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ABSTRACT 

This article proposes an innovative architec
ture design for a SG transport solution (dubbed 
SG-Crosshaul) targeting the integration of existing 
and new fronthaul and backhaul technologies and 
interfaces. At the heart of the proposed design lie 
an SDN/NFV-based management and orchestra
tion entity (XCI), and an Ethernet-based packet for
warding entity (XFE) supporting various fronthaul 
and backhaul traffic QoS profiles. The XCI lever
ages widespread architectural frameworks for 
NFV (ETSI NFV) and SDN (Open Daylight and 
ONOS). It opens the SG transport network as a 
service for innovative network applications on top 
(e.g., multi-tenancy, resource management), pro
visioning the required network and IT resources 
in a flexible, cost-effective, and abstract manner. 
The proposed design supports the concept of net
work slicing pushed by the industry for realizing 
a truly flexible, sharable, and cost-effective future 
SG system. 

SG·(ROSSHAUL 

ARCHITECTURE DESIGN RATIONALE 
The goal of the European H2020 SG-Crosshaul 
project is to build an adaptive, flexible and soft
ware-defined architecture for future fifth generation 
(SG) transport networks integrating multi-technolo
gy fronthaul and backhaul segments. The SG-Cross
haul architecture thus aims to enable a flexible and 
software-defined reconfiguration of all networking 
elements through a unified data plane and control 
plane interconnecting distributed SG radio access 
and core network functions, hosted on in-network 
cloud infrastructure. 

The control plane needs to include a group 
of key functional elements (e.g., topology discov
ery, network monitoring, technology abstraction, 
provisioning of virtual infrastructure) and their 
main interfaces toward the applications (north
bound interface) and toward underlying tech
nologies (southbound interface). For the control 
plane design we leverage on software-defined 
networking (SDN) principles to have unified con
trol, management, and configuration of the SG 

multi-technology transport network, and apply 
network functions virtualization (NFV) to the infra
structure, enabling flexible function placement 
and cost-effective usage of the SG-Crosshaul infra
structure resources. The SDN principle allows the 
separation of the data and control planes, foster
ing network and device programmability. NFV 
allows infrastructure and function virtualization, 
where the underlying physical infrastructure and 
network functions can be virtualized in such a 
way that they will be appropriately instantiated, 
connected, and combined over the underlying 
SG-Crosshaul substrate. 

The design of the data plane architecture 
needs to enable the integration of heterogeneous 
technologies for the fronthaul and backhaul links 
into a single SON-based controlled network. The 
main challenge of the data plane is the need for 
extended flexibility to adapt to the new fronthaul 
and backhaul technologies arising with SG as well 
as to incorporate legacy technologies through 
abstraction interfaces. 

To achieve such a design, our approach is to 
leverage the state-of-the-art SDN and NFV archi
tectures so as to avoid re-inventing the wheel and 
maximize the compatibility and integration of the 
system design with the existing standard frame
works and reference specifications. 

So far the most well developed open source 
SDN controllers that provide carrier-grade fea
tures are Open Daylight (ODL) [1] and Open 
Network Operating System (ONOS). In the NFV 
case, the European Telecommunications Stan
dards Institute (ETSI) NFV Industry Specification 
Group (ISG) currently gives the ability to deploy 
instances of network functions running in virtual 
machines (VMs) and provide network operators 
with the ability to dynamically instantiate, activate, 
and re-allocate resources and functions. 

Based on these industry initiatives and stan
dards, our SG-Crosshaul architecture is designed 
to be compatible with the existing ODVONOS 
and ETSI NFV architecture frameworks. For the 
overall architecture design, we take a bottom-up 
approach to evolve from current management 
systems toward the integration of management 
and network orchestration (MANO) concepts. 
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FIGURE I. SG-Crosshaul architecture illustration. 

