6-31G* basis set for atoms K through Zntle

Vitaly A. Rassolov, Northwestern University
John A. Pope, Northwestern University
Mark A. Ratner, Northwestern University
Theresa L. Windus, Northwestern University

A P The Journal of Chemical Physics

6-31G* basis set for atoms K through $\mathbf{Z n}$

Vitaly A. Rassolov, John A. Pople, Mark A. Ratner, and Theresa L. Windus

Citation: The Journal of Chemical Physics 109, 1223 (1998); doi: 10.1063/1.476673
View online: http://dx.doi.org/10.1063/1.476673
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/109/4?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

On the 6-311G basis set of bromine
J. Chem. Phys. 130, 176101 (2009); 10.1063/1.3126246

Toward accurate thermochemical models for transition metals: G3Large basis sets for atoms Sc-Zn
J. Chem. Phys. 128, 144122 (2008); 10.1063/1.2896084

Explicitly correlated second-order Møller-Plesset methods with auxiliary basis sets
J. Chem. Phys. 116, 6397 (2002); 10.1063/1.1461814

Accurate core electron binding energy calculations using small 6-31G and TZV core hole optimized basis sets J. Chem. Phys. 116, 3521 (2002); 10.1063/1.1446025

Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton J. Chem. Phys. 110, 7667 (1999); 10.1063/1.478678

6-31G* basis set for atoms K through $\mathbf{Z n}$

Vitaly A. Rassolov, ${ }^{\text {a) }}$ John A. Pople, Mark A. Ratner, and Theresa L. Windus ${ }^{\text {b) }}$ Department of Chemistry, Northwestern University, Evanston, Illinois 60208

(Received 2 February 1998; accepted 15 April 1998)

Abstract

Medium basis sets based upon contractions of Gaussian primitives are developed for the third-row elements K through Zn . The basis functions generalize the $6-31 \mathrm{G}$ and $6-31 \mathrm{G}^{*}$ sets commonly used for atoms up to Ar. They use six primitive Gaussians for $1 s, 2 s, 2 p, 3 s$, and $3 p$ orbitals, and a split-valence pair of three and one primitives for valence orbitals, which are $4 s$ and $5 p$ for atoms K and Ca , and $4 s, 4 p$, and $3 d$ for atoms Sc through Zn . A 6-31G* set is formed by adding a single set of Gaussian polarization functions to the $6-31 \mathrm{G}$ set. They are Cartesian d-functions for atoms K and Ca , and Cartesian f-functions for atoms Sc through Zn . Comparison with experimental data shows relatively good agreement with bond lengths and angles for representative vapor-phase metal complexes. © 1998 American Institute of Physics. [S0021-9606(98)30428-6]

I. INTRODUCTION

Virtually all $a b$ initio calculations of properties for molecules containing more than two atoms require Gaussian basis sets. The optimal basis set should be flexible enough to allow realistic calculation of the desired properties, should equally well describe all parts of the molecule to keep the calculation balanced, and at the same time it should be as small as possible, because the computational costs rise sharply with basis set size.

The series of split-valence basis sets $I-J K G$ developed in recent years ${ }^{1}$ has been quite successful in a variety of molecular calculations. In this notation, the integer I represents the degree of contraction (number of primitive Gaussians) for single functions representing the innershell atomic orbitals. The valence atomic orbitals are covered by inner and outer parts, with contractions J and K, respectively. The most popular of this series are the small 3-21G and moderate $6-31 \mathrm{G}$ sets. Both were originally defined for atoms up to argon. In 1987, the $3-21 \mathrm{G}$ set was extended to first-row transition metals by Dobbs and Hehre, ${ }^{2}$ who also reviewed other such basis sets developed prior to that time. 6-31G, however, is only available for atoms up to argon.

In many molecular environments, the split-valence bases must be augmented by diffuse and polarization functions. The notation used is $I-J K+\mathrm{G}^{* *}$, where + indicates diffuse functions on atoms with $Z>2$, the first * denotes a single uncontracted set of polarization functions with angular quantum number one higher than that of the highest occupied atomic orbital (again for $Z>2$), and the second $*$ is used for a similar set of polarization functions on hydrogen and helium. Each basis set should be associated with corresponding diffuse and polarization parameters.

Schäfer, Horn, and Ahlrichs ${ }^{3}$ designed a variety of basis sets for the first through third row atoms with split valence

[^0]sets comparable to $6-31 \mathrm{G}$. They chose a $\{63311 / 53 / 41\}$ structure for the atoms $\mathrm{Sc}-\mathrm{Zn}$. This designates five contractions in the s-space, with $6,3,3,1$, and 1 Gaussian primitives in each, two contractions in the p-space with 5 and 3 primitives, and $2 d$-contractions with 4 and 1 primitives. They also designed larger double zeta and triple zeta ${ }^{4}$ sets.

