$5 S$ rDNA variation and its phylogenetic inference in the genus Leporinus (Characiformes: Anostomidae)

Irani A Ferreira - Claudio Oliveira - Paulo C Venere Pedro M Galetti Jr • Cesar Martins

Received: 20 December 2005 / Accepted: 25 March 2006/Published online: 4 August 2006
© Springer Science+Business Media B.V. 2006

Abstract

S rDNA sequences have proven to be valuable as genetic markers to distinguish closely related species and also in the understanding of the dynamic of repetitive sequences in the genomes. In the aim to contribute to the knowledge of the evolutionary history of Leporinus (Anostomidae) and also to contribute to the understanding of the 5S rDNA sequences organization in the fish genome, analyses of 5 S rDNA sequences were conducted in seven species of this genus. The 5 S rRNA gene sequence was highly conserved among Leporinus species, whereas NTS exhibit high levels of variations related to insertions, deletions, microrepeats, and base substitutions. The phylogenetic analysis of the 5 S rDNA sequences clustered the species into two clades that are in agreement with cytogenetic and morphological data.

Keywords Fish • Leporinus • NTS • Phylogeny • 5S rDNA

[^0]
Introduction

The family Anostomidae is distributed from Central to South America and comprehends 138 described species distributed in 12 genera (Abramites, Anostomoides, Anostomus, Gnathodolus, Laemolyta, Leporellus, Leporinus, Pseudanos, Rhytiodus, Sartor, Schizodon and Synaptolaemus), (Garavello and Britski 2003). Some species of the genera Leporinus and Schizodon are exploited in commercial and subsistence fisheries as an important food item (Garavello and Bristski 2003). Furthermore, relatively small colored species have been appreciated for aquarium activities.

Among anostomid genera, Leporinus contains the highest number of species (87 valid species) (Garavello and Britski 2003). All species cytogenetically studied have 54 biarmed chromosomes and most of the species has only one chromosome pair that harbors the nucleolar organizer regions (NORs). In spite of the conserved chromosome formulae for the genus, there is a conspicuous $\mathrm{ZZ} / \mathrm{ZW}$ sex chromosome system that was described for seven species (L. conirostris, L. elongatus, L. aff. elongatus, L. macrocephalus, L. obtusidens, L. reinhardti and L. trifasciatus), while the remaining species of the genus that have been cytogenetically studied (around 40 species) have no differentiated sex chromosomes (Galetti et al. 1995). On the other hand, a novel ZW sex chromosome system, morphologically differentiated from the typical ZW system previously detected for the seven species, was described for Leporinus sp. (Venere et al. 2004).

Previous data suggest that 5 S rDNA sequences might be of considerable value as genetic markers for identification of species, subspecies, populations, strains, and hybrids in fishes, specially farmed trout and salmon
(Pendás et al. 1995; Carrera et al. 2000). The multigene family that codes for the 5S rRNA consists of a highly conserved coding sequence of 120 base pair (bp), which is separated from each transcriptional unit by a variable non-transcribed spacer (NTS). Variations in the NTS owing to insertions/deletions, minirepeats and pseudogenes have been frequently characterized in several organisms, and these variations might represent valuable markers for population and/or species characterization (Martins and Wasko 2004). In the characiform Leporinus, two classes of 5S rDNA, one consisting of monomeric repeat units around 200 bp (designated 5S rDNA type I) and another one with monomers of 920 bp (designated 5S rDNA type II) were identified (Martins and Galetti 2001). Each of these 5S rDNA classes is characterized by distinct NTS sequences and was clustered in distinct chromosome pairs.

The present study examines the variation of the 5 S rDNA type I sequences from seven species of the genus Leporinus. The 5S rDNA type I was chosen for the present analysis since it can be easily amplified by PCR, cloned and sequenced. The obtained results suggest that 5 S rDNA sequences are valuable molecular markers to access the evolutionary history among closely related species.

