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The 5GCHAMPION Europe–Korea collaborative

project provides the first fully-integrated and

operational 5G prototype in 2018, in conjunction with

the 2018 PyeongChang Winter Olympic Games. The

corresponding technological advances comprise both

an evolution and optimization of existing technological

solutions and disruptive new features, which

substantially outpace previous generations of

technology. In this article, we focus on a subset of three

disruptive technological solutions developed and

experimented on by 5GCHAMPION during the 2018

PyeongChang Olympic Games: high speed

communications, direct satellite-user equipment

communications, and post-sale evolution of wireless

equipment through software reconfiguration.

Evaluating effectiveness and performing trials for

these key 5G features permit us to learn about the

actual maturity of 5G technology prototyping and the

potential of new 5G services for vertical markets and

end user enhanced experience two years before the

launch of large-scale 5G services.

Keywords: 5G, Beamforming, mmWave, Satellite,

Software reconfiguration.

I. Introduction

During the past few years, a significant amount of

progress has been made towards the definition and

development of 5th Generation (5G) mobile network

technology, whose mass deployment is targeted in 2020

[1]–[4]. The key novelty of 5G is the implementation of

heterogeneous communication systems to support

emerging applications requiring very high data-rate

communications, ultra-low latency, and high reliability

with a large number of connected devices [5], and to deal

with the high quantity of uplink traffic due to the

offloading of large amounts of data to the cloud [6].

Today, the 5G community has acknowledged that the key

building blocks of 5G networks are millimeter-wave

(mmW) backhauling, fronthauling or access, evolved

packet core with advanced Network Functions

Virtualisation/Software Defined Networking (NFV/SDN),

and reconfigurable waveforms. Once these technologies

are commercially available and well-integrated into a

pervasive mobile network, 5G will become the enabler of

a large variety of use-cases [7]–[10]. The aim of the

5GCHAMPION (5G Communication with a Heterogeneous,

Agile Mobile network in the PyeongChang wInter Olympic

Manuscript received Oct. 13, 2017; revised Dec. 8, 2017; accepted Dec. 18, 2017.

Emilio Calvanese Strinati (emilio.calvanese-strinati@cea.fr) and Antonio

Clemente (antonio.clemente@cea.fr) are with the CEA, Grenoble, France.

Markus Mueck (markus.dominik.mueck@intel.com) is with INTEL Deutschland

GmbH, Munich, Germany.

Junhyeong Kim (jhkim41jf@etri.re.kr), Gosan Noh (gsnoh@etri.re.kr), Heesang

Chung (hschung@etri.re.kr), Ilgyu Kim (igkim@etri.re.kr), Yeongjin Kim

(yjkim@etri.re.kr), and Hyun Kyu Chung (hkchung@etri.re.kr) are with the 5G

Giga Service Research Laboratory, ETRI, Daejeon, Rep. of Korea. Junhyeong Kim

is also with the School of Electrical Engineering, KAIST, Daejeon, Rep. of Korea.

Taesang Choi (choits@etri.re.kr) is with the Hyper-Connected Communication

Research Laboratory, ETRI, Daejeon, Rep. of Korea.

Giuseppe Destino (corresponding author, giuseppe.destino@ee.oulu.fi) and Aarno

Pärssinen (aarno.parssinen@oulu.fi) are with the Center for Wireless

Communications, University of Oulu, Finland.

Nicolas Chuberre (nicolas.chuberre@thalesaleniaspace.com), Benoit Vautherin

(benoit.vautherin@thalesaleniaspace.com), Thibault Deleu (thibault.deleu@thalesale

niaspace.com), and Mathieu Gineste (Mathieu.Gineste@thalesaleniaspace.com) are

with the Thales Alenia Space, France.

Aki Korvala (aki.p.korvala@nokia.com) is with the Nokia, Oulu, Finland.

This is an Open Access article distributed under the term of Korea Open

Government License (KOGL) Type 4: Source Indication + Commercial Use

Prohibition + Change Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).

https://doi.org/10.4218/etrij.2017-0237 © 2018 pISSN: 1225-6463, eISSN: 2233-7326

10ETRI Journal, Volume 40, Number 1, February 2018

http://onlinelibrary.wiley.com/journal/10.4218/(ISSN)2233-7326

http://orcid.org/0000-0002-0944-5378
http://orcid.org/0000-0002-0944-5378
http://orcid.org/0000-0002-0944-5378
http://orcid.org/0000-0003-2831-811X
http://orcid.org/0000-0003-2831-811X
http://orcid.org/0000-0003-2831-811X
http://orcid.org/0000-0002-7463-0115
http://orcid.org/0000-0002-7463-0115
http://orcid.org/0000-0002-7463-0115
http://www.kogl.or.kr/info/licenseTypeEn.do
http://onlinelibrary.wiley.com/journal/10.4218/(ISSN)2233-7326


competitioN) project is to deliver, at the Winter Olympic

Games in Korea in 2018, the very first proof-of-concept

(PoC) of a 5G system covering (i) enhanced mobile

broadband with application scenarios such as shared

virtual-reality and ultra-high definition video streaming,

(ii) time-critical use-cases with application scenarios such

as virtual-reality games and motion control, and (iii)

moving hot-spots with application scenarios such as

content sharing, video streaming, and virtual-reality in a

moving bus.

