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5G Positioning and Mapping with Diffuse Multipath
Fuxi Wen, Senior Member, IEEE, Josef Kulmer, Student Member, IEEE, Klaus Witrisal, Member, IEEE and Henk

Wymeersch, Senior Member, IEEE

Abstract—5G mmWave communication is useful for position-
ing due to the geometric connection between the propagation
channel and the propagation environment. Channel estimation
methods can exploit the resulting sparsity to estimate parameters
(delay and angles) of each propagation path, which in turn can
be exploited for positioning and mapping. When paths exhibit
significant spread in either angle or delay, these methods break
down or lead to significant biases. We present a novel tensor-
based method for channel estimation that allows estimation of
mmWave channel parameters in a non-parametric form. The
method is able to accurately estimate the channel, even in the
absence of a specular component. This in turn enables positioning
and mapping using only diffuse multipath. Simulation results are
provided to demonstrate the efficacy of the proposed approach.

Index Terms—massive MIMO, localization, beamspace ES-
PRIT, tensor decomposition, subspace.

I. INTRODUCTION

5G mmWave signals present unique opportunities for posi-

tioning or user devices, due to their large bandwidths, arrays

with many antenna elements and favorable propagation condi-

tions [1]. 5G mmWave is currently a study item for 3GPP-R17

and has the potential not only to provide performance better

than Global Positioning System (GPS), but also enable precise

orientation estimation. Moreover, due to the high degree of

resolvability of propagation paths, multipath information can

naturally be exploited, both for positioning as well as for

mapping of the environment [2] Applications of 5G mmWave

positioning include traditional emergency call localization and

personal navigation, but also more disruptive topics such as

localization or robots and autonomous vehicles, as well as

augmented and virtual reality applications.

In order to develop a localization method, an understanding

of the mmWave channel is needed. mmWave propagation,

occurring at carrier frequencies above 24 GHz, has been

shown to be characterized by limited scattering, no diffraction

and shadowing, and the existence of only a few propagation

paths. Each of the paths is thus largely determined by the

propagation environment and characterized by channel gains,

angles of arrival, angles of departure, and delays. Propagation

paths may be of a deterministic specular nature, when the

surface on which waveforms impinge is sufficiently smooth,

or of a stochastic diffuse/scattering nature when the surface is

relatively rough, or a combination of both. Hence, in general,

each path (except the line-of-sight (LOS) path) is in fact a
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cluster of paths, with similar angles and delays [3]. When the

paths within a cluster are not resolvable in either angles or

delays, they lead to fluctuations in the received power. This is

the model typically assumed in the communication literature.

On the other hand, when intra-cluster paths are resolvable,

they should be properly estimated in order to avoid biasing

the estimation of angles and delays.

A cluster can be characterized in multiple ways. Tradition-

ally, a statistical model has been considered, whereby a cluster

is modeled though a mean and a spread in both angle and delay

domain [4]. Given such a model, there is a rich literature on

second-order estimation methods that are able to accurately

and blindly estimate the mean and spread of a cluster [5],

[6]. The models for spatially distributed sources have been

classified into two types, namely incoherently distributed (ID)

sources and coherently distributed (CD) sources. On one hand,

for ID sources, signals coming from different points of the

same distributed source can be considered as uncorrelated [7]–

[10]. On the other hand, in the scenario of CD sources, the

received signal components are delayed and scaled replicas

from different points within the same source [11]–[13]. In [14],

the performance bound is studied of the tracking accuracy in

sparse mmWave channels that includes cluster angular spreads.

However, while such subspace methods are powerful, in the

context of mmWave communication, the signal structure and

presence of dedicated pilot signals should be exploited to

develop faster methods. There is thus a lack of first-order

methods for quickly estimating channel parameters and their

spread. This explains why 5G mmWave localization has con-

sidered either only the LOS path, or treated multipath as purely

specular [15]–[17]. Standard 5G mmWave channel estimation

is based on either compressive sensing approaches [18], which

express the sparsity in an appropriate domain, or on tensor

decompositions, where the dominant higher-order singular

values can be related to the dominant signal paths [19],

[20]. A joint tensor decomposition and compressed sensing

based multidimensional channel parameter estimation method

is proposed in [21]. However, these methods do not account

for the intra-cluster spread of angles or delay. Both matrix-

based and tensor-based approaches can be applied for channel

estimation in localization. In the traditional channel estima-

tion approaches, the multi-dimensional signals are stored in

matrices by means of a stacking operation. Obviously, this

representation does not account for the R-D grid structure

inherent in the data. Hence, a more natural approach to store

and manipulate the R-D data is given by tensors, leading to

better performance than matrix-based methods.

