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Aiming at the problems of poor signal detection effect caused by many interference factors in large-scale MIMO technology scene,
this paper proposes a 5G massive MIMO signal detection algorithm based on deep learning. Firstly, the MIMO system model based
on neural network is constructed, and Deep Neural Network (DNN) detection is introduced into the receiver of the traditional
MIMO system to obtain the information bits or codewords and channel state information transmitted by transmitters.,en, the end-
to-end training method is adopted to make neural network learn the mapping relationship of information bits or codewords
transmitted by system transceivers. Furthermore, DNN detector is improved based on SimplifiedMessage Passing Detection (sMPD)
algorithm, and the correction factor is updated continuously to optimize network parameters to realize the accurate detection and
decoding of the MIMO system. Finally, the proposed algorithm is experimentally analyzed based on the TensorFlow deep learning
framework. Experimental results show that when signal-to-noise ratio is 10 dB, the bit error rate and mean square error are lower
than 0.005 and 0.1, respectively.

1. Introduction

At present, as one of mainstream research directions in the
field of wireless communication, intelligent communication
is actively introducing artificial intelligence technology into
all levels of the wireless communication system, which has
become an effective way to explore the field of intelligent
communication [1]. As one of key technologies of the 5G
mobile communication system, large-scale Multiple Input
Multiple Output (MIMO) technology has high spectrum
utilization and link reliability [2]. However, due to the in-
crease in number of antennas configured at transceiver end
of the MIMO system, the signal processing process at re-
ceiving end of the communication system becomes more
complicated, which will make signal detection face a huge
challenge of high computational complexity [3, 4]. ,ere-
fore, designing signal detection algorithms with low com-
putational complexity and high detection performance is an
urgent problem for massive MIMO systems [5]. ,e popular
research direction of the MIMO system has turned to the
suboptimal detection algorithm.

,e purpose of massive MIMO signal detection is to
recover the original signal at the transmitter under noise and
interference environments. It is an important link to im-
prove the overall performance of the system and reduce the
complexity of the system [6]. Low-complexity signal de-
tection algorithms have become a research hotspot in recent
years [7]. For classic linear detection algorithms such as ZF
detection, the computational complexity is too high due to
its large number of matrix inversion operations [8], the
detection performance of linear detection algorithm is not
ideal, so it is difficult to apply to the actual massive MIMO
system [9]. Reference [10] proposed a low-complexity
massive MIMO detection method based on approximate
expected propagation. ,is method uses the approximation
method of the channel hardening phenomenon to eliminate
matrix inversion during iteration and reduces the compu-
tational complexity of accurate detection while maintaining
good performance. In reference [11], a linear detector based
on conjugate gradient of multiple search directions was
proposed in the massive MIMO uplink system in order to
reduce the complexity of data detection. It determined the
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search direction in each subdomain by the projection
method, which improves the performance of the algorithm.
However, the loop effect caused problems such as slow or
nonconvergence, which leads to a decrease in algorithm
detection performance. Reference [12] proposed a system
model that considers the reverberation effect of radar sys-
tems on massive MIMO receivers using the receiver for
uplink to perform channel estimation and data detection.
,e experimental results proved the effectiveness of the
proposed detection scheme. Reference [13] proposed an
iterative precoding scheme based on Chebyshev accelera-
tion. ,e simulation results showed that the proposed
method has lower complexity while ensuring higher de-
tection performance. However, it was difficult to be widely
used in actual promotion and application due to the limi-
tations of the coding scheme.

As deep learning has made great achievements in other
fields, there are more and more research studies on applying
deep learning to communication systems [14]. Orthogonal
approximation message passing detection neural network
uses the idea of the orthogonal approximation message
passing detection algorithm, while increasing adjustable
parameters using deep learning optimization methods to
improve its detection performance. Reference [15] proposed
a heuristic method for pilot/data power optimization. ,is
method could improve algorithm performance through
space-time block coding when the access point does not have
any channel state information. However, when applied to a
high-order modulation system, the computational com-
plexity will increase as the number of users and modulation
order increase. Reference [16] algorithm could speed up the
convergence speed by reducing the spectral radius of the
rederived iterative matrix. Reference [17] proposed a MIMO
detection scheme based on deep learning using a novel
training algorithm.,e algorithm accelerated the training by
time and spectrum correlation in the real channel, so that it
has lower computational complexity than the existing
methods on real channel. However, each neural network
layer needs to perform matrix inversion operation, which
brings high computational complexity. ,e computational
advantages of deep learning improve the detection perfor-
mance of massive MIMO signals. However, the method of
extending the iterative algorithm to neural network is more
dependent on the channel environment [18].