Materials and methods

Eight species, including seven Leporinus (Anostomidae) and one Steindachnerina (Curimatidae), included as outgroup, were analyzed (Table 1). DNA was extracted from liver and fins (Wasko et al. 2003), and PCR amplifications of the 5S rDNA were carried out according to Martins and Galetti (2001) using the primers 5SA (5'TAC GCC CGA TCT CGT CCG

Table 1 Species analyzed

Species	Collection sites
Leporinus elongatus	Mogi-Guaçu river, Pirassununga,
Leporinus	
obtusidens	São Paulo, Brazil
Leporinus	Mogi-Guaçu river, Pirassununga,
friderici	São Paulo, Brazil
Leporinus	Mogi-Guaçu river, Pirassununga,
aff. elongatus	São Paulo, Brazil
Leporinus	São Francisco river, Três Marias,
macrocephalus	Minas Gerais, Brazil
Leporinus	Paraguai river, Coxim, Mato Grosso
octofasciatus	do Sul, Brazil
Leporinus sp.	Paranapanema river, Itatinga,
São Paulo, Brazil	
Steindachnerina	Araguaia river, Barra do Garças,
insculpta	Mato Grosso, Brazil

ATC3') and 5SB ($5^{\prime} \mathrm{CAG}$ GCT GGT ATG GCC GTA AGC3').

The PCR-generated 5S rDNA fragments were cloned in the plasmids pGEM-T (Promega), and used to transform a host E. coli strain DH5 . The clones obtained from the 5 S rDNA PCR products were sequenced on the ABI Prism 377 (Perking-Elmer) automatic sequencer with a Dye Terminator Cycle Sequencing kit (Applied Biosystems Division, PerkinElmer), following the manufacturer instructions. Nucleic acid sequences were subjected to BLASTN (Altschul et al. 1990) searches at the National Center for Biotechnology Information (NCBI), through web site (http://www.ncbi.nlm.nih.gov/blast). The sequences were aligned with the software Clustal W (Thompson et al. 1994) as implemented in the program DAMBE (Xia and Xie 2001). Consensus sequences were produced manually in the software BioEdit (Hall 1999).

Maximum-parsimony (MP) based phylogenetic analyses were performed using the software PAUP* beta version 4.0 b 10 (Swofford 2002) with heuristic searches using random addition of sequences and the tree bisection and reconnection (TBR) algorithm. In all analysis the character-state optimization method employed was the accelerated transformation (ACCTRAN). Parsimony trees were generated using 1:1 transition (Ti)/transversion (Tv) ratio, considering gaps as either missing data or a fifth base. Bootstrap resampling (Felsenstein 1985) was applied to assess support for individual nodes using 10,000 replicates with 100,000 random additions and TBR branch swapping. Decay indexes (Bremer 1988) were calculated with SEPAL (Salisbury 2001). Maximum-likelihood (ML) based phylogenetic relationships were estimated using the software PAUP* beta version 4.0b10 (Swofford 2002). The genetic distance among sequences was estimated by Jukes-Cantor model (Jukes and Cantor 1969) incorporating rate variation (Γ) based on a hierarchical hypothesis test of alternative models implemented with Modeltest 3.7 (Posada and Crandall 1998). The $\mathrm{Ti} / \mathrm{Tv}$ ratio, gamma shape parameter, and proportion of non-variant sites were estimated by maximum likelihood from a maximum parsimony tree. Gaps were considered as missing data. Bootstrap resampling was applied to assess support for individual nodes using 1000 replicates with 10,000 random additions and TBR branch swapping.

Results and discussion

PCR amplification of the 5 S rDNA type I produced approximately 200 bp fragments for all Leporinus
species and 180 bp for S. insculpta. These PCR products were cloned, and several clones were sequenced for each species (Table 2). The sequences were deposited in the NCBI database under the accession numbers AF284728-AF284746 and DQ009524DQ009532.