In this paper, we propose a tensor-based method for estimat-

ing a 5G mmWave channel in terms of the angles and delays

of the individual paths within each non-line-of-sight (NLOS)
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cluster. The method makes no a priori assumption regarding

the number of paths per cluster. The problem of clustering is

not our focus, and standard clustering methods can be applied,

such as k-means and density-based spatial clustering of appli-

cations with noise (DBSCAN) [22]. Following a clustering

of paths, the statistics of each cluster can be determined,

which are finally fed to a search-free positioning and mapping

method, which operates with lower complexity than optimiza-

tion [15] or message passing methods [16], [17], designed

only for specular multipath. The proposed method is able

to determine the dominant clusters and accurately estimate

the cluster statistics, even for clusters that have no specular

component. Building on this, we present a positioning and

mapping method that accurately localizes the user and maps

the environment by exploiting the diffuse multipath, rather

than considering it as a disturbance. As an extension, [23]

provides insights into cases not covered by this paper, namely

synchronization and orientation estimation are important in

practice. Our main contributions are the following:

• We derive a novel method for estimating mmWave chan-

nels in the presence of combined specular and scattered

components, based on a tensor decomposition.

• We provide a detailed evaluation of the proposed method

in a three-dimensional propagation environment, demon-

strating its performance under varying levels of surface

roughness.

• We propose a low complexity, search-free 5G mmWave

localization and mapping method that is able to operate

in the absence of LOS and specular multipath. The

method can operate using only the diffuse multipath for

positioning and mapping.

II. TENSORS AND TENSOR OPERATIONS

A. Definitions and Notations

The tensor operations used in this paper are consistent with

[24]. An R-D tensor is denoted by A ∈ C
M1×M2×···×MR ,

where Mr is the size of the rth mode of the tensor and R ≥ 3.

We use am1,m2,··· ,mR
to represent the (m1,m2, · · · ,mR)

entry.

Unfolding: The r-mode unfolding of A is written as

A(r) ∈ C
Mr×(M1···Mr−1Mr+1···MR) where the order of the

columns is chosen according to Definition 1 in [25].

Product: The r-mode product of a tensor A ∈
C

M1×M2×···×MR and a matrix U ∈ C
Nr×Mr along the

rth mode is denoted as Definition 8 in [25],

B = A×r U ∈ C
M1×···×Mr−1×Nr×Mr+1×···×MR . (1)

Concatenation: We use the operator [A1 ⊔R+1 A2] ∈
C

M1×M2×···×MR×2 to represent the concatenation of two

tensors A1 ∈ C
M1×M2×···×MR and A2 ∈ C

M1×M2×···×MR ,

along the (R+1)th mode [26].

B. Tensor Decompositions

There exist various decompositions of tensors and defini-

tions of the rank of a tensor. We consider here the CAN-

DECOMP/PARAFAC (CP) decomposition and the Tucker

decomposition.

CP decomposition decomposes an R-D tensor X as a sum of

rank-one tensors

X =
D∑

d=1

γda
(1)
d ◦ a

(2)
d . . . ◦ a

(R)
d , (2)

where ◦ denotes outer product. The rank D of a tensor

is defined as the smallest number of rank one tensors that

generate X as their sum. In other words, it is the smallest

number of components in an exact CP decomposition [27],

[28]. The r-rank of a tensor is the column rank of X(r) [29].

Tucker decomposition is a form of higher-order principal

component analysis. It decomposes a tensor into a core tensor

multiplied (or transformed) by a matrix along each mode. The

matrix can be thought of as the principal components in each

mode.

III. SYSTEM MODEL

We consider a 3-dimensional (3D) scenario with a single

5G transmitter with known location pT and orientation, a

receiver with unknown location pR, and a physical propa-

gation environment, characterized by surfaces, as depicted in

Figure 1. The transmitter and receiver both employ uniform

rectangular arrays (URAs) consist of sensors in a grid of size

MT = M1×M2 and MR = M3×M4, and exchange MIMO-

OFDM signals with M5 sub-carriers and sub-carrier spacing

∆f . The received signal on subcarrier i is of the form

Yi = HiSi +Ni ∈ C
MR×T , (3)

where Si ∈ C
MT×T is a known pilot signal spanning T ≥ MT

OFDM symbols with orthogonality property (SiS
H

i is a scaled

identity matrix) and Ni is i.i.d. Gaussian noise. Then we have

YiS
H

i = Hi +NiS
H

i . (4)

For subcarrier i, we receive YiS
H

i , which is an M3M4 ×
M1M2 matrix. Then we convert these M5 matrices YiS

H

i , i =
1, 2, · · · ,M5 (one per subcarrier) in a 5D tensor of suitable

dimension, Y ∈ C
M1×M2×M3×M4×M5 . The channel matrix

Hi depends on the array structure and the propagation envi-

ronment, described next. Our aim is to determine pR and map

the propagation environment.

A. Array Steering Vector for URA

The transmit and receive arrays are planar arrays, compris-

ing omni-directional elements on a uniform grid of rectangular

shape with inter-element spacing equal to half of the signal’s

wavelength. Transmit and receive URAs consist of sensors are

indexed by (m1,m2) and (m3,m4), respectively.