An alternative way to develop the basis set is based on choosing the set of primitives optimized in the uncontracted atomic calculations, and choosing contractions afterwards in a way that ensures wave function flexibility in the valence region. The most popular basis sets of this type are based on Wachters ${ }^{5}$ primitives, which come from full optimized uncontracted calculations. This design, although being computationally much less expensive, does not result in fully optimized sets. This method is useful for very accurate calculations on small systems. Examples of use of such basis sets can be found in work by Bauschlicher and co-workers. ${ }^{6}$ An alternative method to generate uncontracted primitive exponents is the generator coordinate method used by Jorge and da Silva for heavier elements. ${ }^{7}$ It has few adjustable parameters and consequently leads to a very large set of not fully optimized primitives. Such methods can be useful in atomic and very small molecular calculations.

The goal of the present work is the extension of the $6-31 \mathrm{G}$ basis to the third row atoms K through Zn . Combined with the large volume of earlier work on molecules with lighter atoms using the same basis, this should increase the range of inorganic and organometallic chemistry that can be handled efficiently by modern quantum-mechanical methods.

II. COMPUTATIONAL METHODS

Before describing the methods used to fix basis parameters, we need to discuss valence atomic orbitals in the third row of the periodic table. The inner shells are ($1 s, 2 s, 2 p, 3 s, 3 p$), each represented by single 6-Gaussian contractions. For potassium and calcium, only $4 s$ is occupied in the atomic ground states. However, as already known for lithium, beryllium, sodium, and magnesium, the valence p-orbitals play a major role in their chemistry, so we choose

TABLE I. Dependence of the optimized $d_{4 p}$ coefficients in vanadium on the external field strength in the UHF calculation.

Field (a.u.)	$d_{4 p, 1}$	$d_{4 p, 2}$	$d_{4 p, 3}$	E
0.03	-0.2539	0.0910	0.9843	-942.83482877
0.04	-0.1973	0.0807	0.9877	-942.86961234
0.045	-0.1891	0.0801	0.9877	-942.88966316
0.05	-0.1887	0.0820	0.9870	-942.91125162
0.055	-0.1943	0.0865	0.9856	-942.93421956

to classify $4 p$ as valence and define inner and outer parts for the 31 split, accordingly. Thus for K and Ca , the basis has a total of 17 functions. For the transition metals scandium to zinc, on the other hand, $3 d$ orbitals are occupied in atomic ground states and these clearly have to be treated as valence orbitals. They are incorporated in the basis and represented by 31 split Gaussians as elsewhere.

An important point concerns the nature of the d-functions used. Strictly, there are five $3 d$ atomic orbitals which should be split into a total of ten functions. However, a case can be made for using a 'Cartesian'' set based on six primitives $\{x x, y y, z z, x y, y z, z x\} \exp \left(-\alpha r^{2}\right)$. Although this step increases the number of basis functions by two, it has the advantage of simplifying coding (some distributed programs cannot handle pure d-Gaussians). Further it is consistent with the 3-21G basis of Dobbs and Hehre, and with the polarization functions of $6-31 G^{*}$ basis for the first- and second-row elements. Thus for the range Sc to Zn , the 6-31G basis will contain a total of 29 functions.

We note at this point that Schäfer, Horn, and Ahlrichs do not include any $4 p$ functions in their split-valence basis for $\mathrm{K}-\mathrm{Zn} .{ }^{3}$ While some valency can no doubt be described using only $4 s$ and $3 d$ functions, it seems likely that $4 p$ functions are also needed, particularly for high coordination numbers. We therefore retain $4 p$ functions for all atoms in the range $\mathrm{K}-\mathrm{Zn}$.

Our procedure for obtaining 6-31G parameters is similar to that used for second-row elements, ${ }^{8,9}$ with a few differences. We have minimized the total energy of selected states, using the ATOM-SCF program, ${ }^{10}$ modified by us to allow variation of exponents and contraction coefficients at the same time, and to use the modified Powell method of conju-

TABLE II. The UHF energies of atoms K through Zn with UHF wave functions.

Atom	$6-31 \mathrm{G}$	$6-31 \mathrm{G}^{*}$
$\mathrm{~K}\left({ }^{2} S\right)$	-599.119027	-599.119261
$\mathrm{Ca}\left({ }^{1} S\right)$	-676.707923	-676.708039
$\mathrm{Sc}\left({ }^{2} D\right)$	-759.674203	-759.677039
$\mathrm{Ti}\left({ }^{3} F\right)$	-848.327855	-848.333176
$\mathrm{~V}\left({ }^{4} F\right)$	-942.787478	-942.792465
$\mathrm{Cr}\left({ }^{5} D\right)$	-1043.191917	-1043.194561
$\mathrm{Mn}\left({ }^{6} S\right)$	-1149.722055	-1149.722555
$\mathrm{Fe}\left({ }^{5} D\right)$	-1262.266962	-1262.269260
$\mathrm{Co}\left({ }^{4} F\right)$	-1381.197761	-1381.201473
$\mathrm{Ni}\left({ }^{3} F\right)$	-1506.609605	-1506.612758
$\mathrm{Cu}\left({ }^{2} D\right)$	-1638.639638	1638.641169
$\mathrm{Zn}\left({ }^{1} S\right)$	-1777.482753	-1777.483106

TABLE III. 6-31G basis set for potassium.