Additionally, stand-alone 5G technology innovations

will be developed in Europe for massive IoT

applications and connectivity via satellite links below

6 GHz, seamless indoor–outdoor positioning, and ultra-

high data-rate indoor connectivity; in Korea, high-user

mobility in high-speed train scenarios will be also

investigated.

The 5GCHAMPION project will showcase the 5G

application experience for two users connected to two

different 5G networks, one in Europe and one in Korea,

and: (i) being served by either static or mobile mmW

links; (ii) sharing a latency-critical service, for example,

remote gaming or remote control using VR; and (iii)

demanding broadband services, for instance, shared VR

content. Compared to some of the most relevant 5G

demonstrations that have been publicly announced by KT,

SKT and LG for 2018, the 5GCHAMPION project takes a

unique place in the overall 5G demonstration landscape by

piloting, for the first, time trials on applications that cover

IoT systems and broadband, ultra-high data rate, and

interactive-VR or broadband content delivery in a moving

bus.

The rest of the paper is organized as follows. In

Section II, an overview on the overall architecture and

use-cases of 5GCHAMPION is discussed, followed by

three sections detailing key project technologies:

(Section III) high-speed communication and (Section IV)

direct satellite–user equipment communication. Finally,

conclusions are drawn in Section V.

II. Overall Architecture of 5GCHAMPION and
Use-Cases

The overall 5GCHAMPION system architecture is

presented in Fig. 1. Two different radio access networks

including high-capacity wireless backhauling, operating

in the frequency bands 26.5 GHz to 27.3 GHz (Europe)

and 25.14 GHz to 26.14 GHz (Korea), are interconnected

by a virtualized mobile core network enabled by advanced

Software Defined Networking (SDN) and Network

Function Virtualizatoin (NFV). The 5G satellite

communication component below 6 GHz is also included

to investigate, for the first time, the possibility of using the

5G waveform for massive IoT applications.

The mmW radio interfaces use fixed beam- or analog

beam-forming antenna arrays and require multiple access

and advanced waveform technologies combined with

advances in coding, modulation algorithms, and baseband

computation. A 10 Gb/s fiber or Ethernet connections are

used on interfaces.

The core network (CN) is based on a virtualized

architecture, which will provide on-demand resource

processing, storage, and network capacity wherever needed.

Technologies to facilitate more flexibility for the creation

of new services and applications, and the distributed and

centralized control plane.

This set-up enables 5GCHAMPION to mainly address

the following seven use-cases:

Use-case 1: stationary multi-Radio Access Technology

(RAT) hot-spot connected via mmW backhaul to 5GTN;

Use-case 2: ultra-high data rate over 5G downlink using

mmW;

Use-case 3: high-speed train communications;

Use-case 4: indoor–outdoor positioning;

Unified 5G air
interface < 6 GHz

EU-MANO KR-MANOInternet

EU-RU
26.5 GHz–27.3 GHz

KR-RU
25.14 GHz–26.14 GHz

Giga-Wi-Fi

TE

LTE+

Fig. 1. 5GCHAMPION system architecture.
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Use-case 5: satellite connectivity with 5G IoT devices;

Use-case 6: shared short-latency applications (for example,

multiplayer remote gaming and multi-remote control);

Use-case 7: shared broadband applications.

The key performance indicators (KPI) are specified based on

the 5GPPP use-case requirements [11] (Table 1). Further,

ITU 5G technology requirements [12] are used as criteria to

assess the advances in 5G technology development (Table 2).

More details on each use-case and KPI are presented in [10].

1. 5GCHAMPION Demonstration at the Winter

Olympics

At the Winter Olympics in Korea, the European (EU)

and Korean (KR) 5G wireless backhaul testbeds will be

deployed at the IoT street in the Gangneung Coastal

Cluster (GCC), close to the Olympics venues. The KR

mmW testbed will be used to connect a moving hot-spot

(Fig. 2), whereas the EU mmW testbed will be used for

stationary link connectivity. This testing environment will

serve both use-cases 6 and 7.

More specifically, for use-case 6, we consider

application scenarios with end-to-end latency of no more

than 10 ms, of which 2 ms is the target over-the-air.

Candidate applications are VR on-line gaming and remote

control, where the UEs (for example, motion control for

VR gaming) will interact in the same game, though

connected to different radio access nodes. The low-latency

requirement can be satisfied by maintaining user-plane

functionality in the local (KR) EPC as well as by

designing short radio frames for the mmW link. With

respect to use-case 7, a candidate application scenario is

shared VR content or shared UHD (4 k or 8 k) video-

streaming. Two UEs (for example, virtual glasses) will be

connected to two different radio access nodes and share

the same content, which is provided either by a local cloud

service in Korea or from a data-source in Finland. UE

interaction is not expected, thus focus is on the data-rate

and perceived user experience. End-to-end latency can

range between 50 ms and 300 ms (maximum latency if

the source is in Finland), based on the content source

location. More specifically, 2.5 Gb/s data-rate over the

mmW link is targeted, as well as a 100 Mb/s user

experience in a stationary or moving hot-spot.