,is paper proposes a massive MIMO signal detection
algorithm based on deep learning to address the problems of
large number of MIMO antennas in the 5G communication
system, which makes signal detection difficult. Compared
with traditional detection algorithms, its innovations are
summarized as follows:

(1) Due to the complexity of DNN parameters, the
proposed algorithm uses the Simplified Message
Passing Detector (sMPD) algorithm to optimize
network parameters iteratively to reduce the com-
putational difficulty and improve network signal
analysis capabilities.

(2) In order to realize the accurate detection of massive
MIMO signal, the proposed algorithm constructs a
detection system based on neural network. Among
them, DNN detector improved by the sMPD algo-
rithm is used to analyze MIMO signal to achieve low
error signal transmission.

2. System Model and Problem Analysis

Consider a massive MIMO system in a single-cell multiuser
Time Division Duplex (TDD) mode. ,e base station is
equipped with M antennas, and the uplink channel esti-
mation process is shown in Figure 1.

In the uplink, the base station receives signals simul-
taneously transmitted by N single antenna user in the same
time-frequency resource, which can be expressed as follows:

y(t) � Gx(t) + δ(t), (1)

where G represents the flat fading channel matrix of M × N

between the base station and N users, x(t) represents the
signal vector of N × 1 sent by N users at time, and δ(t)

represents additive white Gaussian noise with a mean value
of 0 and a variance of σ2n/2.

Assuming that each user transmits an orthogonal pilot
sequence of length L(L≥N) in the channel coherence time,
the pilot signal matrix received by base station is as follows:

Y � GΨ+, δ (2)

where Ψ � [φ(1), φ(2), · · · ,φ(L)] is the pilot matrix of di-
mension N × L that contains all user training sequences and
δ is an additive white Gaussian noise matrix whose elements
are all Gaussian random variables with independent iden-
tically distributed mean value 0 and variance σ2n/2.

According to the system model, Rice flat fading channel
matrix G can be further expressed as follows:

G �

����
κ

κ + 1



G +

����
1

κ + 1



G, (3)

where G represents the deterministic component matrix
containing line-of-sight signal and G represents Rayleigh
random component matrix containing the scattered signal.
κ≥ 0 is the Rice fading factor; when κ � 0, the channel is
Rayleigh channel, that is, G � G.

For the deterministic component G, it can be expressed
as

[G]mn � e
−j(m−1)

2πd

λ
sin θn( 

,
(4)

d and λ represent the base station antenna spacing and radio
wave wavelength, respectively, and θn represents the angle of
arrival of n user.

For Rayleigh random component G containing the
scattered signal, the finite scattering channel model is
considered. Assuming that each user has q paths to base
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station, the channel vector gn from the n user to the base
station can be expressed as follows:

gn �
1
��
Q

√ 

Q

q�1
hnqϕ θq 

ϕ θq  � 1, e
−j2πd/λ cos θq( 

, · · · , e
−j2π

(M−1)d

λ
cos θq ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,

(5)

where hnq is the random transmission gain of q path. In
order to facilitate the analysis without loss of generality, it is
assumed that the path gain obeys a complex Gaussian
distribution with a mean value of 0 and a variance of 1. θq is
the random arrival angle of q path; ϕ(θq) is the direction
vector under ULA model; and d and λ represent the base
station antenna spacing and radio wave wavelength,
respectively.

In themassiveMIMO system, it is usually relevant on the
base station side but not on the user side. ,is is due to the
limited number of scatterers on base station side, while the
users have relatively abundant scatterers [19, 20]. ,erefore,
it can be assumed that the antenna direction vectors of users
are the same, and the random component channel matrix
can be expressed as follows:

G � Ω H, (6)

where Ω � [ϕ(θ1), ϕ(θ2), . . . , ϕ(θq)] is the full-rank matrix
of M × Q containing Q direction vectors; H is the path gain
matrix of Q × N; [H]q.n � hnq.

According to the nature of rank, in Rice flat fading
channel model, the rank of G is
rank(G)≤ rank(G) + rank( G). ,e number of antennas M

and the number of users N are usually large (M≫N), while
the number of effective paths Q is relatively small. ,erefore,
in the physical finite scattering model, the rank rank( G) �

min M, N, Q{ } � Q of Rayleigh random component G. ,e
rank rank(G)≤N + Q of channel matrix G is significantly
smaller than the matrix dimension.