Analysis of the 5 S rDNA sequences obtained results in the identification of one unit of the 5 S rDNA tandem array (5 S rRNA gene +NTS). The coding region of the 5 S rRNA gene was quite conserved showing few base substitutions among the species. On the other hand, significant differences related to base substitutions and insertions/deletions were detected in the NTS regions (Fig. 1). The mean genetic distance among the 5 S rDNA sequences of the Leporinus species was 0.133 ± 0.021, mainly owing to base substitutions and insertions/deletion in the NTS (Table 2). The NTS has proven to be very dynamic regions of the genome, because they are free to mutate and the variant forms that arise are neutral (or almost neutral) to natural selection, and can be fixed or lost, causing differences

Table 2 Genetic distances between 5S rDNA type I sequences of the species analyzed
$\left.\begin{array}{cllll}\hline \text { Species } & \text { Clones } & \text { GenBank no. } \begin{array}{l}\text { Length } \\ \text { of 5S }\end{array} & \begin{array}{l}\text { Mean } \\ \text { genetic }\end{array} \\ \text { rDNA } \\ \text { distance }\end{array}\right]$ sequence $\left.\begin{array}{c}\text { (bp) }\end{array}\right]$
among related species and even into the same individual (Cronn et al. 1996). The high dynamism of the NTS can be visualized by the presence of a TA microsatellite in L. macrocephaus (Fig. 1), which might represent a potential genetic marker that can be explored and applied in the genetic analyses of this species. The high genetic variation of the NTS supports its use as a genetic marker for studies of populations that have experienced recent events of evolution.

Cytogenetic data described for the anostomids genera Leporinus, Leporellus, Schizodon (Galetti et al. 1981), Abramites, Anostomus, and Pseudanos (Martins et al. 2000), show a common karyotype pattern with $2 n=54$ biarmed chromosomes. Chromosomal differentiation among Leporinus is mainly related to a ZW sex chromosome system described for seven species: Leporinus conirostris, L. elongatus, L. aff. elongatus, L. macrocephalus, L. obtusidens, L. reinhardti, and L. trifasciatus (for review, Galetti et al. 1995). The morphological similarity in the ZW chromosomes among these species of Leporinus suggests a common origin for these chromosomes (Galetti et al. 1995). Besides the presence of a ZW sex chromosome system, these species of Leporinus share some morphological characteristics as the presence of a common color pattern, large body sizes, and the same number of teeth, reinforcing the hypothesis that they may belong to a natural group. The present phylogenetic analyses of the 5 S rDNA sequences allowed the identification of two groups for the Leporinus species: the first one (i) is composed of L. elongatus, L. aff. elongatus, L. macrocephalus, and L. obtusidens (Fig. 2). This data corroborate the monophyletic nature of Leporinus species with a ZW sex chromosome system. The second group (ii) identified in the phylogenetic analyses is composed of Leporinus friderici, L. octofasciatus, and Leporinus sp. (Fig. 2). The latter undescribed species of Leporinus has recently been reported to have a new ZW system (Venere et al. 2004). However, the Z and W chromosomes of this species are morphologically different from the typical Z and W chromosomes previously described for the seven species of Leporinus mentioned above. In the same way, Leporinus sp. shares the same morphological patterns with the species of Leporinus that do not have ZW sex chromosomes (Santos and Jégu 1989). These data reinforce the hypothesis that the atypical ZW chromosomes of Leporinus sp. could represent a de novo origin of sex chromosomes in the genus Leporinus (Venere et al. 2004).

Variations in the 5 S rDNA NTS, including insertions/deletions, minirepeats and pseudogenes have been frequently characterized in plants, mammals, and