2. 5GCHAMPION Backhauling Architecture at

28 GHz

Based on the analysis of Radio Access Technique Group

(RATG) 1 (IMT-2000) and RATG 2 (IMT-Advanced)’s

Table 1. Mapping of the 5GCHAMPION use-cases to 5G-PPP

requirements.

KPI Range

U
se
-c
as
e
1

U
se
-c
as
e
2

U
se
-c
as
e
3

U
se
-c
as
e
4

U
se
-c
as
e
5

U
se
-c
as
e
6

U
se
-c
as
e
7

Device
High: ≥ 10,000 devices

per km2 9

Density

Medium: 1,000–10,000

devices per km2 9 9 9

Low: < 1,000 devices per km2
9 9

Mobility

No: Static users 9 9

Low: Pedestrians

(0 km/h–3 km/h)
9 9 9

Medium: Slow moving

(3 km/h–50 km/h)
9 9

High: Fast moving

(> 50 km/h)
9 9 9 9

Infra-

structure

Limited: No. infrastructure

available or only macro

cell coverage

9 9 9

Medium density: Small

amount of small cells
9

Highly available infrastructure:

Big number of small cells

available

9 9

Traffic type

Continuous 9 9

Bursty 9

Event driven

Periodic 9

All types 9 9 9 9

User data

rate

Very high data rate: ≥ 1 Gbit/s 9 9

High: 100 Mbps–1 Gbit/s 9 9

Medium: 50 Mbps–100 Mbps 9 9

Low: < 50 Mbps 9 9 9

Latency

High: > 50 ms 9 9 9 9

Medium: 10 ms–50 ms 9

Low: 1 ms–10 ms 9 9

Reliability

Low: < 95%

Medium: 95%–99% 9 9 9 9 9

High: > 99% 9

Availability

(related to

coverage)

Low: < 95% 9

Medium: 95%–99% 9 9 9 9 9 9

High: > 99%

5G service

type,

comprising

Extreme Mobile Broadband is

the key service requirement.
9 9 9

uMTC, where the reliability is

the key service requirement.
9 9 9

The massive connectivity is the

key service requirement.
9 9 9 9
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requirements considering market demand, technological

progress, and building of the network, the ITU-R forecasts

that between 1,340 MHz and 1,960 MHz of the

spectrum will be required by 2020 [13]. Therefore, various

frequency bands, including those above 6 GHz, are being

reviewed for 5G communications. For instance, Korea

officially proposed, as a WRC-19 agenda item, that

frequency ranges between 6 GHz and 100 GHz should be

considered for IMT identification during the 4th meeting

of the APT Conference Preparatory Group for WRC-15

(APG15-2). Note also that the FCC has aggressively

addressed the future spectrum need in the US through its

“Spectrum Frontier” 5G initiative, which adds, in total,

10.85 GHz of spectrum bands above 24 GHz for

applications such as mobile radio services (including

27.5 GHz to 28.35 GHz, 37 GHz to 38.6 GHz, 38.6 GHz

to 40 GHz, and 64 GHz to 71 GHz). Note in particular,

that at the World Radio Conference 2015, there was no

agreement on the 28 GHz band, which is likely not to be

available world-wide. Still, the US has included the band

in its nation-wide ruling, and we expect that it will also

become available in Korea. To the best of our knowledge,

Korea proposed the 24.25 GHz to 29.5 GHz band to the

ITU-R. Europe is expected to follow the World Radio

Conference 2019 agenda. Today, the frequency bands

around 28 GHz are not allocated for mobile services (MS)

in Europe. However, due to the strong opening from

other countries (US, Korea, and Japan), the European

Commission (EC) recommends the 24.25 GHz to

27.5 GHz band as a pioneer band for 5G above 24 GHz

[14]. However, a request for harmonization measures was

also put forth, especially for the Earth Exploration Satellite

Service (EES) and Space Research Service (SRS).

Two electronically-steerable antennas, an electronically

steerable transmitarray (evolution of the antenna presented

in [15]) and a phased array for MIMO beamforming,

have been designed and fabricated in Europe. Both

architectures are presented in Fig. 3, and can be used to

implement backhaul links with beamforming capabilities.

The 16-element phased array is connected on the

European backhaul link based on a mmW radio

transceiver designed for time-division–duplex (TDD)

communication, where the transmission and receiving

chain are not simultaneously utilized, but separated

utilized through a switch [16]. Beamforming functionality

Table 2. Mapping of ITU technology requirements to

5GCHAMPION use-cases.