The URA steering vector corresponding to the lth source

can be formed as

a (ωl,1, ωl,2) = a (ωl,1)⊗ a (ωl,2) , (5)

where ⊗ is Kronecker product, a (ωl,1) =
[a1(ωl,1) · · · am1

(ωl,1) · · · aM1
(ωl,1)]

T and a(ωl,2) =
[a1(ωl,2) · · · am2

(ωl,2) · · · aM2
(ωl,2)]

T are equivalent to the

uniform linear array steering vectors composed of M1 and
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Fig. 1. Illustration of the considered scenario with 1 LOS path and 2 NLOS
clusters (i.e., K = 3).

M2 sensors lying on y-axis and z-axis, respectively. The first

sensor is taken as the reference sensor so that (up to a global

phase)

am(ω) = ej(m−1)ω. (6)

The spatial frequencies associated with the azimuth θl and

elevation angle φl of the lth source follow as

ωl,1 = π sin(θl) sin(φl), ωl,2 = π cos(φl). (7)

B. Channel Model

We propose a generative model for simulating the diffuse

multipath of mmWave channels, based on [30], [31]. This

model starts from generating points on the surface, based on

the its roughness. Then, for each point, the channel parameters

are computed (angles, delay, gains). Finally, the model is

expressed in a tensor representation. For smooth reflective

surfaces, the model reverts to the one used in [15].

1) Surface Roughness and Scattering: The propagation

environment consists of K well-separated clusters, each cluster

k corresponds to a physical object (e.g., a wall, a ground re-

flection), described by MPCs, characterized by two parameters

[30], [31]:

• The scattering coefficient S ∈ [0, 1], which quantifies

the relative amount (with respect to absorption) of total

scattered amplitude, and was identified to be S ≥ 0.4
[31], [32].

• The directivity parameter αR ≥ 0 which describes the

width of the scattering lobe originating at the reflective

surface. At rough surfaces (in comparison to the signal’s

wavelength), the scattering power has a large intra-cluster

spread, corresponding to a small directivity αR → 0.

At smooth surfaces, the spread of scattering power is

reduced, equivalent to more directivity αR → ∞. Hence,

αR may be associated to surface roughness. Typical

values are in a range of αR ∈ {1, . . . , 11} [31], [32].

Combined, αR and S can be used to determine the cluster

power and cluster spread through the joint angular delay

power spectrum (JADPS) which describes the scattered power

pDM(p) from any point p [30]. Cluster k gives rise to Lk scat-

ter points, where the total number of paths is P =
∑K

k=1 Lk.

For the LOS path, Lk = 1. Each scatter point pkl ∈ R
3 lies

on the k-th surface with scatter point index 0 < l ≤ Lk.

2) Generation of Channel Parameters: Given a path be-

tween pR and pT via pkl, the path delay τkl, as well as

azimuth and elevation angles of the angle-of-departure (AOD)

(θkl, φkl) and of the angle-of-arrival (AOA) (ϑkl, ϕkl) follow

from standard geometry and can be found in the Appendix A.

Finally, each path from a scatter point has a gain γkl, which

we propose to comprise a constant amplitude per cluster and a

random phase, uniform over [0, 2π). Motivation and additional

details of this model are provided in Appendix B.

3) Tensor Formulation: Let

ωkl,1 = π sin(θkl) sin(φkl), ωkl,2 = π cos(φkl), (8)

and

ωkl,3 = π sin(ϑkl) sin(ϕkl), ωkl,4 = π cos(ϕkl), (9)

the channel response in frequency domain for sub-carrier i
with frequency fi is represented as [33]

Hi =

K∑

k=1

Lk∑

l=1

γkle
−j2πfiτklaR (ϑkl, ϕkl)a

H

T (θkl, φkl) , (10)

where

aT (ωkl,1, ωkl,2) = a (ωkl,1)⊗ a (ωkl,2) ∈ C
MT×1, (11)

and

aR (ωkl,3, ωkl,4) = a (ωkl,3)⊗ a (ωkl,4) ∈ C
MR×1. (12)

For subcarrier i, Hi is an M3M4×M1M2 matrix. Then we

convert these M5 matrices (one per subcarrier) in a 5D tensor

of suitable dimension, H ∈ C
M1×M2×M3×M4×M5 .

IV. PROPOSED METHOD

We now present our method for localizing the receiver and

the cluster locations.

A. Tensor Representation

The (m1,m2,m3,m4,m5) entry of the channel response in

frequency domain H ∈ C
M1×M2×M3×M4×M5 is described as

hm1m2m3m4m5
=

K∑

k=1

Lk∑

l=1

γklam1
(ωkl,1) am2

(ωkl,2)

am3
(ωkl,3) am4

(ωkl,4) am5
(ωkl,5), (13)

where the spatial frequency ωkl,5 = 2π∆fτkl, and am(ω) is

defined in (6). The response can be described as a CP model

(sum of P rank-one tensors),

H =

P∑

p=1

γpap,1 ◦ ap,2 ◦ ap,3 ◦ ap,4 ◦ ap,5. (14)

For r = 1, 2, · · · , 5,

ap,r =
[
a1(ωp,r) a2(ωp,r) · · · aMr

(ωp,r)
]T

. (15)
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The array manifold for the rth dimension is defined as

Ar =
[
a1,r · · · ap,r · · · aP,r

]
∈ C

Mr×P . (16)

For multiple measurement scenarios, the augmented obser-

vation tensor is described as

Y =
[
H ⊔6 · · ·H
︸ ︷︷ ︸

M6

]
+N ∈ C

M1×M2×M3×M4×M5×M6 , (17)

where M6 is the subsequent time instants, N is the noise

tensor.