α	d_{s}	d_{p}
$3.159442(4)$	$1.828010(-3)$	
$4.744330(3)$	$1.399403(-2)$	
$1.080419(3)$	$6.887129(-2)$	
$3.042338(2)$	$2.369760(-1)$	
$9.724586(1)$	$4.829040(-1)$	
$3.302495(1)$	$3.404795(-1)$	$4.094637(-3)$
$6.227625(2)$	$-2.502976(-3)$	$1.351558(-1)$
$1.478839(2)$	$-3.315550(-2)$	$3.390500(-1)$
$4.732735(1)$	$-1.226387(-1)$	$4.629455(-1)$
$1.751495(1)$	$5.353643(-2)$	$-1.221377(-2)$
6.922722	$6.193860(-1)$	$-6.900537(-3)$
2.768277	$4.345878(-1)$	$2.007466(-1)$
	$1.277689(-2)$	$4.281332(-1)$
$1.184802(1)$	$2.098767(-1)$	$3.970156(-1)$
4.079211	$-3.095274(-3)$	$1.104718(-1)$
1.763481	$-5.593884(-1)$	$3.164300(-2)$
$7.889270(-1)$	$-5.134760(-1)$	$-4.046160(-2)$
$3.503870(-1)$	$-6.598035(-2)$	1.012029
$1.463440(-1)$	$-5.237772(-2)$	1.000000
$7.168010(-1)$	$-2.798503(-1)$	
$2.337410(-1)$	1.141547	
$3.867500(-2)$	1.000000	
$1.652100(-2)$		

gate gradients. ${ }^{11,12}$ This program uses spin-restricted open shell Hartree-Fock theory (ROHF), whereas spinunrestricted theory (UHF) was used for lighter elements. There is no evidence that this has a significant effect on the final values. Further, the ATOM-SCF program uses pure dfunctions (based on spherical harmonics). Thus our param-

TABLE IV. 6-31G basis set for calcium.

α	d_{s}	d_{p}
$3.526486(4)$	$1.813501(-3)$	
$5.295503(3)$	$1.388493(-2)$	
$1.206020(3)$	$6.836162(-2)$	
$3.396839(2)$	$2.356188(-1)$	
$1.086264(2)$	$4.820639(-1)$	
$3.692103(1)$	$3.429819(-1)$	$4.020371(-3)$
$7.063096(2)$	$2.448225(-3)$	$1.337279(-1)$
$1.678187(2)$	$3.241504(-2)$	$3.367983(-1)$
$5.382558(1)$	$1.226219(-1)$	$4.631281(-1)$
$2.001638(1)$	$-4.316965(-2)$	$-1.289621(-2)$
7.970279	$-6.126995(-1)$	$-1.025198(-2)$
3.212059	$-4.487540(-1)$	$1.959781(-1)$
		$4.357933(-1)$
$1.419518(1)$	$2.084500(-2)$	$3.996452(-1)$
4.880828	$3.150333(-1)$	$9.713636(-2)$
2.160390	$-5.526518(-1)$	$-4.298621(-1)$
$9.878990(-1)$	$-5.437997(-1)$	$6.935829(-3)$
$4.495170(-1)$	$-6.669342(-2)$	$9.705933(-1)$
$1.873870(-1)$	$-4.439720(-2)$	1.000000
1.032271	$-3.284563(-1)$	
$3.811710(-1)$	1.163010	
$6.513100(-2)$	1.000000	
$2.601000(-2)$		

TABLE V. 6-31G basis set for scandium.