KPI ITU target
5GCHAMPION

applicability

Bandwidth Minimum 100 MHz
Use-case 1, 2, 6,

and 7

Peak data rate
DL: 20 Gbit/s;

UL: 10 Gbit/s
Use-case 2

Peak spectral

efficiency

DL: 30 bps/Hz;

UL 15 bps/Hz
Use-case 2

Cell spectral

efficiency
3x IMT-A Use-case 1, 6 and 7

5th %-tile user

spectral efficiency
3x IMT-A Use-case 1, 6 and 7

User experienced

data rate
No target KPI Use-case 1 and 7

Area traffic capacity No target KPI Use-case 1

Latency

(control plane)
10 ms Use-case 1, 6 and 7

Latency (user plane)

eMBB: 4 ms UL,

4 ms DL

URLLC: 0.5 ms UL,

0.5 ms DL

Use-case 1, 6 and 7

Not applicable

Latency for infreq.

small packets

< 10 s in UL and

MCL = 164 dB
Not applicable

Mobility interruption

time
0 ms Use-case 4, 6 and 7

Reliability

General URRLX:

(1 – 10 – 5)/1 ms

eV2X: (1 – 10 – 5)/

(2 – 10) ms

Not applicable

Use case 6

Connectivity density
1 million devices/

km2 Use-case 4

UE battery life Beyond 19 years Use-case 4

Coverage
MCL = 164 dB,

for 160 bps
Use-case 6, 7

Extreme coverage

MCL = 140 dB

@2 Mbps/60 kbps

DL/UL 143 dB

@1 M/30 k

Use-case 6, 7

Mobility speed Up to 500 km/h Use-case 5

Network energy

efficiency

Efficient data

delivery and granular

DTX/DRX

Not applicable

UE energy efficiency

Efficient data

delivery and granular

DTX/DRX

Not applicable

Fig. 2. Experimental moving hot-spot that will be used for
demonstration at the Winter Olympics.
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is implemented with digitally controlled phase-shifters.

The Korean backhaul link developed to show a Gigabits-

per-second moving hot-spot is based on a preexisting

architecture [17].

3. 5GCHAMPION Core Network Architecture Based

on SDN/NFV/MANO

The CN architecture has been designed to support CN

functionalities and agile management [18]. Specifically,

the CN functionality is realized by leveraging SDN and

NFV to facilitate the dynamic provisioning of CN

functions with the support MANO functionality. By using

SDN capabilities, dynamic control of traffic flow can be

performed, redirecting the traffic to gateways, according to

workload. Simultaneously, the introduction of NFV permits

the separation of service functionalities from the capacity-

constrained specific network entities and allows dynamic

instantiation in commodities and powerful servers. We

implemented such CN and MANO functions as a group of

SDN applications for 5G. Some example applications are

base station, backhaul, mobility management, performance

monitoring, access, and secure service delivery

applications. These applications are orchestrated via the

controller northbound API.

The main CN functions are designed and

implemented in the form of virtual functions, namely,

vEPC (virtual Evolved Packet Core). Both the EU and

KR sides provide their own implementation of vEPCs

based on this architecture. They are described as

follows.

A. European vEPC Architecture (5GTN)

The EU vEPC consists of the following VNFs:

• A Cloud Mobile Gateway (CMG), which provides the

SP-GW, Gateway GPRS Support Node (GGSN) and

Traffic Detention Functions (TDFs), evolved packet data

gateway (ePDG), and trusted wireless access gateway

(TWAG).

• A Cloud Mobility Manager (CMM), providing the

mobility management entity (MME), and SGSN

functions.

• A Dynamic Services Controller (DSC), built on the

patented Agile Rules Technology (ART) rules engine,

provides the Policy and Charging Rules Function

(PCRF) and wireline Radius/Change of Authorization.

• The Service Aware Manager (SAM) provides end-to-

end network management visibility across the entire

mobile network.

To support the scalability required to meet the expected

5G and IoT service requirements, packet core VNFs

provide three key design innovations:

• Packet core VNFs are decomposed into separate control

and data plane virtual machine (VM) instances. This

facilitates a distributed architecture, where data plane

resources can be deployed in edge data centers closer to

the device, while control plane resources can be

centralized.

• State-efficient VNF processing, which unpins the

subscriber/device state information from the VMs,

freeing up the underlying computational resources, to be

reused to process other subscribers/devices.

• Remote cloud database, which synchronizes the

subscriber/device state information into a real-time data

store.

B. Korean vEPC Architecture

Our architectural decision for 5G is to distribute mobile

core functions to the edge nodes. The 5G core is generally

divided into 5G Core UP (User Plane), in charge of bearer

delivery, and 5G Core CP (Control Plane), in charge of

signaling and control of the 5G core network. The key CN

architectural design principle is a centralized CP with

distributed UP over the edge nodes.

If the CN where bearers are terminated is located closer

to cell sites, backhaul traffic will significantly decrease,

facilitating cost reduction for continual backhaul

enhancement. The architecture of Korean vEPC is realized

Steering logic TransmitarraySteering logic

(a)

(b)

Transmitarray

Fig. 3. 28 GHz antennas developed in the 5GCHAMPION

project. (a) Electronically steerable transmitarray antenna
and (b) phased array for MIMO beamforming.
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as HSvEPC (Highly Scalable virtual Evolved Packet

Core) [12].

C. MANO Architecture

The EU MANO architecture has two management

entities:

• VNF manager – This is in charge of instantiating and

controlling the EPC functions. It is responsible for

interacting with, chaining, and handling the lifecycle

(instantiation, maintenance, and so on) of VNFs. It is in

charge of the operation and configuration of VNFs

through the operations support system (OSS)/base

station subsystem (BSS). It will handle multi-functional

EPC components like the MME, HSS (Home Subscriber

Server), and so on, as well as the specific functionality

VNFs like Firewalls, Deep Packet Inspectors, and so on.