	$+1 \quad \leftarrow 5$ S			5SA \rightarrow								+120
Lo/ 52.2	GCTTACGGCC	ATACCAGCCT	G??TACGCCC	GATCTCGTCC	GATCTCGGAA	GCTAAGCAGG	GCCGGGCCTG	GTtAGTACTT	GGATGGGAGA	CCGCCTGGGA	AtACCAGGTG	CTGTAAGCTT
Lo/52.5			???.				.T.					
Lo/52.1			.??									
Lo/52.6			.??									
Lo/52.7			.??									
Le/67.9			??									
Le/67.5			.??									
Le/67.6			??									
Le/67.3			.??									
Lm4			.??									
Lm10			??									
Lm5			.??									.c.
Lte/181.1			.??									
Lte/61.7			.??									
Lte/61.8			??									
Lte/186.8			.??									
Lte/61.5			.??.									
Lte/61.6			.??									
Lf/152.4			.??	c							
Lf/152.1			.??						.G.			
Lf/153.3			??									
Lf/152.5			.??									
Lsp8			? ?									
Lsp9			??									
Loc10			.??.							. ${ }^{\text {r }}$		
Loc7			.??.									
Loc8			.??									
Si/51.2			.??.				.тт.		A.			
Lo/52.2	CTTTTGTTTC	-GAAACAAAG	CGCCTTTAAA	CTGGAC-	-TTAG	AT	--AAAGG	CA-ATTGATA	TAAAGGACCT	GTACAGGCCC	TGAGCTTTTC	
Lo/52.5												
Lo/52.1	T											
Lo/52.6	T---G....T			T.	- . . T		T.	-		. . A.	. C.	
Lo/52.7	T..-G....T	T.		T.	- . . T		-----. T.			. A.	. C.	
Le/67.9	T		. A. . . C.									
Le/67.5	T..-G....T			T.	-. . СT		-.T.	. --......		. . A. .	. C.	
Le/67. 6	T..-G....T	T.		T.	---. . СT		-. T.			. . A.	. C .	
Le/67.3	T..-G....T	T.		T.	------. . СT		--. T.			.A.	. C .	
Lm4	T...G-...T	-...-....		T. . . .ttat	ATGTATA. .T	. . ATAT----	---AT.T.	.G-		. C .	CC. . . C. .	
Lm10	T...--...T	-...--. . .		T.....ttat	ATGTATA. . T	. .ATAT----	---AT.T.	.G-			CC. . . C.-	
Lm5	T...G-...T	-...--...		T.....ttat	ATGTATA. .T	. . ATAT----	---AT.T.	.G-			CC.... C.	
Lte/181.1	T..-GT...T	-		T.AA.T----	-------. CC	. $\mathrm{CTTAT----}$	---Ат.T. .	. .-.G.	CC.	
Lte/61.7	T..-GT...T	T.		T...C.----	----. . . ${ }^{\text {T }}$		-----GT.-......				
Lte/61.8	T..-GT...T	T.		T...C.	. . T		-----GT.					
Lte/186.8	T..-GT...T	T..--		T...C.----	------. . T		-----GT.					
Lte/61.5	T..-G....T	G.		T.	- . . T		-----GT. . .					
Lte/61.6	T. .-G....T	G.			- . . . C		-----GT.					
Lf/152.4	T.--GA...T	. GC	. .tac.	GG.A. AGCAG	AGCGCC. .tT	G.AACGGGCT	тСтат. С.	. G. AAA	.GA.	. .tтT. . . . ${ }^{\text {g }}$	GC.CT.A--	
Lf/152.1	T.--GA...T	. . GC	.-TAC.C.	GG-A.AGCA-	AGCGCC. . T-	. . AACGGACT	TA-AT. . C.	. C. AAA.	.GA. .	. .tTT.	.c.c. . -	
Lf/153.3	T. --GA...T	. GC	. ATAACC.	tGCA. AGCAA	AGCGCC . . TA	. . AATGGACT	tacat. .	- . . A.	.A.	. TTTT.	CT.	
Lf/152.5	T.--GA...T	. . GC	. .tac.	GG.A.AGCAG	AGCGCC. . TT	G.AACGGGCT	тСтат. . C .	. C. AAA.	. .GA.	. TTTT.		
Lsp8	T.--GA...T	. . GC	. ATAC.	GG.A. AGAGA	AGCGCC. . TT	. .AACGGGTT	TCTAT.GC.	. TCAAA.	. A.	. TTTT.	.C. . C. . A	
Lsp9	T.--GA...T	. . GC	. ATAC.	GG.A. AGAGA	AGCGCC. . TT	. . AACGGGTT	TCTAT.GC.	. TCAAA.	.A.	. .tTT	.C. . C. . A	
Loc10	T.--GA...T	. . GC	. ATAC. . C .	GG.A. AGCAA	AGCGCC. . TT	. . AACGGGCT	TCTAT.GC.	. T. AAA . .	. A.	. TTT-. . .	. C. . C.	
Loc7	T.--GA...T	. . GC	. ATAC.	GG.A. AGTAA	AGCGCC. . TT	. CAACGGGCT	TCTAT. . C .	..t.AAA.C.	. GA.C	. .TTT G	CC. . C. .	
Loc8	T.--GA...T	. GC	. ATAC..C. .	GG.A. AGCAA	AGCACC. . TA	. .AACGGGCT	СТTАТ.-. GA.	.GA.C	. .TTT. . . . A	. C	
Si/51.2	T.C-GC.	. C	T.T-	T-.A.--C--	AGTA-- . TT	- AA-	---AG.G..A	GG-.C. .	-GC. A	.C.-------		