SG·(ROSSHAUL ARCHITECTURE OVERVIEW 

RELATED WORK 

The advent of a new generation of mobile com
munications is fostering a wealth of research on 
SG network architectures that cope with strin
gent KPI requirements. Practically all of the indus
try and academic communities agree that both 
SON and NFV, as well as heterogeneous trans
port and access technologies, should play a key 
role in its design; see, for example, IMT-2020 (SG) 
Promotion Group's and Next Generation Mobile 
Network's (NGMN's) white papers (2, 3] as well 
as DoCoMo's paper in (4] on SG architecture 
design principles. It is worth highlighting the work 
in (4), which presented some early results on the 
expected system-level gains of some of the novel 
access technologies. A comprehensive survey of 
SG access technologies is published in [SJ. 

However, all this work focuses almost exclu
sively on the access or core segment of the 
network, while the unification of fronthaul and 
backhaul segments to transport data between 
access and core has received little attention. 

In the context of the SG Public Private Part
nership (SG-PPP), the SG-Xhaul project [6) is 
addressing the convergence of an optical/wireless 
backhaul/fronthaul architecture. Their focus is on 
dynamic reconfigurability with a cognitive con
trol plane for small cells and cloud radio access 

networks (RANs). In contrast, our goal in the 
SG-Crosshaul project is rather to design a unified 
control and data plane for any type of backhaul 
and fronthaul traffic applying the SON and NFV 
principles. 

In our previous work (7] we focused on the 
benefits attainable to a unified backhaul/fronthaul 
system. This is in fact in line with the research 
activities carried out within the scope of the Next 
Generation Fronthaul Interface Alliance (NGFI), 
IEEE 1914, and IEEE 802.1, where a packetized 
version of fronthaul traffic is envisioned, compati
ble with existing backhaul deployments. This work 
is therefore highly relevant to bring along the flex
ibility, data plane interoperability, and system-wide 
management and optimization of heterogeneous 
technologies of the integrated SG transport net
work, referred to here as SG-Crosshaul. 

SYSTEM DESIGN 

Based on the design criteria exposed previous
ly, we propose the SG-Crosshaul architecture 
devised in Fig. 1. Our design follows the same 
principles of the SON reference architecture as 
defined by the Open Networking Foundation 
(ONF) in [8): 
• Decoupled data plane and control plane
• Logically centralized control
• Exposure of abstract resources and state to

applications
Control Plane: As illustrated in Fig. 1, we 
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FIGURE 2. SG-Crosshaul data path architecture. 

divide the control plane into two clearly differ
entiated layers: a top layer for external applica
tions and the SC-Crosshaul control infrastructure
(XC/) below. An ecosystem of applications at the 
top-most part of the system architecture exploits
SG-Crosshaul resource orchestration functions
to support diverse functionalities including plan
ning , network and service monitoring/prediction, 
optimization of resources, energy management,
multi-tenancy, content delivery networks, TV
broadcasting, and so on. 

In turn, the XCI is our SG transport MANO
platform that provides control and management
functions to operate all available types of resourc
es (networking and cloud). The XCI is based on
the SDN/NFV principles and provides a unified
platform that can be used by upper layer applica
tions via a northbound interface (NB/) to program 
and monitor the underlying data plane by a com
mon set of core services and primitives. XCI inter
acts with the data plane entities via a southbound 
interface (SB!) in order to: 
• Control and manage the packet forwarding

behavior performed by SG-Crosshaul forward
ing elements (XFEs) across the SG-Crosshaul 
network 

• Control and manage the physical layer (PHY)
configuration of the different link technologies
(e.g., transmission power on wireless links) 

• Control and manage the SG-Crosshaul process
ing units (XPU) computing operations (e.g.,
instantiation and management of virtual net
work functions [VNFs] via NFV) 
Data Plane: SG-Crosshaul integrates all com

munication links between remote radio heads/
small cells and core network entities in a unified
transport network, by designing a common data
plane that enables the integration of heteroge
neous technologies for the fronthaul and back-

haul links into a single programmable, multi-tenant
enabled packet-based network. To this aim, we 
use XFEs (Fig. 2). XFEs are switching units, based
on packet or circuit technology, that intercon
nect a broad set of link and PHY technologies by
means of a novel transport protocol which lever
ages the SC-Crosshaul common frame (XCF). The 
XCF is designed to handle fronthaul and backhaul
traffic simultaneously, although they might have
very diverse requirements. Note that this entails
the definition of fields for handling traffic prioriti
zation and timing. 