α	d_{s}	d_{p}
3.908 898(4)	1.803 263(-3)	
5.869 792(3)	$1.380769(-2)$	
$1.336910(3)$	6.800 396(-2)	
$3.766031(2)$	2.347 099(-1)	
1.204 679(2)	4.815 690(-1)	
4.098 032(1)	3.445 652(-1)	
7.862 852(2)	$2.451863(-3)$	$4.039530(-3)$
1.868 870(2)	$3.259579(-2)$	3.122 570(-2)
$6.000935(1)$	1.238 242(-1)	1.349 833(-1)
$2.225883(1)$	-4.359 890(-2)	3.424 793(-1)
8.885149	-6.177 181(-1)	$4.623113(-1)$
3.609211	-4.432 823(-1)	2.177 524(-1)
$2.984355(1)$	$-2.586302(-3)$	-6.096 652(-3)
9.542383	7.188 424(-2)	-2.628 884(-2)
4.056790	2.503 260(-1)	5.091 001(-2)
1.704703	-2.991 003 (-1)	3.798 097(-1)
7.062 340(-1)	-7.446 818(-1)	$5.170883(-1)$
$2.795360(-1)$	-1.799 776(-1)	1.829 772(-1)
1.065609	6.482 978(-2)	-2.938 440(-1)
4.259 330(-1)	$3.253756(-1)$	$9.235323(-2)$
7.632 000(-2)	-1.170 806	9.847 930(-1)
2.959 400(-2)	1.000000	1.000000
α_{d}	d_{d}	
1.114 701(1)	8.747 672(-2)	
2.821043	3.795 635(-1)	
8.196 200(-1)	7.180 393(-1)	
2.214 680(-1)	1.000000	

TABLE VI. 6-31G basis set for titanium.

α	d_{s}	d_{p}
4.315 295(4)	$1.791872(-3)$	
6.479 571(3)	1.372 392(-2)	
1.475 675(3)	6.762 830(-2)	
4.156 991(2)	2.33 7642(-1)	
$1.330006(2)$	4.810 696(-1)	
4.527 222(1)	3.462 280(-1)	
$8.746826(2)$	2.431 008(-3)	4.017 679(-3)
$2.079785(2)$	$3.233027(-2)$	3.113 966(-2)
6.687 918(1)	$1.242520(-1)$	$1.349077(-1)$
$2.487347(1)$	-3.903 905(-2)	3.431 672(-1)
9.968441	-6.171 789(-1)	$4.625760(-1)$
4.063826	-4.473 097(-1)	2.154 603(-1)
3.364 363(1)	-2.940 358(-3)	-6.311 620(-3)
1.087 565(1)	7.163 103(-2)	-2.697 638(-2)
4.628225	2.528 915(-1)	5.316 847(-2)
1.950126	-2.966 401(-1)	3.845 549(-1)
8.094 520(-1)	-7.432 215(-1)	5.127 662(-1)
$3.204740(-1)$	-1.853 520(-1)	1.811 135(-1)
1.224148	$6.351465(-2)$	-2.112 070(-1)
4.842 630(-1)	3.151 404(-1)	7.771 998(-2)
$8.409600(-2)$	-1.162 595	9.898 214(-1)
3.203 600(-2)	1.000000	1.000000
α_{d}	d_{d}	
$1.369085(1)$	8.589 418(-2)	
3.513154	3.784 671(-1)	
1.040434	$7.161239(-1)$	
2.869 620(-1)	1.000000	

TABLE VII. 6-31G basis set for vanadium.

α	d_{s}	d_{p}
$4.735433(4)$	1.784 513(-3)	
$7.110787(3)$	$1.366754(-2)$	
1.619 591(3)	6.736 122(-2)	
4.563 379(2)	$2.330552(-1)$	
$1.460606(2)$	4.806 316(-1)	
$4.975791(1)$	3.474 802(-1)	
9.681 484(2)	2.410 599(-3)	$3.995005(-3)$
$2.302821(2)$	3.207 243(-2)	3.104 061(-2)
7.414 591(1)	1.245 942(-1)	1.347 747(-1)
2.764 107(1)	-3.482 177(-2)	3.437 279(-1)
$1.111475(1)$	-6.167 374(-1)	4.628 759(-1)
4.543113	-4.509 844(-1)	$2.135547(-1)$
$3.764050(1)$	-3.233 199(-3)	-6.494 056(-3)
1.228 238(1)	$7.130744(-2)$	-2.753 453(-2)
5.233366	2.543 820(-1)	5.516 284(-2)
2.208950	-2.933 887(-1)	3.879 672(-1)
9.178 800(-1)	-7.415 695(-1)	5.090 258(-1)
$3.634120(-1)$	-1.909 410(-1)	1.803 840(-1)
1.392781	$6.139703(-2)$	-1.891 265(-1)
$5.439130(-1)$	3.061 130(-1)	8.005 453(-2)
9.147 600(-2)	-1.154 890	9.877 399(-1)
3.431 200(-2)	1.000000	1.000000
α_{d}	d_{d}	
$1.605025(1)$	8.599 899(-2)	
4.160063	3.802 996(-1)	
1.243265	7.127 659(-1)	
$3.442770(-1)$	1.000000	

TABLE VIII. 6-31G basis set for chromium.