Fig. 1 Alignment of 5S rDNA type I sequences of Leporinus. The 5 S rRNA gene coding sequence is in bold and the primer regions are underlined. Dots indicate sequence identity, hyphens represent indels and ? undefined nucleotides. Lo, L. obtusidens;

Fig. 2 Consensus MP tree produced when gaps were treated as missing data and the $\mathrm{Ti} / \mathrm{Tv}$ ratio of $1: 1(\mathrm{TL}=104, \mathrm{CI}=0.9231$, $\mathrm{HI}=0.0769, \mathrm{RI}=0.8857$). Numbers above branches are bootstrap values based on 1000 replicates employing the MP and the ML methods (MP/ML). Values below 50% are not shown. Numbers below branches represent Bremer support index values
fish and served as species- or population-specific markers useful for evolutionary studies (for review Martins and Wasko 2004). Particularly among fishes,

Le, L. elongatus; Lm, L. macrocephalus; Lte, L. aff. elongatus; Lf, L. friderici; Lsp, Leporinus sp; Loc, L. octofasciatus, and Si, S. insculpta. The TA microsatellite of L. macrocephalus is in gray shading
the genome organization patterns of the 5S rDNA tandem repeats have been applied as efficient genetic markers for sex identification and inspection programs intended to access species, hybrids, or smoked products identity. In rainbow trout (Oncorhynchus mykiss), chromosome hybridization analyses on male and female metaphase spreads revealed a 5 S rDNA chromosome sex-specific pattern (Morán et al. 1996). PCR amplified products clearly discriminate Atlantic salmon (Salmo salar), brown trout (Salmo truta), and their hybrids (Pendás et al. 1995) and also Neotropical fish species of the genus Brycon (Wasko et al. 2001). PCR was also applied in the identification of the flatfishes, Solea solea and Reinhardtius hippoglossoides (Cespedes et al. 1999) and also for the identification of smoked fillets of salmon, rainbow trout and bream (Brama raii) (Carrera et al. 2000).

The present data reinforce that 5 S rDNA polymorphisms constitute important nuclear genetic markers, in agreement with cytogenetic and morphological data, for clarifying relationships between closely related species. Once the NTSs evolve fast, the analyses of NTS regions can function as species-population genetic marker, contributing to the knowledge of the biology of fish species in a broad range of aspects.