• Infrastructure manager – This entity interacts with (or

incorporates the capability of) the SDN controller in

the service stratum when deploying the VNFs for

configuring the computing and storage resources for the

VNF of interest. It also supports the networking part in

attaching the VNFs to the border of the underlying

transport network, to make them reachable from outside

the data center. This is only for the service layer

component. It also has to decide a path for the transport

layer VNFs.

The KR MANO architecture is also based on NFV and

SDN components. The management and orchestration

architecture is comprised three different entities — the

NFV Orchestrator (NFVO), VNF Manager (VNFM), and

Virtual Infrastructure Manager (VIM).

The NFV Orchestrator is responsible for managing

functions such as network service life-cycle management

and overall resource management. Service management or

orchestration deals with the creation and end-to-end

management of the services by composing different

VNFs. Resource management helps ensure that the

NFV-infrastructure resources are abstracted cleanly

(independent of VIM) to support the services that access

these resources.

The VNF Manager oversees the lifecycle (typically

involves provisioning, scaling, and terminating)

management of instances of VNF. In this case, each VNF is

associated with a VNFM that will manage that particular

VNF’s lifecycle. A VNFM may manage multiple instances

of the same type of VNF or different types of VNFs.

The VIM controls and manages the NFV infrastructure

(NFVI) compute, storage, and network resources. The

VIM-component has received significant attention and

various open-source solutions such as OpenStack, and has

been used to realize the virtualized infrastructure

management functionality of MANO.

Further information on CN and MANO architecture,

functionality, implementation, and testing details are

described in [19].

III. Key Enabling Technology: Architecture of
High-Speed Train Communication System

The design of a high-speed train communications system

in 5GCHAMPION, namely the mobile hotspot network

(MHN)-enhancement (MHN-E) system, is one of the main

tasks in the project. In 3GPP, a deployment scenario

related to a high-speed train has been also introduced

and studied since 3GPP release 14 [18]. The high-speed

deployment scenario focuses on continuous coverage

along the track in high-speed trains, aimed at providing

consistent user experience even with very high mobility of

up to 500 km/h. It includes both sub-6 GHz and 30-GHz

carrier frequencies for the link between base station and

relay installed on the train. The provision of a big data

pipeline in 5GCHAMPION is in line with the 3GPP high-

speed deployment scenario, as shown in Fig. 4. A chunk

of bandwidth in the 24 GHz to 29 GHz band can be

selected as moving wireless backhaul (MWB) frequencies

between radio units (RUs) and terminal equipment (TE). In

the train, passengers can access public Internet through

wireless fidelity (Wi-Fi) access points or small cells

through the TE. Benefits of this two-tier approach are i) to

use a group handover and ii) to make better use of line-of-

sight channels for coverage compared with direct access

from base stations to passengers’ devices. As depicted in

Fig. 4, the network architecture of the MHN-E system

consists of mmWave-based MWB links and on-board

access links (for example, Wi-Fi) inside the train [20].

In the following subsection, the design of the MHN-E

system and several enabling technologies, as well as

analysis on link-level performance of the system, are

presented.

Evolved packet core 
and gateway

DU #d + 1DU #d

RUs RUs RUs RUs

TE #2 TE #1

Millimeter-wave mobile 
wireless backhaul

Core network
(public internet)

Optical fiber

Access link
(inside train)

Single frequency multi-flow (SFMF)

Fig. 4. 5GCHAMPION high speed approach.
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1. Design of MHN-E System

The MHN system was initially designed for providing

TE at speeds of up to 400 km/h with a broadband MWB.

However, in order to meet mobility requirement of

500 km/h, one of the key requirements of IMT-2020, we

conducted a study on the numerology for an MHN-E

system under various numerology sets and 3GPP channel

models [21]. From this study, we observed that in the

case of higher modulation, such as 64-QAM and 256-

QAM, at speeds of up to 500 km/h, numerology sets

with subcarrier spacing greater than or equal to 120 kHz

could achieve reasonable performance. Therefore, we

concluded that the numerology of the MHN system

summarized in the Table 3 can be used for the MHN-E

system.

The radio frequency (RF) design of the MHN-E system

incorporates the following considerations. The configuration

of the RF transmit (TX) and receive (RX) paths are 2TX/

2RX for the RU and 1TX/2RX for the TE, and we employ

8 component carriers (CCs) for carrier aggregation (CA).

For the antenna design, dual linearly-polarized antenna

arrays with 4 9 4 (16 dBi gain) and 6 9 6 (21 dBi gain)

elements are used on transmit and receive antennas,

respectively, to implement digital MIMO [3].

2. Key Enabling Technologies

A. Doppler Mitigation

Due to the very high speed of up to 500 km/h,

along with the use of mmWave frequency bands, the

transceiver experiences a very high Doppler shift/

spread of up to tens of kHz. These highly time-

varying channel characteristics should be considered in

the system design, as follows:

� Use of large subcarrier spacing: In an orthogonal

frequency-division multiplexing (OFDM) system, using

larger subcarrier spacing reduces the symbol duration, thus

preventing inter-carrier interference (ICI) due to the channel

variation during the OFDM symbol duration. Therefore, as

mentioned previously, in the MHN-E system, we employ

the subcarrier spacing of 180 kHz, and its detailed

numerology is given in Table 3.