α	d_{s}	d_{p}
5.178 981(4)	$1.776182(-3)$	
7.776 849(3)	1.360 476(-2)	
$1.771385(3)$	6.706 925(-2)	
$4.991588(2)$	2.323 104(-1)	
1.597 982(2)	4.802 410(-1)	
$5.447021(1)$	$3.487653(-1)$	
1.064 328(3)	2.399 669(-3)	3.986 997(-3)
$2.532138(2)$	3.194 886(-2)	3.104 662(-2)
8.160 924(1)	$1.250868(-1)$	$1.350518(-1)$
3.048 193(1)	-3.221 866(-2)	3.448 865(-1)
$1.229439(1)$	-6.172 284(-1)	4.628 571(-1)
5.037722	-4.525 936(-1)	2.110 426(-1)
4.156 291(1)	-3.454 216(-3)	-6.722 497(-3)
1.367 627(1)	7.218 428(-2)	-2.806 471(-2)
5.844390	2.544 820(-1)	$5.820028(-2)$
2.471609	-2.934 534(-1)	3.916 988(-1)
1.028308	-7.385 455(-1)	5.047 823(-1)
$4.072500(-1)$	-1.947 157(-1)	1.790 290(-1)
1.571464	5.892 219(-2)	-1.930 100(-1)
$6.055800(-1)$	2.976 055(-1)	$9.605620(-2)$
$9.856100(-2)$	-1.147506	9.817 609(-1)
3.645 900(-2)	1.000000	1.000000
	d_{d}	
1.841 930(1)	8.650 816(-2)	
4.812661	3.826 699(-1)	
1.446447	7.093 772(-1)	
$4.004130(-1)$	1.000000	

TABLE IX. 6-31G basis set for manganese.

α	d_{s}	d_{p}
5.634 714(4)	$1.771580(-3)$	
$8.460943(3)$	1.357 081(-2)	
1.927 325(3)	6.690 605(-2)	
$5.432343(2)$	2.318 541(-1)	
1.739 905(2)	4.799 046(-1)	
$5.936005(1)$	$3.495737(-1)$	
1.165 412(3)	$2.388751(-3)$	3.977 318(-3)
2.773 276(2)	$3.181708(-2)$	$3.103112(-2)$
8.947 278(1)	1.254 670(-1)	$1.351894(-1)$
3.348 256(1)	-2.955 431(-2)	3.457 387(-1)
$1.354037(1)$	-6.175 160(-1)	4.629 205(-1)
5.557972	-4.544 458(-1)	2.090 592(-1)
$4.583532(1)$	-3.665 856(-3)	-6.887 578(-3)
$1.518777(1)$	7.231 971(-2)	-2.846 816(-2)
6.500710	2.544 486(-1)	6.031 832(-2)
2.751583	-2.910 380(-1)	3.938 961(-1)
1.145404	-7.359 860(-1)	5.013 769(-1)
$4.536870(-1)$	-1.997 617(-1)	1.792 264(-1)
1.757999	5.628 572(-2)	-5.035 024(-1)
6.670 220(-1)	2.897 491(-1)	2.345 011(-1)
$1.051290(-1)$	-1.140 653	$9.14157(-1)$
$3.841800(-2)$	1.000000	1.000000
$\begin{gathered} \alpha_{d} \\ 2.094355(1) \end{gathered}$	$\begin{gathered} d_{d} \\ 8.672{ }^{702(-2)} \end{gathered}$	
5.510486	$3.841883(-1)$	
1.665038	7.069 071(-1)	
4.617 330(-1)	1.000000	

TABLE X. 6-31G basis set for iron.

α	d_{s}	d_{p}
6.113 262(4)	1.766 111(-3)	
$9.179342(3)$	1.353 038(-2)	
2.090 857(3)	$6.673128(-2)$	
5.892 479(2)	2.314 823(-1)	
1.887 543(2)	$4.797058(-1)$	
6.444 629(1)	$3.501976(-1)$	
1.259 980(3)	$2.438014(-3)$	4.028 019(-3)
2.998 761(2)	$3.224048(-2)$	3.144 647(-2)
9.684 917(1)	$1.265724(-1)$	1.368 317(-1)
3.631 020(1)	-3.139 902(-2)	3.487 236(-1)
1.472 996(1)	-6.207 593(-1)	4.617 931(-1)
6.066075	-4.502 914(-1)	2.043 058(-1)
5.043 485(1)	-3.873 256(-3)	-7.017 128(-3)
1.683 929(1)	$7.196598(-2)$	-2.877 660(-2)
7.192086	2.556 591(-1)	$6.181383(-2)$
3.053420	-2.882 837(-1)	3.954 946(-1)
1.273643	-7.342 822(-1)	4.989 059(-1)
5.040 910(-1)	-2.049 353(-1)	1.791 251(-1)
1.950316	5.694 869(-2)	-4.593 796(-1)
7.367 210(-1)	2.882 915(-1)	2.852 139(-1)
$1.141770(-1)$	-1.138 159	$9.076485(-1)$
$4.114800(-2)$	1.000000	1.000000
$\begin{gathered} \alpha_{d} \\ 2.314 \stackrel{994(1)}{ } \end{gathered}$	$\begin{gathered} d_{d} \\ 8.876935(-2) \end{gathered}$	
6.122368	$3.896319(-1)$	
1.846601	7.014 816(-1)	
5.043 610(-1)	1.000000	

TABLE XI. 6-31G basis set for cobalt.

