lurasidone restored the neurotrophin deficits 

in prefrontal cortex region (Luoni et al., 2012). We have shown that chronic 

lurasidone and fluoxetine treatment shares not only similarities upon effects in 

the NIH (test sensitive to chronic antidepressants exposure in mice, eg. Dulawa 

et al., 2004), but also at molecular levels. Both compounds decreased the 

NMDAR expression, in particular, the NR1, NR2A and NR2B-subunits in 

hippocampus and prefrontal cortex.  
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In line with these results, in paper IV we have demonstrated that in the 

subiculum, local administration of either ketamine or Ro25-6981 decreases the 

depolarization-evoked Glu release. Moreover, we have shown that an acute, 

systemic administration of ketamine, at subanesthetic and antidepressive dose, 

decreases the evoked Glu-release in the subiculum, after 2h of administration. 

Based on previous studies (Behr et al., 2009; McGuiness et al., 2010; Buchanan 

et al., 2012) and our data, we hypothesized that this effect is upon preNMDAR 

blocking. Both acute ketamine treatment (sub anaesthetic dose) (Muller et al., 

2013) and chronic antidepressant treatment with three classic antidepressants- 

SSRI, tricyclic antidepressant and norepinephrine reuptake inhibitor, regulates 

the presynaptic release machinery in the hippocampus (Bonanno et al., 2005). 

Ketamine has a rapid and sustained antidepressive effect on clinical and pre-

clinical trials (Zarate et al., 2006; Maeng et al., 2008; Li et al., 2010; Autry et al., 

2011; Duman & Aghajanian., 2012; Muller et al., 2013).  

In paper II, fluoxetine enhanced the expression of P-Ser896-NR1, both in 

hippocampus and prefrontal cortex, and of P-Ser897-NR1 in prefrontal cortex. 

The phosphorylation of NR1 subunits at Ser896 (PKC site) and at Ser897 (cyclic 

AMP-dependent protein kinase, PKA site) are involved in enhancement of 

synaptic efficacy (Gao et al., 2005). Moreover, it has been indicated that 

impairment of P-Ser897-NR1 leads to glutamatergic alterations that can 

contribute to behavioral deficits in psychiatric disorders (Li et al., 2009). 

Importantly, recent studies indicate that fluoxetine selectively blocks the 

NMDAR-containing NR2B subunit (Vizi et al., 2013).  

Furthermore, in paper II lurasidone and fluoxetine decreased PSD-95 

levels in hippocampus and prefrontal cortex. PSD-95 interacts with NMDAR 

and downstream signaling proteins (Aoki et al., 2001) and is associated with the 

regulation of glutamatergic signaling at the postsynaptic site (Zhang et al., 2013). 
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A single dose of either ketamine or Ro25-6981 increases the PSD-95 levels in 

PFC, which was shown to be accompanied by behavioral antidepressive effects 

(Li et al., 2010). On the other hand, chronic treatment with desipramine, a TCA 

compund, at daily dose of 15 mg/kg for three weeks, reduced PSD-95 levels in 

rat hippocampus (Martinez-Turrillas et al., 2005). Postmortem studies from 

depressed patients reported that PSD-95 levels are either increased in amygdala 

(Karolewicz et al., 2009) or decreased in the PFC, together with NR2A and 

NR2B subunit levels (Feyissa et al., 2009). It has been indicated that these 

differences in postmortem studies might have appeared due to experimental 

techniques and also subject’s characteristics (medication exposure) (Feyissa et 

al., 2009). Preclinical studies performed with PSD-95 constitutive knockout 

(KO) mouse indicated an increased stress reactivity in elevated plus maze test 

and anxiety-related responses in stress induced hypothermia test (Feyder et al., 

2010). However, the PSD-95 KO mice show an antidepressive-like phenotype in 

the forced swim-test (Kiselycznyk et al., 2012). 