Acknowledgments Funds supporting this study were provided by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403-410
Bremer K (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795803
Carrera E, Garcia T, Céspedes A, González I, Fernández LMA, Hernández PE, Martín R (2000) Differentiation of smoked Salmo salar, Oncorhynchus mykiss and Brama raii using the nuclear marker 5S rDNA. Int J Food Sci Technol 35:401-406
Cespedes A, Garcia T, Carrera E, González I, Fernández A, Hernández PE, Martín R (1999) Identification of sole (Solea solea) and Greenland halibut (Reinhardtius hippoglossoides) by PCR amplification of the 5S rDNA gene. J Agric Food Chem 47:1046-1050
Cronn RC, Zhao X, Paterson AH, Wendel JF (1996) Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42:685-705
Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791
Galetti PM Jr, Foresti F, Bertollo LAC, Moreira-Filho O (1981) Karyotypic similarity in three genera (Leporinus, Leporellus and Schizodon) of the family Anostomidae (Pisces, Teleostei). Brazil J Genet 4:11-15
Galetti PM Jr, Lima NRW, Venere PC (1995) A monophyletic ZW sex chromosome system in Leporinus (Pisces, Anostomidae). Cytologia 60:375-382
Garavello JC, Britski HA (2003) Family Anostomidae (Headstanders). In: Reis RE, Kullander SO, Ferraris CJ Jr (eds) Check list of the freshwater fishes of south and Central America. EDIPUCRS, P.A., pp 75-84
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp Ser 41:95-98

Jukes TH, Cantor CR (1969) Evolution of protein molecular. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, N.Y., pp 21-132
Martins C, Wasko AP (2004) Organization and evolution of 5S ribosomal DNA in the fish genome. In: Williams CL (ed) Focus on genome research. Nova Science Publishers, N.Y., pp 289-318
Martins C, Galetti PM Jr (2001) Organization of 5S rDNA in species of the fish Leporinus: two different genomic locations are characterized by distinct nontranscribed spacers. Genome 44:903-910
Martins C, Venere PC, Mestriner CA, Cestari MM, Ferreira R, Galetti PM Jr (2000) Chromosome relationships between Anostomidae and Chilodontidae fish (Characiformes). Cytologia 65:153-160
Morán P, Martinez JL, Garcia-Vásquez E, Pendás AM (1996) Sex linkage of 5 S rDNA in rainbow trout (Oncorhynchus mykiss). Cytogenet Cell Genet 75:145-150
Pendás AM, Móran P, Martínez JL, Garcia-Vásquez E (1995) Applications of 5S rDNA in Atlantic salmon, brow trout and in Atlantic salmon x brown trout hybrid identification. Mol Ecol 4:275-276
Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817-818
Salisbury BA (2001) SEPAL-Strongest Evidence and Parsimony AnaLyzer. Version 1.4. Department of Ecology and Evolutionary Biology, Yale University, New Haven. Distributed by the author
Santos GM, Jegu M (1989) Inventário taxonômico e redescrição das espécies de anostomídeos (Characiformes, Anostomidae) do Baixo Rio Tocantis, PA, Brasil. Acta Amazônica 19:159-213
Swofford DL (2002) PAUP* 4.0: Phylogenetic analysis using parsimony (*and other methods). Version 4b10. Sinauer Associates, Sunderland, MA
Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-4680
Venere PC, Ferreira IA, Martins C, Galetti PM Jr (2004) A novel ZZ/ZW sex chromosome system for the genus $L e$ porinus (Pisces, Anostomidae, Characiformes). Genetica 121:75-80
Wasko AP, Martins C, Oliveira C, Foresti F (2003) Nondestructive genetic sampling in fish. An improved method for DNA extraction from fish fins and scales. Hereditas 138:161-165
Wasko AP, Martins C, Wright JM, Galetti PM Jr (2001) Molecular organization of 5 S rDNA in fishes of the genus Brycon. Genome 44:893-902
Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371-373

[^0]: Irani A Ferreira • C. Oliveira • C. Martins (\boxtimes)
 Departamento de Morfologia, Instituto de Biociências, UNESP - Universidade Estadual Paulista, 18618-000 Botucatu, SP, Brazil
 e-mail: cmartins@ibb.unesp.br
 Paulo C Venere
 Instituto de Ciências e Letras do Médio Araguaia, Universidade Federal de Mato Grosso, 78698-000 Pontal do Araguaia, MT, Brazil

 Pedro M Galetti Jr
 Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil

