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Abstract—We fabricate a membrane InP-based electro-
absorption modulator (EAM), in which an InGaAsP-based
multiple-quantum-well (MQW) absorption region is buried with
an InP layer, on Si-waveguide circuits. By optical coupling be-
tween the MQW absorption region and Si core, a low-loss and
large-absorption-length (300-µm-long) supermode waveguide is
designed to suppress electric-field screening at high optical input
power. The EAM is fabricated by combining direct bonding of the
MQW layer and regrowth of the InP layer on a thin InP template
bonded on a silicon-on-insulator wafer. The fabricated membrane
EAM shows an on-chip loss of less than 4 dB at wavelengths over
1590 nm and temperatures from 25 to 50 °C. Since the membrane
lateral p-i-n diode structure is beneficial for reducing the RC time
constant of a lumped-electrode InP-based EAM, the EO bandwidth
of the EAM is around 50 GHz without a 50-ohm termination up
to fiber-input power of 10 dBm. Using the device, we demonstrate
clear eye openings for 56-Gbit/s NRZ and 112-Gbit/s PAM4 signals
at temperatures from 25 to 50 °C.

Index Terms—Electrooptic modulators, optoelectronic devices,
silicon photonics.

I. INTRODUCTION

W
ITH increasing Internet traffic, large-capacity optical

transceivers are required for not only long-distance fiber

links but also short-reach interconnections in datacenters. In op-

tical transceivers, directly modulated lasers, electro-absorption

modulators (EAMs), and Mach-Zehnder modulators (MZMs)

are respectively required for appropriate transmission distances,

symbol rates, and modulation formats. The EAM is a key

component for datacenter applications because it provides a

small footprint, large bandwidth, and low power consumption.
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A critical issue is how to reduce the size and cost of optical

transceivers containing EAMs. Traditionally, EAMs have been

integrated with distributed feedback (DFB) laser diodes (LDs)

on InP wafers [1], [2]. InP-based EAMs provide high modulation

efficiency, a wide range of operation wavelengths (O- and C

band), and easy integration with the LDs.

Recently, heterogeneously integrated lasers on Si photonics

platform were developed using matured direct bonding methods

[3], [4]. Based on this technology, an InP-based EAM on Si was

also developed using vertical p-i-n diode structure [5]. It showed

a large extinction ratio and low optical absorption loss. However,

the capacitance of the high-mesa structure of the conventional

InP-based EAM is much larger than that of recently developed

Ge-based lateral p-i-n diode EAMs on Si [6]. The large capac-

itance limits the reduction of the RC time constant. Therefore,

whereas the Ge-based EAM provides low power consumption

and over 50-GHz bandwidth with a lumped-element electrode,

the InP-based EAM on Si requires a complex traveling-wave

electrode and consumes large power for high-speed operation.

To overcome the above issues, we focus on a membrane

InP-based lateral p-i-n diode structure, which provides low

capacitance [7], [8]. The structure contributes to reducing the

RC time constant, and makes it easy to fabricate a high-speed

lumped-electrode InP-based EAM on a Si platform. In addition,

the membrane InP layer thickness is less than its critical thick-

ness for epitaxial growth on a Si substrate [9], [10]. This is ben-

eficial for integrating the EAM with an LD by using a regrowth

process. In our previous work, a membrane DFB laser was

integrated with an InGaAsP MZM on Si-waveguide circuits by

combining direct bonding of a multiple-quantum-well (MQW)

layer and epitaxial regrowth of an InGaAsP-bulk layer on Si [11].

Using the technology, in this work, we fabricated the membrane

InP-based EAM on Si waveguide circuits. The membrane EAM

has a low-loss and 300-µm-long III-V/Si supermode waveguide

to suppress electric field screening, which is a typical problem

with membrane devices. Despite the large absorption length,

the low-capacitance lateral diode structure provides a small RC

time constant. As a result, we can obtain a large EO bandwidth

of around 50 GHz even with large optical input power.