3. MIMO Signal Detection Model Based on
Neural Network

3.1. MIMO System Model. Taking the MIMO system as the
main research object, Mt and Mr antennas are installed in
the transceiver end of the system.,e model structure of the
MIMO communication system is shown in Figure 2. In
order to accurately detect and decode the transmitted in-
formation at the receiving end of MIMO system, aiming at
this goal, it mainly combines DNN and autoencoder neural
network model. ,e two different neural network structures
and physical layer framework of the traditional MIMO
wireless communication system are organically integrated.
Its purpose is to process the information bits or code words
received by the MIMO system.

,emathematical model of the entire MIMO system can
be expressed by the following linear equation:

y � Gx + δ, (7)

where x � [x, . . . , xMt
]T ∈ CMt×1 represents the information

vector sent by the transmitting end of the system and y �

[y1, . . . , yMr
]T ∈ CMr×1 is the information vector received by

the receiving end of the MIMO system.

3.2. Input and Output of Neural Network. ,e number of
neurons in input layer of a neural network generally depends
on the attributes of sample data. In the proposed neural
network model, matrix G and vector y are used as the input
of neural network. Before input, the data are preprocessed,
matrix G is converted into a (M × N) dimensional column
vector, and the column vector is combined with column
vector y. Since each element of column vector is a complex
number, the real part and the imaginary part are separated
and connected in series as the network input I,
I � [g1,1, g2,1, . . . , gM,N, y1, y2, . . . , yM]T. ,e number of
input neurons of neural network is 2(N × M + M), and the
activation function of output layer is selected according to
digital modulation mode of the MIMO system [21]. Taking
binary phase shift keying as an example, since the trans-
mitted signal symbol is 0 or 1, the activation function is

...

UsernUserN

User1

User2

12 m M

Figure 1: Estimation scenario of large-scale MIMO uplink channel.
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selected as Sigmoid function.,e reason is that the output of
Sigmoid is mapped in the range of (0, 1), which has a strong
correlation with the transmitted symbol. For the modulation
method, a linear activation function can be selected [22].
After neural network is output, the output is recombined
into the transmission signal pattern, and symbol decision is
performed, and the result is detection signal x∗ of MIMO
system receiver based on neural network. ,e flow of entire
data in the receiver is shown in Figure 3.

3.3. Designed DNN Detector Based on sMPD Algorithm. A
detection network is designed based on the sMPD algorithm,
which relies on the sMPD algorithm. ,at is, using the
existing algorithm as a starting point, each iteration of the
sMPD algorithm is expanded to each layer in the network,
and the optimization method of deep learning is used to
obtain the best training parameters to obtain a neural
network that meets the signal detection performance re-
quirements [23, 24]. From this perspective, deep learning
provides a powerful tool. It can make the improvedMPD get
the best correction factor to achieve higher performance. In
addition, DNN detector designed based on the sMPD al-
gorithm constructs a DNN by expanding each iteration of
iterative sMPD to each layer of detection network. Among
them, correction factor set is the parameters to be optimized,
and the best correction factor is obtained by “learning” by
deep learning training [25].

DNN is one of typical deep learning models, which can
map input x0 ∈ CMt×1 to output y0 ∈ CMr×1:

y � f x0,ϖ( , (8)

whereϖ represents the parameter that approximates optimal
function, which maps the input to desired output.

DNN usually has multiple hidden layers between the
input and output layers, and a multilayer neural network
combines many functional units. For a DNN with K layers,
the output of (k − 1) is used as the input of k layer, and the
mapping function of k layer can be defined as follows:

xk � f
(1)

xk−1;ϖk( , (9)

where ϖk represents the training parameters of the k layer
and f(1)(xk−1;ϖk) is the mapping function of the k layer.

Due to the similarity of the factor graph model and DNN
structure, DNN can be designed by unfolding iterative al-
gorithm. Each iteration in the algorithm corresponds to each
layer in the network, as shown in Table 1. ,e comparison of
MPD’s factor graph model and DNN structure confirms that
they have similar structures. Based on a reasonable design of
detection network, the MPD algorithm can be further im-
proved through the optimization method of deep learning.