B. Multipath Components (MPC) Parameter Estimation

1) Estimate the number of paths P : To estimate geomet-

rical parameters such as AOD, AOA and delay, the first step

is to estimate the number P̂ of signal components in (14).

In the CP model, a tensor is decomposed into a sum of

rank-one tensors, which are expressed as the outer product of

vectors. In practice, each rank-one component corresponds to a

natural source or signal. Finding the tensor rank or number of

multilinear components in the underlying CP model of noisy

tensor observations is an important research topic. Existing

approaches to CP rank estimation from noisy observations

include [28].

R-D minimum description length (MDL) [29] is utilized

for tensor rank estimation, which is proposed by stacking the

measurement tensor into a matrix with the r-mode unfolding

operation,

Y
r-mode

−−−−−→
unfolding

Y(r). (18)

The eigenvalue spectrum Λr obtained from the singular

value decomposition (SVD) of Y(r) and MDL are used for

r-rank P̂r estimation,

Y(r)
SVD
−−→ Λr

MDL
−−−→ P̂r. (19)

After obtaining r-rank, the tensor rank is estimated as

P̂ = max {P̂1, P̂2, · · · , P̂R}, (20)

to ensure a high number of estimated paths, required for cluster

mean and cluster spread estimation. In general, P̂r ≪ P , so

the rank is always underestimated.

2) Angle and Delay Estimation: After estimating the num-

ber of resolvable signal components P̂ , an R-D subspace is

obtained via CP Decomposition [34]. For URA, tensor or N -D

ESPRIT [24], [35], [36] is applied for channel parameter es-

timation. The standard conditions for tensor ESPRIT hold for

the specular components, but not for the diffuse ones. Hence,

it is not possible to recover the dense physical scattering

points (SPs) related to diffuse multipath. Instead we recover

angles and delays from artificial resolved SPs. If the physical

environment comprised the specular paths and the artificial

SPs, again the conditions for tensor ESPRIT would hold. Let

Ur ∈ C
Mr×P̂ be the subspace spanned by Ar ∈ C

Mr×P̂ ,

which is obtained by applying CP decomposition on Y . The

main idea of tensor-ESPRIT is exploiting the multidimensional

shift invariance property of the measurements. For each dimen-

sion, the array is divided into two subarrays with same number

of elements. The subarrays may overlap and an element may

be shared by the two subarrays. For the rth dimension, we

have

Ar = UrDr, (21)

where Dr ∈ C
P̂×P̂ is a non-singular matrix. We further define

two sub-matrices,

U1,r = J
(n)
1,rUr and U2,r = J

(n)
2,rUr, (22)

where J1,r and J2,r are two selection matrices,

J
(n)
1,r =

[
IMr−n 0(Mr−n)×n

]
,

J
(n)
2,r =

[
0(Mr−n)×n IMr−n

]
, (23)

where In denotes identity matrix of size n × n and 0m×n

denotes zero matrix of size m×n. For convenience, we focus

on n = 1, J
(n)
1,r and J

(n)
2,r are simplified as J1,r and J2,r. Then

we have

J1,rAr = J2,rArΦr, (24)

where

Φr = diag
[
e−jω1,r e−jω2,r · · · e−jω

P̂ ,r

]
. (25)

Substituting (21) and (22) into (24), we have

U1,r = U2,rΨr, (26)

where

Ψr = DrΦrD
−1
r ∈ C

P̂×P̂ . (27)

The equations in (24) are over-determined. The simplest

choice to estimate Ψr is using the least squares (LS) method

and the resulting closed-form solution is given by

Ψ̂r = (U2,r)
†
U1,r, (28)

where † denotes the Moore-Penrose matrix inverse. Let

λ1,r, λ2,r, · · · , λP̂ ,r
be the eigenvalues of Ψ̂r, the mode r

frequencies are estimated by using

ωp,r = −∠ (λp,r) , p = 1, 2, · · · , P̂ , (29)

where ∠(·) denotes the argument of a complex number.

Remark 1. The method can be generalized to beam-space

tensor ESPRIT for hybrid URA structure [37] and beam-space

tensor MUSIC for a hybrid arbitrary array geometry [13].

3) Clustering the MPCs: Clustering techniques, such as k-

means are applied to group the 5-D parameters of the estimated

P̂ multi-path components ωp =
[
ωp,1 ωp,2 · · · ωp,5

]
. It

can be extended to other techniques such as connectivity-

based, distribution-based and density-based [38]. Given a

set of estimates {ωp, p = 1, 2, · · · , P̂}, our objective is to

partition the data set into K clusters, we assume that the value

of K is given or can be estimated from model order selection

techniques [39]. Recently, the challenges and opportunities in

clustering-enabled wireless channel modeling were discussed

in [40]. A framework of automatic clustering and tracking

algorithm was proposed for the MPCs in time-variant radio

channels [41].

The clustering problem can be formalized by introducing a

set of vectors {µk, k = 1, 2, · · · ,K}, in which µk ∈ R
D×1

represents the center of the kth cluster. The motivation is to
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Fig. 2. The proposed method for localization and mapping. The locations

pR and pk (one for each of the P̂ estimated paths) are unknown (in orange).
The vectors fT,k and fR,k , as well as the total path length are known, based
on the measurements. The locations in grey are possible hypotheses of where
pR and pk may be, parameterized by ξk ∈ [0, 1]. Each value of ξk leads to
a point on the line shown in red. The receiver must this lie on the intersection
of these lines.

assign the data set to clusters, such that the distances of each

data to its closest cluster center is minimized. The objective

can be rewritten in terms of the total distortion

J =

P̂∑

p=1

K∑

k=1

zpk ‖ωp − µk‖
2
, (30)

where zpk = 1, if data point ωp is assigned to cluster k,

otherwise zpk = 0. Each example ωp is assigned or reassigned

to its closest cluster center Ck, if

Ck = {n : k = argmin
k

‖ωp − µk‖
2
}. (31)

The cluster means are updated as

µk =
1

|Ck|

∑

p∈Ck

ωp, (32)

where |·| is the cardinality of a set, which measures the number

of elements of the set. The cluster spread is defined as the

standard deviation of all the ωp within the same cluster. Recall

that all paths within a cluster have the same amplitude, so

the mean and spread do not require weighting. Finally, MPC

parameter estimates of AOD (θ̂k, φ̂k), AOA (ϑ̂k, ϕ̂k) and delay

τ̂k are calculated from spatial frequencies in µk as stated in

Sec. III-B3.

C. Mapping and Localization

The localization and mapping problem can be expressed as

a maximum likelihood problem:

[p̂R, [p̂k]
P̂
k=1] (33)

= arg max
pR,[pk]P̂k=1

p([ωk]
P̂
k=1|pR, [pk]

P̂
k=1,pT)

= arg max
pR,[pk]P̂k=1

p([τ̂k, θ̂k, φ̂k, ϑ̂k, ϕ̂k]
P̂
k=1|pR, [pk]

P̂
k=1,pT).

To avoid a high-dimensional optimization and inference of

hidden parameters (αR and S), we propose a general search-

free method based on [42] that does not rely on knowledge

on whether or not the LOS path is present. We define

fT,k =





cos(θ̂k) sin(φ̂k)

sin(θ̂k) sin(φ̂k)

cos(φ̂k)



 , (34)

which points along the direction of departure of path k ∈
{1, . . . , P̂}; and fR,k is defined equivalently for the direction

of arrival. For each cluster k we can establish a relation to pR

according to

pR = pT + cτ̂kξkfT,k + cτ̂k(1− ξk)(−fR,k), (35)

with unknown ξk ∈ [0, 1], representing the fraction of the path

delay that is ascribed to the line from the BS to an artificial

SP. Note that for the LOS path (if it is present), the value of

ξk is arbitrary. In Fig. 2, we show the relation between the

different defined vectors and the user location. Rearranging

results in the line equation for each k as

pR = δk + ξkuk, (36)

with δk = pT − cτ̂kfR,k and uk = cτ̂k(fT,k + fR,k). The

intersection of these lines determines the estimate of pR.

Specifically, we consider the cost function

C(pR) =

P̂∑

k=1

ζk
∥
∥pR −

(
δk + ūT

k (pR − δk)ūk

)∥
∥
2
, (37)

as sum of distance between pR and each path (36), ζk ≥ 0
is the weight of the k-th path (e.g., dependent on the SNR

or the spread of path) and ūk = uk/‖uk‖. The least-squares

solution becomes

p̂R =





P̂∑

k=1

ζk(I − ūkū
T

k )





−1
P̂∑

k=1

ζk(I − ūkū
T

k )δk. (38)

Given p̂R, we can recover the scatter point pk as inter-

section of the line equations pT + ζTfT,k, ζT ∈ R and

pR + ζRfR,k, ζR ∈ R (see Fig. 2). The least-squares solution

follows as

p̂k = (HT,k +HR,k)
−1(HT,kpT +HR,kp̂R), (39)

with HT,k = I − fT,kf
T

T,k, HR,k = I − fR,kf
T

R,k and p̂R

from (38).

Note that the method does not require separation of specular

and diffuse paths. The cost function in (37) can be applied with

all P̂ estimated paths, or only a selected subset of paths per

cluster. In Section V-C, the performance of different options

will be compared.

In the case multiple users are to be localized simultaneously,

the proposed method can be applied independently by each

individual user, based on the received downlink signals, as is

currently done in LTE. Different levels of cooperation can be

envisioned, including map sharing [43] and exploiting inter-

user correlations [44].

Remark 2. We note that the mapping and localization method

does not require knowledge of the scattering coefficient S, the
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directivity αR, or the locations of the physical scatter points.

It is only required that the estimates ωp correspond to a 3D

location.

D. Computational complexity

The most computationally demanding part of channel pa-

rameter estimation is the CP decomposition. In general, most

CP decomposition algorithms, which factorize R-order ten-

sors, face high computational cost due to computing gradients

and (approximate) Hessians, line search and rotation. Table I

in [45] summarizes the complexities of major computations in

popular CP decomposition algorithms. For example, the alter-

nating least squares (ALS) algorithm with line search has a

complexity of order O
(
2RPJ +RP 3

)
, where J =

∏R

r=1 Mr

and P denotes the total number of paths. Having P̂ multipaths,

estimation of p̂R requires a single 3 × 3 matrix inversion,

followed by P̂ + 1 matrix-vector multiplications. In addition,

each scatter point estimate demands for a single 3× 3 matrix

inversion plus three matrix-vector multiplications. Finally,

estimation of p̂R requires O(P̂ ) matrix-vector multiplications.

V. NUMERICAL RESULTS

A. Simulation Setup

We consider a carrier frequency of 28 GHz, corresponding

to λ = 1.07 cm, a total bandwidth of 20 MHz with 100

subcarriers, of which 10 equally spaced subcarriers are used

for pilots. A cyclic prefix of length 7 is used. 64 pilot OFDM

symbols are sent, for a total duration of 3.52 ms. We set the

pilots as Si = I, ∀i. The surface reflection coefficient Γ is not

specified, as we only use diffuse paths.

As shown in Fig. 3, the transmitter and receiver are located

at pT = [20, 0, 8]T and pR = [0, 0, 2]T, respectively, and are

surrounded by two surfaces: one building facade and a ground

surface. The building facade’s center is at [10, 10, 5]T with

facade length of 20 m, facade height of 10 m, and orientation

[0, 1, 0]T (x-z plane). The ground surface is at [10, 0, 0]T

with orientation [0, 0, 1]T (reflected from ground, x-y plane),

surface dimension is 20×20m. Both surfaces are described as

rough surfaces without specular component, using Lk = 100
scatter points each. Furthermore, K = 2 is assumed for the

following simulations and all the resolved paths are utilized

for positioning and mapping, unless stated otherwise.

The transmitter is equipped with a uniform rectangular array

(URA) with (8 × 8) elements and placed along y-z plane. In

both directions, the inter-element spacing is 0.5λ. The origin

is the array reference point. The receiver is also equipped with

a URA with (8× 8) elements and placed along y-z plane.

The Matlab package Tensorlab [46] is utilized for tensor

computation, which provides several core algorithms for the

computation of the CP decomposition including optimization-

based methods such as alternating least squares (ALS), un-

constrained nonlinear optimization and nonlinear least squares

(NLS). By default, NLS is used for the CP decomposition. It

can handle the partially distinct channel parameter scenarios,

which was also validated in [47].
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Fig. 3. Simulation setup for channel estimation and positioning performance
evaluation with 2 clusters of different orientation and sizes.

TABLE I
RMSE OF CLUSTER MEAN (TOP) AND SPREAD (BOTTOM) - DENSE

COMPONENTS, FOR VARIOUS LEVELS OF SNR

RMSE SNR in dB

S = 0.8, αR = 10 -10 0 10

Delay (meter) 0.3216 0.2025 0.1587
Azimuth AOD (degree) 2.8856 2.7250 2.1715
Elevation AOD (degree) 2.6749 2.2290 3.0189
Azimuth AOA (degree) 2.0951 1.4472 1.4027
Elevation AOA (degree) 2.4903 1.5805 1.2407

RMSE SNR in dB

S = 0.8, αR = 10 -10 0 10

Delay (meter) 0.7788 0.5835 0.4250
Azimuth AOD (degree) 9.4723 6.3123 3.5078
Elevation AOD (degree) 7.4976 3.6565 2.0295
Azimuth AOA (degree) 4.0005 2.9378 1.4150
Elevation AOA (degree) 4.2699 2.1960 1.0063

B. Channel Estimation

We compare the capability of the proposed algorithm to

estimate the cluster mean and spread of the multipath param-

eters using the root-mean-square error (RMSE) for various

levels of signal-to-noise ratio (SNR), defined as SNR =
‖Y −N ‖2F /‖N ‖2F , where ‖·‖F denotes the tensor Frobenius

norm [34], and S and αR are shown in Tables I–III. The results

are obtained for 100 independent runs.

From Table I (impact of SNR), we observe that the es-

timation performance improves with SNR. The AOD has a

degradation at high SNR, which we attribute to an outlier.

The cluster spread estimation also improves with higher SNR.

In Table II (impact of S), we note that when the S parameters

increases (more diffuse scattering power), the RMSE perfor-

mance of the cluster mean and cluster spread both improve.

This can be ascribed to more power being available per cluster

for a larger value of S. Finally, Table III (impact of αR) reveals

that when αR increases (more smooth surface), the RMSE

performance of the cluster mean improves, since the paths are

more closely clustered around the mean. The cluster spread

RMSE improves somewhat, though the spread itself depends

on αR.
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TABLE II
RMSE OF CLUSTER MEAN (TOP) AND SPREAD (BOTTOM) - DENSE

COMPONENTS, FOR VARIOUS LEVELS OF SCATTER PARAMETER

RMSE Scatter Parameter S

SNR = 10 dB, αR = 10 0.4 0.6 0.8

Delay (meter) 0.6774 0.2033 0.1587
Azimuth AOD (degree) 2.7009 2.4131 2.1715
Elevation AOD (degree) 2.8291 3.0790 3.0189
Azimuth AOA (degree) 2.8190 1.5043 1.4027
Elevation AOA (degree) 1.9688 1.2875 1.2407

RMSE Scatter Parameter S

SNR = 10 dB, αR = 10 0.4 0.6 0.8

Delay (meter) 0.5078 0.4553 0.4250
Azimuth AOD (degree) 4.5017 4.9590 4.6179
Elevation AOD (degree) 2.2973 2.3543 2.1723
Azimuth AOA (degree) 4.1994 1.7163 1.7888
Elevation AOA (degree) 1.2629 1.0384 1.0303

TABLE III
RMSE OF CLUSTER MEAN (TOP) AND SPREAD (BOTTOM) - DENSE

COMPONENTS, FOR VARIOUS LEVELS OF ROUGHNESS PARAMETER

RMSE Roughness αR

SNR = 10 dB, S = 0.8 0 10 20

Delay (meter) 0.4377 0.1587 0.1224
Azimuth AOD (degree) 6.4553 2.1715 1.8097
Elevation AOD (degree) 3.1283 3.0189 2.5473
Azimuth AOA (degree) 5.2559 1.4027 0.9615
Elevation AOA (degree) 1.8629 1.2407 1.1137

RMSE Roughness αR

SNR = 10 dB, S = 0.8 0 10 20

Delay (meter) 1.0373 0.4250 0.2694
Azimuth AOD (degree) 10.8263 4.6179 3.5078
Elevation AOD (degree) 2.7932 2.1723 2.0295
Azimuth AOA (degree) 6.0143 1.7888 1.4150
Elevation AOA (degree) 1.5066 1.0303 1.0063

C. Positioning and Mapping in LOS

The setup is the same as in the Fig. 3, but now it also

includes the LOS path. Fig. 4 shows the positioning RMSE

performance for different SNR, αR and S, with weights

ζk = 1. We observe that thanks to the antenna gains, sub-meter

positioning accuracy is achieved when the SNR > −10 dB.

Lower RMSE is achieved with larger scattering parameter S.

Furthermore, positioning accuracy is sensitive to αR, with

more rough surfaces leading to larger RMSE, especially at

lower SNRs.

Fig. 5 shows the positioning performance of utilizing the

LOS path and LOS path plus four different combinations of

the diffuse paths, which is given by:

1) Mean path for each cluster (Mean)

2) Shortest delay path for each cluster (Shortest Path)

3) All paths for each cluster (All Paths)

4) First 2 paths for each cluster (First 2 Paths).

Compared with the other four algorithms, larger positioning

error occurs for the Mean algorithm. That is because just

compute the means is not a good approximation of the specular

path. Lowest RMSE is achieved by only utilizing the LOS

path. That is because when the LOS path is present, the

NLOS paths mainly create disturbances, with more diffuse

paths leading to larger RMSE.
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Fig. 4. Positioning in LOS utilizing all the resolved paths: RMSE versus
SNR (top), roughness αR (middle) and scattering parameter S (bottom).
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Fig. 6. Mapping in LOS utilizing all the resolved paths: RMSE of estimated
center and spread of the reflective surfaces versus SNR, αR = 10 and S =
0.6.
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Fig. 7. Mapping in LOS utilizing all the resolved paths: RMSE of estimated
center and spread of the reflective surfaces versus roughness parameter S =
0.6 and SNR = 10 dB.

The mapping performance is evaluated in terms of the

accuracy of the estimated center and spread of the reflective

surfaces (clusters). Note that mapping is performed jointly

with positioning. The center and spread are defined as the

mean and standard deviation of all the estimated p̂k within

the same cluster. RMSE of estimated center and spread of

the reflective surfaces versus SNR are shown in Fig. 6. As we

expected, high SNR is helpful for center and spread estimation.

Mapping performance versus scattering parameters are shown

in Fig. 7–8. Similar to the positioning performance in Fig. 4,

lower RMSE is achieved for larger αR and larger S.

The actual and estimated reflective surfaces projected onto

the x-y plane and x-z plane are shown in Fig. 9. There is

a good match between the actual and the estimated surface,

since both the SNR and αR value are large.
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Fig. 8. Mapping in LOS utilizing all the resolved paths: RMSE of estimated
center and spread of the reflective surfaces versus scattering parameter S,
αR = 10 and SNR = 10 dB.

Fig. 9. Mapping in LOS utilizing all the resolved paths: Comparison of the
actual and estimated reflective surfaces, projection onto the x-y plane (left)
and x-z plane (right), SNR = 10 dB, αR = 10 and S = 0.6.