Thus, together with these previous findings linking decreased NMDARs 

function with antidepressive phenotype, our observations that both chronic 

fluoxetine and lurasidone are able to downregulate NMDAR subunits, modulate 

their phosphorylation, and decrease PSD-95 levels, indicate that lurasidone 

shares common antidepressant mechanisms with the classical antidepressants. 

 In paper III, stimulation of 5-HT1BR by CP-94253 regulated 

neurotransmission in the hippocampus of p11KO mice, a mouse model with 

genetic predisposition for depressive-like symptoms (Svenningsson et al., 2006). 

Similar to paper IV, we employed FAST methodology and found increased Glu 

release in hippocampus of p11KO mice, upon stimulation of 5-HT1BRs. It has 
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been previously shown that acute and chronic treatment with fluoxetine 

increase AMPAR phosphorylation (Svennigsson et al., 2002). 

Postsynaptic measurements in hippocampus of p11KO mice revealed that CP-

94253 increases AMPAR- GluR1 subunit phosporylation at Ser831 and Ser845.  

In line with increased excitability in p11KO mice upon 5-HT1BR stimulation, 
1H-MRS recordings showed decreased hippocampal levels of inhibitory 

neurotransmitter, GABA, in p11KO mice. Our data are in line with clinical 

studies: decreased GABA concentrations have been linked with depression in 

humans (Sanacora et al., 2008), whereas treatment with SSRIs increase GABA 

levels (Sanacora et al., 2002). 

In summary, the work performed in this thesis provided novel insights 

upon the interaction between serotonergic and glutamatergic systems in 

hippocampal and prefrontal cortex areas.  

Four compunds with antidepressive-like properties, lurasidone, fluoxetine, 

ketamine and Ro26-6981 were able to downregulate/block NMDA receptors, in 

particular, the NR2 subunits. 

It could be thus, suggested that NMDARs remain a valid target in 

developing innovative antidepressant compounds. 
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5 CONCLUSIONS 

 

From the data presented in this thesis the following conclusions can be drawn: 

 

 5-HT1A and 5-HT7 receptors interacted in the modulation of hippocampal 

emotional learning. 

 Chronic treatment with lurasidone or fluoxetine reduced anxiety-like 

behaviour in the NIH test. This antidepressive effect was followed by a 

decreassed NMDAR expression, in particular NR1, NR2A and NR2B-

subunit levels in the hippocampus and prefrontal cortex. Moreover, both 

compunds modulated NMDAR phosphorylation and decreased PSD-95 

levels in the studied regions. 

 5-HT1BR agonist, CP-94253, increased hippocampal neurotransmission 

of p11KO mice.  

 P11KO mice shown a decreased GABAergic inhibition in the 

hippocampus as compared with controls. 

 Local intervention with the non-selective NMDAR antagonist, ketamine, 

or with selective NMDAR NR2B-subunit antagonist, Ro25-6981, 

reduced Glu evoked release in subiculum, with no significant effects over 

tonic glutamate levels in the studied regions. Moreover, an acute, 

systemic, subanesthetic and antidepressive-like dose of ketamine, 

decreased depolarization-evoked, but not the tonic glutamate release in 

subiculum. 
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6 POTENTIAL FURTHER STUDIES 

The results of this thesis provided new insights into the interrelation of   

serotonergic and glutamatergic system in depression in general, and 

antidepressant medication in particular. Although studies presented here were 

primary focused on hippocampal-prefrontal cortex areas, further studies are 

needed; for example, to investigate regions associated with hippocampal-

prefrontal cortex circuitry or/and afflicted by depression.  

In brief, a few immediate points can be suggested: 

 Continue to investigate NMDA receptor subunit-specific antagonist. 

 Exploit FAST capabilities and perform in vivo experiments in freely 

moving mice. 

 Combine FAST experiments with simple exploratory test or paradigms 

sensitive to depression. 

 Perform longitudinal studies upon chronic antidepressant treatment 

combined with 1H-MRS measurements. These measurements are non-

invasive, could be region-specific oriented and could follow the 

treatment efficacy over time. 

 Perform western-blot measurements upon acute/chronic antidepressant 

treatment and investigate other signaling pathways. 
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