In the damped MPD algorithm, the damping factor for
each iteration can be different. When selecting the nor-
malization/offset factors of sMPD, these factors can be ex-
panded to have a different symbol probability p

(k)
ij for each

message. In fact, a different correction factor can be set for
each message in each iteration, and the calculation of prior
probability can be expressed in a unified manner. Specifi-
cally, by increasing the damping factor, p

(k)
ij is defined as

follows:

p
(k)
ij ⇐ 1 − β(k)

ij p
(k)
ij + β(k)

ij p
(k−1)
ij , (10)

where β(k)
ij is the weighted average damping factor of

message calculated in the current iteration and the message
obtained in the previous iteration.

To further increase the correction factor τ(k)
ij and bias

factor μ(k)
ij , (10) is converted to the following:

p
(k)
j ⇐ 1 − β(k)

j  τ(k)
ij p

(k)
ij − μ(k)

ij  + β(k)
ij p

(k−1)
ij . (11)

,e damped sMPD algorithm requires multidimen-
sional parameters to approximate MPD, and these multi-
dimensional parameters are designed to further improve
performance. However, it will lead to an increase in the
number of parameters to be optimized, especially when the
number of transmitting and receiving antennas is large. For
traditional methods, this is a complex optimization problem.
However, it can be solved by deep learning, a powerful
optimization tool [26].

In summary, the first iteration of the improved MPD
algorithm can be summarized by two kinds of messages,
including Log-Likelihood Ratio (LLR) ζ(k) and probability
p(k) and the set of correction factor τ(k). A complete iteration
in the sMPD algorithm can be mapped to a layer in DNN to
construct DNN-MIMO detector and use τ(k) as the training

Channel 
encoding

Channel 
encoding

Channel 
encoding

Modulation

Modulation

Modulation

Detection

Decoding

Transmitting terminal

Receiving terminal

Bitstream

Bitstream

Bitstream

Rayleigh fading

Neural 
network

Bitstream

Bitstream

Bitstream

x1

x2

xM(t)

y1

y2

yM(t)

... ... ...

...

Figure 2: MIMO system model based on neural network.
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parameter set to be learned. Specifically, the DNN detector
based on sMPD is expressed as follows:

ζ(k)
, p

(k)
� f

(k) ζ(k− 1)
, p

(k− 1)
, τ(k)

 

o � σ ζ(K)
 

⎧⎪⎨

⎪⎩
, (12)

where f(k)(ζ(k− 1)
, p(k− 1), τ(k)) is the mapping relationship

of l-th iteration in the improved MPD algorithm, o is the
final output of DNN, and σ(·) is the normalization function.
,e output ζ(K) of the K final iteration is rescaled within the
range of [0, 1].

For the sMPD algorithm, ζ(k)
� ζ(k)

j  and p(k) � p
(k)
j ,

and training factor
Δ � α(1), . . . , α(K),ω(1), . . . ,ω(K), b(1), . . . , b(K)  include
attenuation, scaling, and bias factors. ,is sMPD-based
DNN detector is called an Improved MPD (IMPD). ,e
overall structure of IMPD detector is shown in Figure 4. ,e
hidden layer in DNN is expanded by the sMPD algorithm.
,ese hidden layers are also different according to the it-
erative process of the selected MPD algorithm, thus forming
a variety of different DNN detectors.

In order to measure the detection performance of signal
detection network designed for the massive MIMO system,
cross entropy is used to express the error between output of
neural network and real transmitted signal. And the min-
imum SGD method is used to minimize loss function to
determine the best correction factor set (Δ).

,e IMPD detector includes two stages of learning and
detection. First, neural network is trained to obtain the

optimized correction factor. After that, trained DNN de-
tector is used for signal detection. ,is DNN based on MPD
training is similar to the MPD algorithm, except that the
optimized correction factor is obtained through the training
process. ,erefore, IMPD detector can be regarded as a
special case of the MPD algorithm and requires additional
training preprocessing. However, this is all done offline on
the computer, and it will not increase the complexity of
performing real-time detection tasks.

3.4. BatchNormalization andDropout. ,e proposed neural
network model is relatively complicated, and there are too
many parameters that need to be updated, so it is prone to
overfitting during the training process. Overfitting means
that the function fitted by the neural network fits the training
set perfectly, but the results of validation set and test set
containing new data are poor. ,at is, the training data are
overfitted without considering the generalization ability of
network.