α	d_{s}	d_{p}
6.614 899(4)	$1.759787(-3)$	
9.933 077(3)	$1.348162(-2)$	
2.262 816(3)	6.649 342(-2)	
6.379 154(2)	2.307 939(-1)	
$2.044122(2)$	4.792 919(-1)	
6.982 538(1)	3.514 097(-1)	
1.378 841(3)	$2.376276(-3)$	$3.971488(-3)$
3.282 694(2)	3.167 450(-2)	$3.108174(-2)$
1.060 946(2)	1.262 888(-1)	1.357 439(-1)
3.983 275(1)	-2.584 552(-2)	$3.476827(-1)$
1.618 622(1)	-6.183 491(-1)	$4.626340(-1)$
6.667788	-4.567 008(-1)	2.051 632(-1)
$5.452355(1)$	-3.993 004(-3)	-7.290 772(-3)
$1.829783(1)$	$7.409663(-2)$	-2.926 027(-2)
7.867348	$2.542000(-1)$	6.564 150(-2)
3.340534	-2.921 657(-1)	4.000 652(-1)
1.393756	-7.318 703(-1)	4.950 236(-1)
5.513 260(-1)	-2.040 784(-1)	1.758 240(-1)
2.151947	5.379 843(-2)	-2.165 496(-1)
8.110 630(-1)	2.759 971(-1)	1.240 488(-1)
$1.210170(-1)$	-1.129 692	$9.724064(-1)$
$4.303700(-2)$	1.000000	1.000000
α_{d}	d_{d}	
2.559 306(1)	$9.004748(-2)$	
6.800990	3.931 703(-1)	
2.051647	$6.976844(-1)$	
$5.556710(-1)$	1.000000	

TABLE XII. 6-31G basis set for nickel.

α	d_{s}	d_{p}
7.139 635(4)	$1.753003(-3)$	
1.072 084(4)	1.343 122(-2)	
2.442 129(3)	6.627 041(-2)	
6.884 265(2)	$2.302508(-1)$	
$2.206153(2)$	4.790 186(-1)	
7.539 373(1)	3.523 444(-1)	
$1.492532(3)$	$2.370714(-3)$	3.967 554(-3)
3.554 013(2)	$3.160566(-2)$	3.109 479(-2)
1.149 534(2)	$1.266335(-1)$	$1.359517(-1)$
4.322 043(1)	-2.417 037(-2)	3.485 136(-1)
1.759 710(1)	-6.187 775(-1)	4.625 498(-1)
7.257765	-4.576 770(-1)	2.035 186(-1)
5.935 261(1)	-4.162 002(-3)	-7.421 452(-3)
2.002 181(1)	7.425 111(-2)	-2.953 410(-2)
8.614561	2.541 360(-1)	6.731 852(-2)
3.660531	-2.903 477(-1)	4.016 660(-1)
1.528111	-7.302 121(-1)	4.926 623(-1)
6.040 570(-1)	-2.076 057(-1)	$1.756893(-1)$
2.379276	5.157 888(-2)	$-1.887663(-1)$
8.858 390(-1)	2.707 611(-1)	1.015 199(-1)
1.285 290(-1)	-1.124 770	9.790 906(-1)
4.519 500(-2)	1.000000	1.000000
	d_{d}	
2.819 147(1)	9.098 881(-2)	
7.523584	3.958 208(-1)	
2.271228	6.947 154(-1)	
$6.116030(-1)$	1.000000	

TABLE XIII. 6-31G basis set for copper.