D. Positioning and Mapping in NLOS

We now move on to the more challenging scenario without

LOS. The system setup is the one shown in Fig. 3 and all

the resolved paths are utilized for positioning and mapping.

Figure 10 shows the positioning RMSE performance for

different SNR and αR. Similar to LOS scenarios, high SNR

is also helpful for positioning in NLOS. Another observation

is that lower RMSE is achieved by increasing the roughness

parameter αR. Overall, performance is somewhat worse than

in LOS.

Fig. 11 shows the positioning performance in NLOS sce-

narios. The diffuse paths are helpful to improve the position

accuracy. Lower positioning error is achieved by utilizing more

diffuse paths and best performance is achieved by using all the

estimated diffuse paths. Furthermore, positioning accuracy is

sensitive to αR, with more rough surfaces leading to larger

RMSE.

To assess the mapping performance, the RMSE of estimated
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center and spread of the reflective surfaces versus SNR in

NLOS are shown in Fig. 12. Note again that mapping is

performed jointly with positioning, so the receiver’s posi-

tion is not known. From Fig. 12, we observe that there is

a performance penalty compared to the LOS case, but at

sufficiently high SNR, accurate center and spread estimates

can be obtained.

The actual and estimated reflective surfaces projected onto

the x-y plane and x-z plane in NLOS are shown in Fig. 13.

The mapping error is slightly larger when compared with the

LOS scenarios, because the estimated receiver position is more

accurate with LOS.

VI. CONCLUSION

We have studied the problem of channel estimation of

mmWave channels with diffuse scattering components, com-

bined with positioning and mapping. We proposed a novel
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Fig. 12. Mapping in NLOS utilizing all the resolved paths: RMSE of
estimated center and spread of the reflective surfaces versus SNR in NLOS,
αR = 10 and S = 0.6.

Fig. 13. Mapping in NLOS utilizing all the resolved paths: Comparison of
the actual and estimated reflective surfaces in NLOS, projection onto the x-y
plane (left) and x-z plane (right), SNR = −10 dB, αR = 0 and S = 0.6.

tensor-based method for estimation of the mmWave channel

parameters in a non-parametric form. Reflective surfaces with

different roughness and scattering parameters are considered.

The method is able to accurately estimate the channel, center

and spread of the reflective surfaces, even in the absence

of a specular component. We also propose a low complex-

ity, search-free method for localization and mapping based

on these channel estimates, and demonstrate that accurate

localization of a user and mapping of the environment is

possible, even when the LOS path is blocked and surfaces

are characterized by only diffuse scattering.

APPENDIX A

GEOMETRIC RELATIONS

The geometric relations between the location parameters are

as follows, with pT = [xT, yT, zT]
T, pR = [xR, yR, zR]

T,

pkl = [xkl, ykl, zkl]
T:

• TOA: τkl = ‖pkl − pT‖/c+ ‖pkl − pR‖/c
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• AOA azimuth: ϑkl = arctan 2 (ykl − yR, xkl − xR) + π.

• AOA elevation: ϕkl = arccos ((zkl − zR)/‖pkl − pR‖).
• AOD azimuth: θkl = arctan 2 (ykl − yT, xkl − xT).
• AOD elevation: φkl=arccos ((zkl − zT)/‖pkl − pT‖).

APPENDIX B

GENERATION OF SCATTER POINTS AND THEIR COMPLEX

GAINS

Clearly, pDM(p) = 0 for any p not lying on a surface.

To populate the k-th rough surface Sk with scatter points

{pkl} ⊆ Sk, 0 < l ≤ Lk, we decompose pDM(p) =
∑

k pDM,k(p) where pDM,k(p) denotes the JADPS associated

to k. The JADPS is calculated as function of pT, pR, surface

location, as well as S and αR [30].

To generate the scatter points as well as the complex gains,

we consider two methods:

• Rejection sampling: We generate the scatter points pkl

such that their density on Sk is proportional to pDM,k(p).

Then, pDM,k(p) can be approximated as
∑Lk

l=1 |γkl|
2δ(p−

pkl) with Dirac delta δ and pkl resulting from rejection

sampling [39]. The corresponding γkl is set equal magni-

tude |γkl| =
√

1
Lk

Pk,total, Pk,total =
∫

Sk
pDM,k(p)dxdydz

and random phase, uniform over [0, 2π). This procedure

allows to describe the JADPS with a rather small Lk.

• Uniform sampling: As an alternative, pkl may be dis-

tributed uniformly onto Sk. The corresponding γkl are

sampled from a zero-mean Normal distribution with

variance pDM,k(p), i.e., γkl has a zero-mean, complex-

valued, circularly symmetric gain γkl [5] with E[|γkl|
2] =

pDM(pkl) ≡ pDM(θkl, φkl, ϑkl, ϕkl, τkl).

For large surfaces, the large dynamic of the JADPS results in

almost zero gain of many pkl in the second method, while the

first method omits regions in Sk with small JADPS. Hence, we

propose the use of the first method and have used in throughout

this current work.
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