In our preliminary work [12], we demonstrated dynamic

modulations for 112-Gbit/s 4-level pulse amplitude modulation

(PAM4) signals at room temperature. In this paper, in addition
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Fig. 1. (a) Cross-sectional and (b) side views of membrane InGaAsP EAM on
Si platform [12].

to covering the previous results, we also characterize the EAM

at 50 °C. In the following sections, we first show the design

and fabrication method of the proposed EAM [12]. Then, we

describe experimental results for the on-chip loss and extinction

ratio of the EAM at 25 and 50 °C. Finally, we characterize the

EO bandwidth of the EAM with various optical input powers

and demonstrate 112-Gbit/s PAM4 operation up to 50 °C.

II. DESIGN AND FABRICATION

Fig. 1(a) and (b) show cross-sectional and side views of

the membrane InGaAsP EAM [12]. A 600-nm-wide InGaAsP

MQW core is buried in a 230-nm-thick InP layer. Donor and

acceptor regions are formed in the InP layer at both sides of the

MQW core. On the n- and p-type InP layers, heavily doped n- and

p-type InGaAs contact layers are formed for ohmic contacts. The

MQW core optically couples to a 220-nm-thick Si waveguide.

Input light from an optical fiber is first coupled to a silica-based

(SiOx) core and then input to a 220-nm-thick and 440-nm-wide

Si waveguide through an inversely tapered Si waveguide. The

light propagating in the Si waveguide subsequently couples to

the EAM through a 40-µm-long InP taper, whose taper-tip width

is around 100 nm [13]. Thanks to the membrane layer, the aspect

ratio of the InP-taper tip is very low, so we can easily fabricate

low-loss tapers.

By applying reverse bias to the lumped-element electrode,

a lateral electric field is applied to the MQW core. Although

excitons are ionized by a very low electric field [14], the

two-dimensional Franz-Keldysh effect (2D-FKE) in the MQW

results in a relatively large change in the absorption coefficient

near the absorption edge [15]. Fig. 2 shows the calculated

changes in the absorption coefficient (∆α) of the InGaAsP single

quantum-well layer with various lateral electric fields. In the

calculation, we assumed a parabolic band model, and we did

not consider excitons ionized by very low reverse bias [12].

The horizontal axis is wavelength detuning from the electron-

heavy-hole absorption edge of the MQW layer. When the applied

lateral electric field is 60 kV/cm, the change in the absorption

Fig. 2. Calculated change in absorption coefficient.

Fig. 3. Calculated fill factors.

coefficient is around 440 cm−1 at the detuning of 80 nm. In this

work, as a first demonstration, we used a six-period MQW core

with a photoluminescence peak wavelength of 1.52 µm, which

was used for our previous laser diodes [16].

We designed a III-V/Si supermode waveguide for the mem-

brane EAM. Fig. 3 shows the calculated Si-core-width depen-

dence of the fill factor per quantum-well layer (Γwell) and the

fill factor in the p-type InP region. Here, the width of the MQW

core was 600 nm and the distance between InP-based membrane

and Si waveguide was 100 nm, respectively. We calculated Γwell

by dividing the total fill factor of the MQW core by the number

of quantum well layers. Thanks to the effective refractive index

matching between the InP and Si layers [16], the fill factors can

be controlled by changing the Si-core width. As a feature of the

design, an optical coupling between the MQW and low-loss Si

cores reduces the optical overlap with the large-loss p-type InP

region. We set the Si-core width to 440 nm, which provides

a low loss and sufficient Γwell for an absorption length of

300 µm. It should be noted that we must design the optical

confinement in the well layers with considering a trade-off

relationship between the modulation efficiency and allowable

input optical power, where electric field screening is caused

by high-density photocarriers in the small absorption area [12].

The EAM also provides an over 50-GHz EO bandwidth with
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Fig. 4. Fabrication procedure.

the lumped-element electrode because of the low-capacitance

membrane lateral diode structure.

Fig. 4 shows the fabrication procedure. First, the Si waveg-

uides were patterned on a silicon-on-insulator (SOI) wafer. After

a SiO2 cladding deposition, the surface of the deposited cladding

was flattened by chemical mechanical polishing [Fig. 4(a)].

Here, the SiO2 thickness on the Si waveguide was controlled to

100 nm. Next, an InP wafer with an MQW layer was bonded to

the SOI wafer using oxygen-plasma assisted bonding, followed

by the removal of the InP substrate [Fig. 4(b)]. The MQW layer

was patterned to form the core of the EAM with alignment to the

Si core. In this process, a thin InP template layer remained on the

entire wafer. Then, the core was buried in a 230-nm-thick intrin-

sic InP layer by epitaxial regrowth on the template [Fig. 4(c)].

After the growth of an InGaAs contact layer, donor and acceptor

regions were formed by silicon ion implantation and Zn thermal

diffusion, respectively [Fig. 4(d)] [17]. The donor and acceptors

slightly diffused into the MQW core; therefore, a p-i-n junction

was formed in the MQW core. Then, the InP layer was patterned

to form narrow tapers and mesa regions by using a dry etching

process. Finally, metal electrodes were formed on the InGaAs

contact layers [Fig. 4(e)], then SiOx cores were formed. Fig. 5

shows a microscope image of a fabricated membrane EAM.

The input and output Si waveguides are connected to the EAM

through the InP tapers. The 300-µm-long EAM has ground and

signal electrodes and pads.

III. RESULTS AND DISCUSSION

First, we measured the transmission curves of the fabricated

EAM. In the experiment, input optical power was low enough

Fig. 5. Microscope image of fabricated EAM.

Fig. 6. Measured transmittance of EAM at 25 °C [12].

to ignore absorption-edge shifts due to Joule heating during

the voltage sweep. Fig. 6 shows the measured transmittance at

various wavelengths and a stage temperature of 25 °C [12]. The

transmittance was normalized at 0 V. By applying DC voltages

to the electrode, optical intensity was modulated by the 2D-FKE.

At the DC voltages ranging from 0 to 3 V, the linearity of the

transmission curves improves with increasing wavelength detun-

ing, although the extinction ratios decrease. The high linearity

is beneficial for demonstrating PAM4 operation without using

power-hungry equalizers.

Next, we measured the transmittance at 50 °C, and evaluated

on-chip losses of the EAM at 25 and 50 °C. The on-chip loss is

the difference in the transmittance between the EAM at DC volt-

age of 0 V and a reference Si waveguide. Here, the reference Si

waveguide has a fiber-to-fiber loss of around 6.5 dB [12]. Fig. 7

shows the on-chip losses of the EAM. Due to bandgap shrinkage

with increasing temperature, the absorption edge shifts to longer

wavelengths at 50 °C. The on-chip losses of the EAM are less

than 4 dB at wavelengths over 1590 nm at both 25 and 50 °C.

The on-chip loss decreases with increasing wavelength detuning

and become almost constant at both temperatures. The constant

loss arises from carrier-induced absorption and from scattering

and coupling losses at the InP tapers.

Fig. 8 shows the measured extinction ratios at 25 and 50 °C.

The extinction ratio was evaluated at DC voltage of 3 V. The

extinction ratios at 25 and 50 °C were around 5.9 and 5.2 dB at

wavelengths of 1570 and 1590 nm, respectively. Note that, by

increasing the number of MQW layers, the total fill factor of the

MQW core can be increased without increasing the density of
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Fig. 7. On-chip losses at DC voltage of 0 V and stage temperatures of 25 and
50 °C.

Fig. 8. Measured extinction ratios of EAM at 25 and 50 °C.

photocarriers per quantum-well layer. Therefore, our device has

potential to improve the extinction ratio further.

To summarize the static characteristics of the EAM, we eval-

uated a figure-of-merit (FOM) [18], which is defined as the ratio

of the extinction ratio at 3 V and on-chip loss at 0 V. A large FOM

provides a large extinction ratio and low optical loss, which is

beneficial for large optical modulation amplitude. Fig. 9 shows

the evaluated FOMs at 25 and 50 °C. At the wavelength near

1600 nm, the large FOM of around 1.7 is achieved at both 25

and 50 °C.

We also evaluated the EO bandwidth of the fabricated EAM.

Fig. 10 shows the measured frequency response of the fabricated

EAM at the DC voltage of 2 V and the wavelength of 1570 nm

[12]. We set the device on a temperature-controlled chip stage,

whose temperature was 25 °C, and measured the frequency

response using an optical component analyzer. The fiber input

power to the EAM was 8.3 dBm. The input RF signals was

applied to the device using an RF probe without a 50-ohm

termination. In this case, the EO bandwidth is mainly dominated

by the RC time constant. Despite the relatively large absorption

length and non-terminated electrode, we achieved the large EO

Fig. 9. Evaluated FOM at 25 and 50 °C.

Fig. 10. Measured frequency response [12].

bandwidth of around 50 GHz. The membrane lateral diode

structure contributes to reducing the RC time constant. Fig. 11

shows the measured fiber input power dependence of the EO

bandwidth at various DC voltages [12]. With increasing DC

voltage, the EO bandwidth becomes larger. Up to the fiber input

power of 10 dBm, the EO bandwidth is over 50 GHz with DC

voltage over 2 V. Since the input light was gradually absorbed

in the entire long absorption region, the electric-field screening

was suppressed even at high input optical power.

Finally, we measured the eye patterns for non-return-to-zero

(NRZ) and PAM4 signals. Fig. 12 shows the experimental setup.

Continuous wave light from a tunable laser diode (TLD) was

input to the EAM through a polarization controller. The EAM

chip was set on a temperature-controlled stage. The NRZ and

PAM4 signals were generated from a pulse-pattern generator

(PPG), then fed into a linear amplifier. The RF signals were

applied to the EAM though an RF probe without 50-ohm termi-

nation. The output optical signals were first fed into an optical

switch, then amplified by erbium-doped fiber amplifier (EDFA),

which compensated additional losses in the experimental setup.

The amplified signal was input to a p-i-n photodiode (PD).
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Fig. 11. Measured relationships between EO bandwidth and fiber input power
[12].

Fig. 12. Experimental setup.

Fig. 13. Measured eye pattern for 56-Gbit/s NRZ signal at 25 °C.

The photocurrent from the PD was directly fed into a sampling

oscilloscope to measure eye diagrams.

Fig. 13 shows the measured eye diagram for 56-Gbit/s NRZ

signal at the wavelength of 1600 nm and stage temperature

of 25 °C. The eye clearly opened with an extinction ratio of

4.8 dB. The voltage swing output from the RF amplifier was

around 2 V, which was measured by a sampling oscilloscope.

Here, the voltage actually applied to the EAM could be larger

than the measured voltage swing because of the non-terminated

electrode. Fig. 14(a) and (b) show the measured eye patterns

for 112-Gbit/s PAM4 signals at the wavelengths of 1570 and

1600 nm, where the DC voltages were 1.7 and 2.5 V, respectively.

The stage temperature was 25 °C. The input PAM4 signal is

shown in Fig. 12. Thanks to the high linearity and large EO

Fig. 14. Measured eye patterns for 112-Gbit/s PAM4 signals at wavelengths
of (a) 1570 and (b) 1600 nm and temperature of 25 °C [12].

Fig. 15. Measured eye patterns for (a) 56-Gbit/s NRZ and (b) 112-Gbit/s
PAM4 signals at 50 °C.

bandwidth, the eye clearly opened in the 30-nm optical band-

width at 25 °C.

We also demonstrated 56-Gbit/s NRZ and 112-Gbit/s PAM4

operations at 50 °C. Fig. 15(a) and (b) show the measured eye

patterns for 56-Gbit/s NRZ and 112-Gbit/s PAM4 signals. In the

measurements, the wavelength was set to 1600 nm. The input
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voltage swing was the same as the value at 25 °C, and the DC

voltage was 2.0 V for both formats. Even at high temperature,

the eye opened for both modulation formats. The extinction ratio

for 56-Gbit/s NRZ signal at 50 °C was 6.7 dB. We confirmed that

the membrane InGaAsP EAM integrated on the Si-waveguide

circuits performed 112-Gbit/s PAM4 operations from 25 to

50 °C.

IV. CONCLUSION

We demonstrated a 300-µm-long EAM using a membrane

InP-based lateral p-i-n diode on a Si platform. The EAM

provides a large bandwidth of around 50 GHz thanks to the

low-capacitance membrane structure and low-loss III-V/Si su-

permode design. Using the device, we demonstrated PAM4

operation at temperatures from 25 to 50 °C. This technology is

the key to fabricating low-cost, large-capacity, and low-power-

consumption optical transceivers.
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