� Frequent reference signal allocation: As the channel

changes more rapidly, the reference signals for channel

estimation should be allocated more densely in the time-

domain. In the proposed system, the time interval between

two adjacent reference signals is designed to be below the

Nyquist criterion [22].

� Doppler shift estimation and correction: Frequency

offset due to Doppler shift needs to be estimated and

corrected at both downlink and uplink receivers. It is

known that the effect of Doppler shift is more significant

for uplink, double that of downlink, due to the downlink-

locked oscillator [23]. In the MHN-E system, the uplink

frequency offset can be estimated at the range of

�26.67 kHz to 26.67 kHz. The estimated frequency offset

is compensated using automatic frequency control (AFC).

In Fig. 5, the effect of AFC is observed assuming that the

train speed is 500 km/h. We can see that severe phase

rotation and ICI can be compensated by AFC.

B. Multi-Antenna Techniques

We illustrate various multi-antenna techniques for the

high-speed train scenario, which can be used to improve

the spectral efficiency as well as the robustness of the

links between the RUs and TEs. Several multi-antenna

techniques suitable for the high mobility scenario can be

used, as follows:

� Array beamforming: Owing to the characteristics of

the mmWave frequency band, a large number of radiating

elements can be packed into a small-form factor device
Table 3. Numerology of MHN/MHN-E system.

Parameters Value

Subcarrier spacing (kHz) 180

Sampling clock rate (MHz) 184.32

OFDM symbol duration without CP (ls) 5.56

CP duration (ls) 0.69

Number of symbols per TTI 40

TTI duration (ms) 0.25

Frame duration (ms) 10

Number of RBs in frequency domain 50

Number of subcarriers per RB 12

FFT size 1,024
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Fig. 5. Effect of AFC: (a) without AFC and (b) with AFC.
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(that is, tens of radiating elements can be placed within a

few centimeters), facilitating fine beamforming with

narrow and high-gain beams. These narrow beams are

confined to propagate along the track, easily achieving

coverage expansion and interference reduction.

� Spatial diversity techniques: To further improve the

link robustness, we employ spatial diversity techniques both

at the transmitter and receiver. Among the various spatial

diversity techniques, spatial frequency block code (SFBC)

is employed at the transmitter. At the receiver side, the

maximal ratio combining (MRC) technique is used. Up to

two RF chains are used for the spatial diversity techniques

both at the transmitter and receiver, where these two RF

chains are independently connected to the two different sets

of antenna arrays. The two sets of antenna arrays have

orthogonal polarization angles and/or are placed with

enough distance between one another. Polarization-based

multi-antenna schemes are particularly effective in a line-of-

sight (LOS) dominant channel environment.

� Spatial multiplexing techniques: Considering rapid

channel variation due to high-speed characteristics, we

employ an open-loop spatial multiplexing (OLSM)

scheme rather than a closed-loop scheme, requiring

accurate channel state information (CSI) feedback with

strict delay requirements. In addition, up to two spatial

layers are supported, also considering the very high

mobility and limited CSI feedback.

� Distributed antenna techniques: By fully taking

advantage of the MHN-E system architecture, in which two

TEs on the train are spatially separated, as shown in Fig. 4,

the system is capable of supporting a distributed antenna

scheme, called the single frequency multi-flow (SFMF)

transmission scheme, in the system. In this scheme, as

illustrated in Fig. 4, both RU and TE form very sharp

beams, enabling each TE to transmit/receive independent

data to/from its corresponding RU by mitigating inter-RU

interference, which doubles the spectral efficiency.

C. Other Enhancements

Wireless backhaul links in the MHN-E system are

unidirectional, to make better use of the high gains of

beamforming antennas. As carrier frequencies increase,

the free-space path loss becomes larger, and antenna sizes

generally become smaller. Still, high-gain antennas can be

implemented with small sizes, and this can be used to

overcome the high path loss. Since high beamforming

gains are usually accompanied by small beam widths, a

unidirectional link is preferable to obtain good coverages

opted for one dimensional train route.

Figure 6 shows an example of cell power distributions

of two neighboring cells, cell 1 (or RU 1) and cell 2 (or

RU 2), where the antenna gain of both RU and TE

antennas is equal to 22 dBi, and the 3-dB beam width of

both antennas is 8°. We also assumed an antenna height of

2 m and an inter-RU distance of 1 km.

As a train runs from cell 1 to cell 2, TE needs to

handover from cell 1 to cell 2. For the purpose of

handover, the TE needs to carry out neighbor cell search

functionality periodically, listing potential target cells.

However, in the unidirectional network, neighbor cell

searching is problematic, since the serving cell power is

much higher than the neighbor cell power. This means that

it is very difficult to obtain cell information and timing

synchronization of a target cell for handover, until TE

passes by the serving RU, and after the TE passes by

serving RU, it will lose its connection to the serving cell,

causing communication interruption, since the power of

the serving cell drastically drops in a very short time, as

shown in Fig. 6. To tackle this problem, we proposed a

new frame structure in [20], which is one of the major

enhancements of the MHN-E system compared with the

previous MHN system from a physical layer point of

view. The new frame structure not only provides a viable

solution to the problem, but also supports CA, allowing

the aggregation of a maximum of eight CCs, to attain a

total transmission bandwidth of up to 1 GHz [20]. In the

frame structure, three different cell types are defined,

which are the primary cell (PCell), secondary cell (SCell),

and tertiary cell (TCell), and the first two CCs can be

configured by either PCell or SCell, depending on the

location of RU, so that the serving cell and target cell

always have different locations of PCell and SCell.