α	d_{s}	d_{p}
7.679 438(4)	1.748 161(-3)	
1.153 070(4)	1.339 602(-2)	
$2.626575(3)$	6.610 885(-2)	
7.404 903(2)	2.298 265(-1)	
2.373 528(2)	4.787 675(-1)	
8.115 818(1)	$3.530739(-1)$	
1.610 814(3)	2.364 055(-3)	3.963 307(-3)
$3.836367(2)$	3.153 635(-2)	$3.110223(-2)$
$1.241733(2)$	1.269 452(-1)	$1.361350(-1)$
4.674 678(1)	-2.262 840(-2)	3.492 914(-1)
$1.906569(1)$	-6.192 080(-1)	4.624 780(-1)
7.871567	-4.585 393(-1)	$2.020102(-1)$
$6.445732(1)$	-4.33 1075(-3)	-7.523 725(-3)
2.185 212(1)	$7.412307(-2)$	-2.975 687(-2)
9.405343	2.542 108(-1)	6.849 654(-2)
3.999168	-2.874 843(-1)	4.027 141(-1)
1.670297	-7.291 436(-1)	4.908 490(-1)
$6.596270(-1)$	-2.113 951(-1)	1.759 268(-1)
2.600088	$5.027577(-2)$	-1.702 911(-1)
$9.630940(-1)$	2.650 040(-1)	$9.310133(-2)$
1.361 610(-1)	-1.120 155	$9.814336(-1)$
4.733 200(-2)	1.000000	1.000000
α_{d}	d_{d}	
$3.085341(1)$	9.199 905(-2)	
2.495332	6.917 897(-1)	
$6.676580(-1)$	1.000000	

eters are optimized for pure functions, even though the final basis is specified with Cartesian functions.

The functional form of the $6-31 \mathrm{G}$ set orbitals is defined as

$$
\begin{align*}
\phi_{k l}(\mathbf{r})= & \sum_{i=1}^{n_{k}} d_{k l, i} g_{l}\left(\alpha_{k, i}, \mathbf{r}\right) \\
& n_{1}=n_{2}=n_{3}=6 ; \quad n_{4}=3 ; \quad n_{5}=1 \tag{1}
\end{align*}
$$

where $l=s$ or p, the exponents of s and p primitives are constrained to be equal to each other in the same shell, k goes from 1 to 5 , and $g(\alpha, \mathbf{r})$ are normalized Gaussian-type functions. The elements $\mathrm{Sc}-\mathrm{Zn}$ also have d-type functions of the same form

$$
\phi_{k d}(\mathbf{r})=\sum_{i=1}^{n_{k}+1} d_{k d, i} g_{l}\left(\alpha_{k d, i}, \mathbf{r}\right)
$$

Since all these elements have a vacant $4 p$ molecular orbital in the Hartree-Fock function, all $d_{4 p}$ and $d_{5 p}$ coefficients are initially constrained to be zero. All remaining α and d coefficients are optimized to give the lowest ROHF energy for high spin, high orbital angular momentum states, namely $\mathrm{K}\left({ }^{2} S\right), \mathrm{Ca}\left({ }^{1} S\right), \mathrm{Sc}\left({ }^{2} D\right), \mathrm{Ti}\left({ }^{3} F\right), \mathrm{V}\left({ }^{4} F\right), \mathrm{Cr}\left({ }^{5} D\right), \mathrm{Mn}\left({ }^{6} S\right)$, $\mathrm{Fe}\left({ }^{5} D\right), \operatorname{Co}\left({ }^{4} F\right), \mathrm{Ni}\left({ }^{3} F\right), \mathrm{Cu}\left({ }^{2} D\right)$, and $\mathrm{Zn}\left({ }^{1} S\right)$. With ex-

TABLE XIV. 6-31G basis set for zinc.

α	d_{s}	d_{p}
8.240 094(4)	1.743 329(-3)	
1.237 255(4)	1.335 966(-2)	
2.818 351(3)	6.594 365(-2)	
$7.945717(2)$	2.294 151(-1)	
2.547 232(2)	4.785 453(-1)	
8.713 880(1)	$3.537753(-1)$	
1.732 569(3)	$2.361459(-3)$	3.963 125(-3)
4.127 149(2)	$3.150177(-2)$	3.113 411(-2)
$1.336780(2)$	1.272 774(-1)	1.363 931(-1)
$5.038585(1)$	-2.145 928(-2)	3.501 266(-1)
2.058 358(1)	-6.197 652(-1)	4.623 179(-1)
8.505940	-4.590 180(-1)	2.004 995(-1)
6.936 492(1)	-4.440 098(-3)	-7.689 262(-3)
$2.362082(1)$	7.505 253(-2)	-2.997 982(-2)
1.018 471(1)	$2.533111(-1)$	7.082 411(-2)
4.334082	-2.881 897(-1)	$4.046141(-1)$
1.810918	-7.267 052(-1)	4.882 325(-1)
7.148 410(-1)	-2.133 439(-1)	1.751 970(-1)
2.823842	4.898 543(-2)	$-1.586763(-1)$
1.039543	$2.592793(-1)$	8.379 327(-2)
1.432 640(-1)	-1.115711	$9.840547(-1)$
4.929 600(-2)	1.000000	1.000000
$\begin{gathered} \alpha_{d} \\ 3.370764(1) \end{gathered}$	$\begin{gathered} d_{d} \\ 9.262648(-2) \end{gathered}$	
9.061106	4.002 980(-1)	
2.738383	6.896 608(-1)	
7.302 940(-1)	1.000000	