,e overfitting phenomenon can be solved by batch
normalization and dropout. Batch training refers to training
a batch of data at a time during the neural network training
process. ,e purpose of training is to reduce the loss

Generate training data

Data preprocessing

I

Neural network o=f (I)

The receiver generates G,
x data sets

Data preprocessing

Trained neural 
network o=f (I)

Decision 
device x*

Neural network
prediction

Training data
generation

Data 
preprocessing

Neural network 
training

Figure 3: Flow process of data flow.

Table 1: MPD diagram model and DNN structure.
MPD DNN
Node Neuron
Send signal x Input data x
Receive signal y Output data y
,e k-th iteration ,e k-th hidden layer
Confidence message Hidden layer information
Data update rules Hidden relationship of each layer
Correction factor Parameter ϖ

Input layer

... ... ... ... ...

Hidden layer Output layer

∫

∫

∫

∫

Figure 4: Structure of IMPD detector.
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function value of entire batch of data. ,is can reduce the
randomness caused by a single data training as much as
possible. A batch of data is called a batch, and all training sets
the batch value to 1000. Dropout was first proposed by
Hinton in 2012. It refers to randomly ignoring a certain
percentage of neurons during neural network training. ,e
neural network model using Dropout randomly selects a
certain number of neurons for training during the training
process and does not need to rely too much on certain local
features. ,is can reduce the interaction between feature
detectors (neurons) and make the model more generalized.
Using Dropout in the training process is equivalent to
different neural networks for each training, and each neural
network will also give different results. However, as the
training process progresses, most of neural network output
results will be correct.,en, a small number of wrong results
will not affect the total output. ,e Dropout operation was
used during training.

4. Experiment and Analysis

With the help of advanced deep learning libraries such as
TensorFlow, the proposed algorithm is experimentally an-
alyzed, and the simulation parameter settings are shown in
Table 2.

4.1. Performance Comparison of Deep Learning and Linear
Detection Algorithms. ,e performance of the used deep
learning method is compared with that of the traditional
linear detection algorithm (maximum likelihood algorithm
and zero-forcing algorithm). ,e result of bit error rate
(BER) is shown in Figure 5.

It can be seen from Figure 5 that the detection perfor-
mance based on the deep learning method applied to MIMO
system signal detection is lower than the performance of the
optimal maximum likelihood detection algorithm. However,
it is significantly better than zero-forcing detection algo-
rithm performance. Since the principle of the traditional
linear detection algorithm is relatively simple, the proposed
algorithm shows better performance advantages after testing
the neural network with better training effect. When BER is
0.01, signal-to-noise ratio (SNR) difference between the deep
learning method and maximum likelihood detection algo-
rithm is about 2.5 dB. BER is in the range of 0.1 to 0.01. ,is
deep learning method has a performance gain of nearly 2 dB.

4.2. Performance Comparison of Deep Learning and Belief
Propagation Decoding Algorithms. In order to further verify
the performance of the deep learning method in channel
decoding in the MIMO communication system, the
decoding performance of the Back Propagation (BP) algo-
rithm of polarization code is selected and compared. In the
experiment, the number of iterative cycles of the BP
decoding algorithm is set to 200. After the iteration loop, the
BER result obtained is shown in Figure 6.

It can be seen from Figure 6 that the performance of
channel decoding based on deep learning is better than that
of the traditional BP decoding algorithm. When BER is 0.01,

the decoding method using autoencoder neural network has
a performance gain of about 1.5 dB. ,e decoding perfor-
mance of DNN also has a performance gain of nearly 1 dB.
,is demonstrates that the deep learning method can im-
prove channel decoding performance of the MIMO system.

Table 2: Simulation parameters.
Parameter Value
Pilot sequence length 55
Number of base station antennas M 100
Signal-to-noise ratio (dB) 10
Number of users N 50

Zero forcing detection
DNN detection
Maximum likelihood detection

0.0001

0.001

0.01

0.1

1.0

BE
R

1 2 3 4 5 6 7 8 9 100
SNR (dB)

Figure 5: Performance comparison between deep learning and
linear detection algorithms.

Confidence propagation decoding algorithm
DNN decoding
Automatic encoder decoding

0.0001

0.001

0.01

0.1

1.0

BE
R

1 2 3 4 5 6 7 8 9 100
SNR (dB)

Figure 6: Performance comparison between deep learning and
belief propagation decoding algorithms.
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4.3. Detection Performance Comparison of Different
Algorithms. In order to demonstrate the performance of the
proposed algorithm, the algorithms in reference [11], ref-
erence [13], and reference [16] are compared In SNR range
of 0∼10 dB, the trained model will be tested, and BER results
under different SNRs are shown in Figure 7.

It can be seen from Figure 7 that in the same SNR range,
the detection performance of the proposed algorithm is
better than that of other comparison algorithms. When SNR
is 10 dB, its BER is lower than 0.005. because the proposed
algorithm constructs a detection system based on neural
network and uses the DNN detector improved by the sMPD
algorithm to analyze MIMO signals, so low error signal
transmission is realized. ,e improved linear detection al-
gorithm used in reference [11] is affected by loop effect, and
its detection performance is not good. When SNR is 9 dB, its
BER is still higher than 0.01. Reference [16] carried out
parallel iteration based on the linear detection algorithm,
and the detection speed and performance have been im-
proved to a certain extent. However, the data processing
capability of the linear detection algorithm itself is insuffi-
cient, so there is a significant gap compared with IMPD of
the proposed algorithm. Reference [13] used the iterative
precoding algorithm of Chebyshev acceleration for signal
detection. Only from the iterative aspect of optimization, its
detection performance improvement effect is not obvious.
,us, when BER is 0.01, the detection performance of the
proposed algorithm and reference [13] had a performance
gain of nearly 1.5 dB. And within this SNR range, the de-
tection performance of the MIMO system shows the most
obvious advantages.

Besides, mean square error (MSE) results of four
comparison algorithms under different SNRs are shown in
Figure 8.

It can be seen from Figure 8 that the MSE of the pro-
posed algorithm is significantly lower than that of other
comparison algorithms, especially better than that of the

linear detection algorithm of reference [11]. Based on the
linear detection algorithm, the neural network is used to
compensate for the lack of channel estimation, which is
closer to the real channel distribution characteristics. Ref-
erence [16] incorporated parallel iteration on the basis of
linear detection, and MSE of detection result is reduced, but
its data learning ability is somewhat weaker than that of deep
learning algorithms. Reference [13] used the iterative pre-
coding algorithm to achieve MIMO signal detection, and its
detection accuracy is high. When SNR is 8 dB, its MSE is
lower than 0.4. However, the influence of parameters in the
deep learning algorithm and the interference of iteration
errors are not fully considered, so the detection effect of the
proposed algorithm is better. ,e proposed algorithm uses
designed IMPD detector for MIMO signal detection and
increases the correction factor and parameter training to
reduce detection error. When SNR is 10 dB, its MSE is lower
than 0.1, which can meet the requirements of actual
environment.

5. Conclusion

Massive MIMO technology has become one of key tech-
nologies of 5G communication systems due to its high
spectrum utilization and link reliability. However, as the
number of antennas in the massive MIMO system increases,
signal detection will face the challenge of high computa-
tional complexity. To this end, this paper proposes a 5G
massive MIMO signal detection algorithm based on deep
learning. Besides, the sMPD algorithm is used to optimize
the network parameters of DNN, and the MIMO system
model based on neural network is constructed. ,e trained
DNN detector learns to process the transmission signal to
achieve accurate decoding and detection of 5G massive
MIMO signal. Experimental results based on TensorFlow
deep learning framework show that
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Proposed algorithm

0.0001

0.001

0.01

0.1

1.0

BE
R

1 2 3 4 5 6 7 8 9 100
SNR (dB)

Figure 7: Detection performance comparison of different
algorithms.

Ref.[11]
Ref.[13]

Ref.[16]
Proposed algorithm

0.0

0.2

0.4

0.6

0.8

1.0

M
SE

2 4 6 8 100
SNR (dB)

Figure 8: MSE curves of different algorithms.
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(1) ,e DNN detector designed based on the sMPD
algorithm has better detection performance and
reduces BER through the iterative optimization of
correction factor and network parameters. More-
over, the detection performance advantage is
obvious.

(2) ,e proposed algorithm builds the MIMO system
with the help of neural network learning advantages
and uses batch training and dropout to improve the
generalization ability of the model, which can ac-
curately and efficiently realize signal detection.
When SNR is 10 dB, its BER and MSE are lower than
0.005 and 0.1, respectively.

Since the algorithm in this paper is proposed under the
assumption that the channel environment is in an ideal state,
the interference of some objective factors is ignored. Further,
in-depth research is needed for more nonideal channel
environments and realistic system scenarios. In addition, all
the proposed improved algorithms only consider the signal
detection problem itself, without considering the commu-
nication error rate performance that combines it with
channel estimation, channel coding, and other issues.
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