Subsequently, since the synchronization signal and

broadcast channel containing cell information are

designed to be transmitted on PCell, by puncturing the

corresponding resources in SCell of the serving cell, TE
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Fig. 6. Cell power distribution of two neighboring cells.

17Emilio Calvanese Strinati et al.

http://onlinelibrary.wiley.com/journal/10.4218/(ISSN)2233-7326

http://onlinelibrary.wiley.com/journal/10.4218/(ISSN)2233-7326


can receive the synchronization signal and broadcast

channel of a target cell at the punctured resource location.

Figure 7 illustrates the simulation results of neighbor cell

searching with and without puncturing of frequency-time

resources in SCell, for reception of synchronization signal.

A Rician channel with a K-factor of 10 is assumed in

the simulation. The proposed scheme (with puncturing)

exhibits a signal-to-interference-plus-noise ratio (SINR)

of –28 dB at 10% of the detection error rate (DER).

Compared with a conventional method, a method without

puncturing, the proposed scheme achieves 25-dB gain.

Therefore, it can greatly contribute to handover success

under > 20 dB of serving cell interference by improving

neighbor cell search performance.

3. Link-Level Simulation

To validate the feasibility of the MHN-E system, we

evaluate the link-level performance of downlink,

particularly focusing on the performance of multi-antenna

transmission schemes, including the transmit diversity

(TXD) scheme of the SFBC and OLSM scheme.

A. Simulation Assumptions

The link-level simulation was conducted under the

simulation parameters listed in the Table 4. By varying

the K-factors of Rician fading and cross polarization

discrimination (XPD), we would like to demonstrate the

feasibility of the transmission schemes in various

scenarios, such as rural and tunnel environments, which

are the typical scenarios considered in high-speed train

communications. We assume a multi-clustered channel

with Rician fading, and two different K-factors of 13.3 dB

and 7 dB, which are being considered for performance

evaluation of a high-speed train scenario in 3GPP [18]. In

addition, two different values of XPD, 0 dB and 25 dB,

are taken into account. In the simulation, frequency offset

due to the Doppler effect was compensated at the receiver

using AFC.

B. Simulation Results

The link-level simulation result in Fig. 8 shows that in

the case of the channel with a K-factor of 13.3 dB and

XPD of 25 dB, the system using the 2 9 2 OLSM

transmission scheme is able to achieve better throughput

performance than that of 2 9 2 TXD most of the time.

When the velocity of the train is 100 km/h or 300 km/h,

the system using 64-QAM with 2 9 2 OLSM can achieve

throughput exceeding 9 Gb/s, while a maximum

throughput of 6 Gb/s at the speed of 500 km/h can be

achieved using 16-QAM with 2 9 2 at SNR larger than

30 dB. From this simulation result, we can draw a

conclusion that for a rural environment, where the channel

has a dominant LOS path and large XPD, the OLSM

transmission scheme is preferred, to increase the spectral

efficiency.
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Fig. 7. Detection error rates of neighbor cells.

Table 4. Simulation parameters.

Parameters Value

Channel model
Multi-cluster channel model

with Rician fading

K-factor 0 dB, 25 dB

Carrier frequency 26 GHz

Bandwidth 1 GHz

Code rate 0.8

Transmission scheme 2 9 2 TXD, 2 9 2 OLSM
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However, it is observed in the other simulation result

(shown in Fig. 9), that in the case of the channel with a K-

factor of 7 dB and XPD of 0 dB, only the 2 9 2 TXD

transmission yields reasonable throughput performance,

while the 2 9 2 OLSM scheme is unable to provide

performance gain on spectral efficiency, which means that

for a tunnel environment, where the channel has a weak

LOS path and large multi-path components and XPD, the

TXD transmission scheme is preferred.

4. Field Trial Results

We also present a preliminary result for the field trial

conducted using 5GCHAMPION’s phase one prototype

of the MHN system. It occupies the 25 GHz to

25.5 GHz band and radiates 100 mW of power.

Downlink (and uplink duplexing is based on time-

domain duplexing with a 7-to-1 downlink-to-uplink time

slot ratio. The distance mmWave signals reach inside a

subway tunnel was the main concern during the test.

Two transceivers were placed on separate cars. One of

them had been rolled away from the other along rails. A

computer recorded data throughput periodically during

the movement, over a total distance of 1.1 km.

Figure 10 shows the measured downlink and uplink data

throughputs in the tunnel near Moran station of Seoul

subway line 8. The downlink data throughput was

larger than 1 Gb/s (peak value was 1.25 Gb/s) over

approximately 80% of the route, and it decreased to

200 Mb/s at 1.1 km. These results will be used to design

the next phase prototype of the MHN-E system, which

will be applied at a proof-of-concept demonstration at

the PyeongChang Olympics.