In turn, XPUs carry out the bulk of the comput
ing operations in the SG-Crosshaul. These opera
tions shall support C-RAN, thus hosting baseband 
units (BBUs) or medium access control (MAC)
processors, but also SG points of attachment
(SGPoAs) functionalities that can be virtualized
(VN Fs) and a heterogeneous set of other services,
such as content delivery network (CDN)-based 
services. In this manner, the NFV infrastructure
(NFVI) comprises all data plane (software and 
hardware) components that build up the network
ing environment in which VNFs are deployed and
connected. 

Of course, with backward compatibility in 
mind, XCI can communicate with non-SG-Cross
haul-specific entities, such as legacy switches,
BBUs, and millimeter-wave (mmWave) switches
using proper plugins. SG-Crosshaul-specific data
plane elements (XFEs, XPUs) can communicate 
with non-XCF-compliant ones by means of an 
adaptation function entity (AF; Fig. 2) that acts as 
a translator between XCF and other protocols. 

Interfaces: As mentioned above, an ecosystem 
of applications sits on top of the XCI to provide
tools for optimization, prediction, energy manage
ment, multi-tenancy, and others. The XCI is the 
means to achieve the application goals, and the 



interface, typically based on REST, NET CON F, or 
RESTCONF application programming interfaces 
(APls) that interconnect both domains, is an NBI. 

The configuration of network resources, com
puting resources, and storage resources is direct
ly executed on each of the required data plane 
elements by the XCI by means of the SBI. Candi
dates for SBI are Openflow, OF-Config, OVSDB, 
Simple Network Management Protocol (SNMP), 
and/or an ecosystem comprising several of them. 

The scope of operation of the XCI is limited 
to (physical/virtual networking/ storage/ comput
ing) resources within the SG-Crosshaul transport 
domain. However, given that proper optimization 
of the data plane elements may require knowl
edge of the configuration and or other informa
tion from the core network and/or RAN domains, 
our system design contemplates a westbound 
interface (WBI) to communicate with the SG core 
MANO and an eastbound interface (EBI) to inter
act with the SG access MANO. 

SG·(ROSSHAUL 

ARCHITECTURE MAIN COMPONENTS 
In the following we describe in detail the 
SG-Crosshaul main architecture building blocks 
briefly introduced in the previous section. 

SG-CROSSHAUL CONTROL INFRASTRUCTURE 
The XCI is the brain controlling the overall oper
ation of the SG-Crosshaul. The XCI part dealing 
with N FV comprises three main functional blocks: 
N FV orchestrator, VN F manager(s), and virtual 
infrastructure manager (VIM) (following the ETSI 
NFV architecture [91). 

The NFV orchestrator (NFVO): This is the 
functional block that manages a network service 
(NS) life cycle. It coordinates the VNF life cycle 
(supported by the VNFM) and the resources avail
able at the NFV infrastructure (NFVI) to ensure an 
optimized allocation of the necessary resources 
and connectivity to provide the requested virtual 
network functionality. 

The VNF managers (VNFMs): These functional 
blocks are responsible for the life cycle manage
ment of VNF instances (e.g., instance instantia
tion, modification, and termination). 

The virtualized infrastructure manager (VIM):

This functional block is responsible for controlling 
and managing the NFVI computing (via Comput
ing ctr/), storage (via Storage ctr/), and network 
resources (via SON ctr/). 

In addition to these modules, which are in 
charge of managing the different VNFs running 
on top of the SG-Crosshaul, the XCI includes a set 
of specialized controllers to deal with the control 
of the underlying network, storage, and computa
tion resources. 

SON controller: This module is in charge of 
controlling the underlying network elements 
following the conventional SDN paradigm. 
SG-Crosshaul aims at extending current SDN sup
port of multiple technologies used in transport 
networks (e.g., microwave links1 ) in order to have 
a common SDN controlled network substrate that 
can be reconfigured based on the needs of the 
network tenants. 

Computing/storage controllers: Storage and 
computing controllers are included in what we 
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FIGURE 3. XPFE functional architecture. 

call a cloud controller. A prominent example of 
this kind of software framework is OpenStack. 

Note that the SON/computing/storage con
trollers are functional blocks with one or multi
ple actual controllers (hierarchical or peer-to-peer 
structure) that centralize some or all of the control 
functionality of one or multiple network domains. 
We consider the utilization of legacy network 
controllers (e.g., MPLS/GMPLS) to ensure back
ward compatibility for legacy equipment 

SG-CROSSHAUL FORWARDING ELEMENT 
XFEs are switching units that support single or 
multiple link technologies (mmWave, Ethernet, 
fiber, microwave, copper, etc.). A key part of 
the envisioned solution is a common switching 
layer in the XFEs for enabling unified and harmo
nized transport traffic management. This com
mon switching layer supports the SG-Crosshaul 
common frame (XCF) format across the various 
traffic flows (of fronthaul and backhaul) and the 
various link technologies in the forwarding net
work. The common switching layer in the XFEs is 
controlled by the XCI, which is foreseen to have 
a detailed (as per the abstraction level defined) 
view of the fronthaul and backhaul traffic and 
resources, and to expose this detailed view 
through a further abstraction to the orchestra
tion layer to enable intelligent resource, network 
function, and topology management across the 
two domains. 

1 ONF is actively working 
toward the definition of 
a southbound interface 

As depicted in Fig. 2, XFEs include packet 
switching elements (XPFEs) and circuit switching 
elements (XCSEs). Two paths are defined in this 
framework: a packet switching path (upper part) 
and an all-optical circuit switching path (lower 
part). The packet switching path is the prima
ry path for the transport of most delay-tolerant 
fronthaul and backhaul traffic, whereas the cir
cuit switching path is there to complement the 
packet switching path for those particular traffic 
profiles that are not suited for packet-based trans
port (e.g., legacy common public radio interface 
[CPR!) or traffic with extremely low delay toler
ance). This two-path switching architecture is able 
to combine bandwidth efficiency through statisti
cal multiplexing in the packet switch, with deter
ministic latency ensured by the circuit switch. The 
modular structure of the SG-Crosshaul switch, 
where layers may be added and removed, enables 
various deployment scenarios with traffic segre
gation at multiple levels, from dedicated wave
lengths to virtual private networks (VPNs), which 
is particularly desirable for multi-tenancy support. 

Figure 3 depicts an initial functional architec
ture for the SG-Crosshaul XPFE. It includes the 
following key functions: 

for microwave links: 
http://5g-crosshaul.eu/ 
wireleswansport-sdll-proof
of-concept/ 



Use cases 

Dense urban society 

Mobile edge computing 

Media distribution: 
CDN/TV broadcasting 

Vehicle mobility 

Multi-tenancy/network 
slicing 

Description 

This use case addresses the connectivity required at any place and at 
any time by humans in dense urban environments, considering both 
traffic between humans and the cloud, and direct information exchange 
between humans and/or the environment 

This use case is focused on the deployment of IT and cloud computing 
capabilities toward the edge of the network. Content. service, and applica
tion providers can leverage on such distributed computing capabilities to 
serve high-volume and latency-sensitive traffic on dense areas with a high 
number of users. 

This use case addresses the distribution over SG networks of media 
contents, especially video traffic. and TV broadcasting, which are expected 
to be the dominant contributors to the mobile data traffic demand. 

This use case addresses the support of SG communication in vehicles 
during motion, such as passengers using SG services as real-time video 
on a very high-speed train (500 km/h) and messages among vehicles for 
traffic control, emergency, and safety. 

This use case addresses the dynamic allocation of backhauVfronthaul 
network slices across multiple tenants. It is a key enabler to maximize 
the utilization of SG-Crosshaul infrastructure resources in a cost-efficient 
manner. 

TABLI I. SG-Crosshaul use cases. 

• A common control-plane agent to talk to the
common control infrastructure (XCI).

• A common switching layer based on the com
mon frame (XCF) to forward packets between
technology-independent interfaces. The switch
ing engine is technology-agnostic and relies on
an abstract resource model (i.e., bandwidth,
latency, bit error rate, jitter, latency, ) of the
underlying interfaces (i.e., mmWave, optical,
etc.); and on traffic requirements (i.e., fron
thaul/backhaul, jitter tolerance, packet loss,
etc.) that can be carried in the XCF.

• A common device agent to talk with system
peripheral. This agent exposes device-related
information, including CPU usage, RAM occu
pancy, battery status, GPS position, and so on,
to the control infrastructure.

• Mappers for each physical interface.
• Physical interfaces to transmit the data on the

link. Multiple physical interfaces of different
technologies can coexist in the unit.

The common control plane and device agents 
are relevant for both packet- and circuit-switched 
forwarding elements of the XFE. In the XPFE, the 
common abstraction of the heterogeneous data 
plane provides a technology-independent data 
plane and allows dynamic reconfiguration of the 
transport resources. It also allows interworking 
with transport legacy technology. That function is 
enabled by the SBI, which allows exposing legacy 
domains to the XCI. 

SG-CROSSHAUL COMMON f RAME 
The XCF is the frame format used by the XPFE. 
Ideally, the XCF is supported by all physical 
interfaces where packets are transported. Cir
cuit-switched forwarding is independent of the 
XCF. Where necessary, the frame format of the 
endpoints is mapped to the XCF for forwarding 
by the XPFEs. As an example, CPRI over Ethernet 
would have to be mapped to the XCF. Mapping 

functions are also used among XPFEs and legacy 
switches. 

The XCF is based on Ethernet, utilizing MAC
inMAC (or provider backbone bridged network) 
[10). MACinMAC, or alternatively QinQ (or pro
vider bridged network) (1 OJ, provides a more flex
ible separation of tenants compared to VLANs. 
Networks of different tenants can be separated 
via the outer MAC header; nevertheless, within 
one tenant there can be several virtual customer 
networks. The priority bits of the Ethernet header 
are used to indicate the priorities of the different 
traffic flows. Basing the XCF on Ethernet eases 
reuse of legacy switches and increases synergies 
with the development of more generic switches. 

SG-CROSSHAUL PROCESSING UNIT 
While the SDN control platform is responsible 
for the configuration of the network elements of 
the SG-Crosshaul physical infrastructure (i.e., the 
XFEs), the cloud and storage control platform of 
the XCI handles the SG-Crosshaul IT components 
(computing and storage resources) in the XPUs. 
Virtual infrastructure is instantiated, configured, 
and operated by XCI in XPUs, where VNFs can 
be deployed to run the SG-Crosshaul services in a 
proper and efficient manner. 

SG·(ROSSHAUL INNOVATIVE APPS 

USE CASES 

The SG fronthaul and backhaul integration 
enables a new set of use cases that are summa
rized in Table 1. 

SG-CROSSHAUL APPLICATIONS 
Based on the above mentioned use cases, in the 
following we provide a set of relevant examples 
of the novel applications under development by 
the SG-Crosshaul project partners. 

Resource Management Application (RMA):

This application provides logically centralized 
and automated management of SG-Crosshaul 
resources to promptly provision transport services 
according to their service level agreements (SLAs) 
while ensuring effective resource utilization. The 
RMA can operate over physical or virtual network 
resources on a per-network or per-tenant basis, 
respectively. Essentially, the RMA has two main 
functional pillars: 
1. Dynamic resource allocation and (re-) configu

ration (e.g., new routes or adaptation of phys
ical parameters) as the demand and network
state changes 

2. Dynamic NFV placement (e.g., enabling multi
ple cloud-RAN functional splits flexibly allocat
ed across the transport network)
Multi-Tenancy/Network Slicing Application

(MTA): This application is designed to enable 
a generalized, dynamic network slicing of the 
SG-Crosshaul infrastructure by multiple network 
operators or service providers (i.e., multiple ten
ants), each operating on a slice of the physical 
resources by virtualization techniques. The tar
get of this application is to significantly reduce 
capital expenditure (CAPEX) and operational 
expenditure (OPEX) by jointly exploiting the infra
structure resources in a cost-efficient manner. The 
MTA is envisioned to be used not only by mobile 



virtual network operators (MVNOs) but also by 
over-the-top (OTT) service providers to quickly 
deploy novel services. MTA allows network slice 
resources to be dynamically allocated to tenants 
on demand providing per-tenant monitoring of 
network quality of service (QoS) and resource 
usage. The main challenges here are for example 
to ensure isolation across tenants; and manage 
(instantiate, reconfigure, remove) tenants at small 
time-scales in a seamless manner.

Content Delivery Network Management 
Application (CDNMA): A CDN is a combination 
of a content-delivery infrastructure (in charge 
of delivering copies of content to end users), a 
request routing infrastructure (which directs client 
requests to appropriate replica servers), and a dis-
tribution infrastructure (responsible for keeping an 
up-to-date view of the content stored in the CDN 
replica servers). This application is designed to 
manage the transport resources for a CDN infra-
structure, controlling load balancing over several 
replica servers strategically placed at various loca-
tions to deal with massive content requests while 
improving content delivery based on efficient con-
tent routing across the 5G-Crosshaul fronthaul 
and backhaul network segments and the corre-
sponding user demands.

5G-crosshAul resource mAnAGement
The presented system architecture has been 
designed to support all 5G-Crosshaul applications 
and use cases in an adaptive and flexible man-
ner. In this section, we analyze how to realize 
5G-Crosshaul resource management based on 
the proposed system architecture, as an example 
to show the method of implementation by means 
of leveraging the existing open source projects.

functionAl blocks for 
resource mAnAGement

Resource management is one of the most import-
ant and fundamental functions to provide central 
and automated management of the 5G-Cross-
haul transport network to support different appli-
cations and services. In the scope of this work, 
resources include not only networking but also 
computing and storage resources. Moreover, the 
resource manager can operate over physical as 
well as virtual resources, on a per-network or a 
per-tenant basis. Hence, to access and control 
these resources it requires the support of active 
functional elements of the 5G-Crosshaul MANO 
(XCI) including different controllers to properly
operate them. We define four main functional
blocks in the XCI that constitute the resource
management ecosystem, as shown in Fig. 4.

Resource Management Application (RMA): 
The RMA is the decision entity in charge of 
making optimized decisions on the control and 
management of the underlying network, com-
puting, and storage resources. The RMA collects 
different types of information from the underly-
ing network infrastructure via the NBI, and runs 
optimization algorithms for context-aware sys-
tem-wide resource allocation. Such decisions, 
for example, routing and re-routing, coordinated 
transmission power control, and algorithms to 
configure local scheduling, as programmatic con-
trol of the abstracted resources, will be conveyed 

through the NBI to the XCI, which is responsible 
for enforcing them. 

Resource Management Orchestrator (RMO): 
The RMO is a building block inside the NFV orches-
trator (NFVO) that allows the orchestration of virtu-
alized resources to support the instantiation of VNFs 
when required by upper applications (e.g., OTT ser-
vices). The RMO receives requests from the appli-
cations (not necessarily only RMA) in the form of 
VNF templates (CPU, memory, IP, policies, service 
function chain templates to interconnect a set of 
VNFs, etc.). Upon receiving such requests, the RMO 
will first evaluate the VNF policies, provision the 
required resources if they are available, and accept 
or reject the request. Once the request is granted by 
the RMO, it in turn will request the VIM to instanti-
ate the allocation and provision of required network, 
computing, and storage resources.

Resource Management VNF Manager (RMVM): 
The RMVM is a building block inside the VNF 
managers to deal with life cycle management of 
VNF instances. This is needed when the RMA 
decides to run one or multiple VNF instances 
in the network and even connect different VNF 
instances of a service function chain (e.g., allow-
ing flexible RAN functional splits as a resource 
management decision). The deployment and 
operational behavior of each VNF is captured in 
a template called a virtualized network function 
descriptor (VNFD) that is stored in the VNF cat-
alog. A VNFD is used to create instances of the 
VNF it represents, and to manage the life cycle of 
those instances.

Resource Management Provisioner (RMP): 
The RMP is a building block inside the VIM as 
the decision enforcing entity to do the actual pro-
vision and allocation of the requested resources 
by talking to different controllers (i.e., SDN con-
troller, storage controller, and computing control-
ler) depending on the type of required resources. 
Correspondingly, the SDN controller will compute 
the paths and provision the required network 
resources to connect between the VM endpoints. 
The storage and computing controller will allo-
cate the required IT resources (CPU, memory) to 
instantiate the VMs.

leverAGinG on open source projects
One of the main goals of the 5G-Crosshaul archi-
tecture is to enable the reuse of ongoing open 
source projects as much as possible to facilitate 
its deployability and compatibility, and to mini-
mize the implementation costs. Figure 4 illustrates 
the rich ecosystem of such projects that we can 
exploit in our system.

When dealing with physical resources, RMA 
can orchestrate its optimizations by interacting 
directly with a controller. In the case of network-
ing resources, open source projects such as ODL 
[1] and ONOS [11] can be used for infrastructure
discovery, event reporting, monitoring, and exe-
cution of RMA’s optimizations into underlying
networks by means of protocols such as Open-
Flow and NETCONF that interact with physical
elements through the SBI. Similarly, storage and
computing resources can be controlled with well-
known tools, as shown in Fig. 4.

Virtualized resources can be managed via an 
NFVO like OpenMANO, OpenStack’s Tacker, 
or OpenBaton. These are ongoing projects that 
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FIGURE 4. SG-Crosshaul resource management: functional mapping to the system architecture. 

closely follow the reference architecture of NFV 
MANO and integrate easily with OpenStack. 
An updated survey on MANO projects can be 
found in [12]. In the case of Tacker, a VNF man
ager is built in, while OpenBaton can interact 
with different VN FM solutions. Because most of 
the cloud platforms use it, we advocate relying 
on OpenStack as our VIM to orchestrate and 
manage virtual networking resources (via Open
Stack's Neutron), computing resources (using 
OpenStack's Nova), and storage resources (inte
grating OpenStack's Cinder, Glance, and Swift). 
For instance, in the case of virtual networking, 
Neutron interfaces can be found in ODL for the 
control of OpenVSwitch virtual switching infra
structure (a de facto standard) via OVSDB to 
manage it and OpenFlow to configure its for
warding behavior. Successful integration between 
OpenStack and OpenDaylight has been demon
strated, for instance, in [13 J. 

SUMMARY AND CONCLUSIONS 

This article presents an innovative architecture 
for integrating existing and new fronthaul and 
backhaul networks into a flexible unified SG 
transport solution. The architecture defines key 
building blocks and interfaces in the data, control, 
and application planes. These included: (1) an 
SDN/NFV-based management and orchestration 
(MANO) entity, referred to as XCI; (2) an Ether
net-based packet forwarding entity, referred to as 
XPFE; and (3) an N FV-enabled processing entity, 
referred to as XPU. The XCI leveraged the ETSI 
NFV architecture framework for resource orches
tration and instantiation, as well as open source 
initiatives for SDN control such as OpenDaylight 
and ONOS. The XCI opens multiple interfac
es, northbound toward the network application 
layer, southbound toward the data forwarding 
layer, eastbound toward the SG access MANO, 



and westbound toward the 5G core MANO. An 
instantiation of the XCI is also provided showing 
the underlying functional blocks for the manage-
ment of network and IT resources in such a way 
as to cater for the various applications on top.

The data forwarding plane features a packet 
switching entity (the XPFE) along with a circuit 
switching entity (the XCSE) to support extreme-
ly low-latency requirements. The XPFE features 
a common switching layer based on a common 
frame format (the XCF) supporting various exist-
ing and new fronthaul and backhaul traffic pro-
files. The XCF is based on Ethernet to lower costs 
and enable economies of scale, while it utilizes 
MACinMAC extensions to deliver carrier-grade 
QoS including multi-tenancy/network slicing 
support. The support of non-XCF (e.g., legacy or 
proprietary) switching infrastructure is also antici-
pated through an adaptation function that adapts 
to the common XCF domain.
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