IV. Key Enabling Technology: Direct Satellite–
User Equipment Communications

5G offers a promising opportunity to provide an

integrated satellite/cellular service to 5G user equipment

“as is,” as depicted in Figs. 1 and 11. This can be made

possible by taking advantage of the flexible front ends that

will be implemented in user equipment to operate in a

wide range of frequency bands below 6 GHz (for

example, B65 at 2.1 GHz), and the flexible radio interface

designed to provide narrow band and wide band

communications over extended coverage while optimizing

the UE power consumption.

The seamless access to the satellite, for IoT use-cases,

through a 5G radio interface demonstrator, will be based

on a proprietary flexible and programmable platform and a

tailored channel emulator. A flexible implementation of the

narrow-band IoT radio interface will be investigated with a

special focus on physical layer performance evaluation.

The final objective is to employ Common-off-the-Shelf

(COTS) Narrow-Band Internet-of-Things (NB-IoT)
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devices, in order to facilitate direct communication of a

UE with satellites. From this point of view, we perform a

link budget analysis under the following assumptions:

(i) one to three geostationary satellites to cover the world

between the latitudes of 70° N and 70° S; (ii) Medium

Earth Orbit (MEO) satellites between 6,000 km and

10,000 km altitude, and around 10 to 12 satellites to

ensure worldwide coverage, considering inclined orbits at

45° on two planes and polar orbits on two or three planes;

(iii) Low Earth Orbit (LEO) satellites between 800 km and

2,000 km altitude, considering inclined orbits at around

50°, and polar orbits or near-polar orbits at 89°.

To study the feasibility of the direct UE–satellite

communications use-case, a link budget analysis is

performed considering the following hypotheses. The

system has been dimensioned for narrowband IoT

applications with uplink and downlink data-rates around

1 kb/s (for 3.75 kHz BW) and 100 kb/s in 180 kHz,

respectively. The link-budget obtained considering

minimum propagation margins of 5 dB for clear LOS

operation, a minimum elevation angle of 15°, and

minimum C/(I + Noise) ratio of 10 dB, when the Doppler

effect is pre-compensated and the ratio C/Im and

interferences are included, is summarized in Table 5.

From the UE perspective, the following aspects would

improve the link budget and ensure connectivity to

satellite:

• Instead of having a 0 dB gain in the antenna, by making

use of loop structures, a 3 dB to 4 dB gain can be

realized over a 3 dB beam width of 90° or higher.

• If the form factor of UE is suitable for realizing

circularly polarized antennas, polarization mismatch loss

with respect to the satellite can be minimized.

• Doppler shift (in case of LEO satellites) could be

corrected by integrating a GPS system.

• When TDD is chosen as the multiplexing scheme, duplex

filters that increase insertion loss in the receiver path could

be eliminated, directly improving NF. Simple harmonic

rejection low-pass/notch filters could be employed.

• LNA NF reduction techniques can help in critical link-

budget scenarios.

• Transmit scheme for sporadic applications could be

optimized to achieve longer battery life.

V. Conclusions

Vertical markets and industries have a high expectation

regarding a drastic 5G transformation, owing to the 5G-

enabled technical capabilities available, which can trigger

the development of new, cost-effective products and

services. To satisfy these goals, a flexible, adaptable, and

programmable architecture is required. While there has

been a substantial amount of research at a conceptual level

on this topic conducted by academia, industry, and

standardization bodies such as 3GPP, today, these 5G

concepts need to be put into practice. Today, 5G networks

are reaching maturity from research and innovation, to

prototyping PoC. 5GCHAMPION PoC activities will

demonstrate a subset of three disruptive technological

solutions, which are specifically developed and

experimented on by 5GCHAMPION during the 2018

PyeongChang Olympic Games: high speed

communications, direct satellite-UE communications, and

post-sale evolution of wireless equipment through

software reconfiguration. This unique visible PoC context

is expected to motivate and convince vertical markets, the

industry, and future 5G service providers regarding the

effectiveness and suitability of 5G to new vertical

industries that have not played a major role in legacy

cellular communications. 5GCHAMPION PoC activities

are thus expected to further convince relevant stakeholders

well before commercial mass-market deployment of 5G

technology. It will thus contribute to further broadening

the client base and success of future 5G systems. From

March 2018, videos and detailed documentation material

and videos on 5GCHAMPION PoC will be available at

http://www.5g-champion.eu/.

Acknowledgements

This work was supported by the European Union H2020

Program under grant 723247 (5GCHAMPION) and by the

Institute for Information & Communications Technology

Promotion (IITP) grant funded by Korea Government

(MSIT) B0115-16-0001 (5GCHAMPION).

Table 5. Obtained link-budget for the direct satellite–UE

communications.

Use-case
Achievable C/(I + N)

(dB)

Achievable data-rate

(kb/s)

1,500 km forward �0.5 107.4

1,500 km return �4.6 0.84

800 km forward �0.5 107.4

800 km return �2.4 1.35

10,000 km forward �0.5 107.4

10,000 km return �2.4 1.35

GEO forward �2.4 107.4

GEO return �2.4 1.35
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