ception of $K\left({ }^{2} S\right)$, these states have a fully occupied 4 s orbital. Optimization on such states may lead to the lack of diffuse d-type primitives which was shown by Hay to be important for the description of $s^{1} d^{n-1}$ and $s^{0} d^{n}$ states. ${ }^{13}$ The use of $\mathrm{Cu}\left({ }^{2} S\right)$ state for parameter optimization, however, had only a minor effect on the basis set. The largest difference was in the outermost d-type primitive, which has the value of 0.5625882 in the $\mathrm{Cu}\left({ }^{2} S\right)$ optimized set, compared to 0.6676575 for $\mathrm{Cu}\left({ }^{2} D\right)$ optimization. Nevertheless, for systems in which configurations with higher d-electron occupation play an important role, the use of $6-31+G$ type set, which is $6-31 \mathrm{G}$ augmented with the set of diffuse functions, may be desirable. These additional diffuse functions require further study.

The $3 s$ inner orbital required a special consideration. The comparison of $d_{3 s}$ coefficients reveals different node structure for the different atoms. All transition metals have a $(1,2,3)$ structure for the $3 s$ orbital. This notation indicates that the orbital has the first $d_{3 s}$ coefficient of one sign, the next two have different sign, and the last three have their signs equal to the first. The $3 s$ orbital of Ca has $(3,3)$ node structure, and $3 s$ orbital of K has $(2,4)$ structure. Each node structure often supports a local minimum, since the transition from one structure to the other goes through the loss of one primitive at the transition point. We performed optimization at different node structures of $3 s$ orbital for all atoms, choosing at the end the one corresponding to the global minimum.

The different node structures lead to differences in the ROHF energies of the order $1 \mu \mathrm{H}$.

The basis functions corresponding to the $4 p$ atomic orbitals cannot be determined in this way, since these orbitals are unoccupied in all the atomic states considered. Exponents and s-coefficients have been found but the inner three $d_{4 p}$ coefficients are indeterminate. We made an attempt to optimize these by studying an excited state, as was done for lighter elements. Such a procedure encountered two major problems. First, the proximity of many excited states to each other made convergence in some cases very difficult to achieve. When the convergence was forced by a variety of techniques, the resulting $4 p$ functions did not demonstrate a consistent trend across the row. Therefore, we decided to use the ground state UHF energy in the presence of the external electric field as an optimization criterion. The UHF energy was chosen over ROHF for purely technical reasons, and we used the GAUSSIAN-94 program for these calculations. ${ }^{14}$ The uniform external field is the simplest form of the simulation of a bonding molecular environment. The field dependence of the optimized $d_{4 p}$ coefficients on vanadium revealed a parabolic dependence with zero derivative around 0.045 a.u. of field strength. The data is shown in Table I. A similar extremum in zinc was found for the field of about 0.055 a.u. We, therefore, chose the field of 0.045 for all atoms. The UHF energies obtained with 6-31G basis sets are shown in Table II, and the basis sets themselves are in Tables (IIIXIV). They can be also downloaded through the Northwestern University Chemistry Department server. ${ }^{15}$

The $6-31 G^{*}$ polarization sets are obtained by adding a single polarization function to the split-valence $6-31 \mathrm{G}$ sets described above. Such functions add flexibility to the basis set in the region of chemical bonds. For K and Ca atoms we used a single set of six uncontracted Cartesian d-functions. The use of Cartesian d-functions is consistent with the $6-31 G^{*}$ set for second-row elements. For atoms Sc through Zn we chose a set of 10 Cartesian f-functions. The alternative would be a set of seven pure f-functions. The Cartesian representation adds three extra p-functions to the valence space, but it has the advantage of simpler coding. This brings the number of basis functions to a total of 23 for K and Ca , and to 39 for Sc through Zn .

The value of the polarization function exponent was optimized by minimizing the energy of fluorides, carbonyls, and carbonyl hydrides. We have also performed the f-function optimization on diatomic hydrides. Unfortunately, in many cases this resulted in either too diffuse f-functions, probably associated with the Rydberg states of the molecule, or too tight f-functions, when their main role was the improvement of the $3 p$ orbital. This is because higher angular momentum functions do not significantly contribute to the bonding in diatomic hydrides. The fluoride compounds somewhat underestimated the optimal value of the polarization exponent by drawing it towards the fluorine core. The carbonyl compounds give the most realistic values of the polarization exponents. The optimized values of polarization exponents were averaged to a single value of 0.2 for the d-function exponent for K and Ca , and to 0.8 for the f-function exponent for atoms Sc through Zn . The values of

TABLE XV. Dependence of the optimized polarization exponent for various molecules. All geometries are optimized on the 6-31G level.

Molecule	Polarization exp.	Recommended exp.
$\mathrm{K}_{2} \mathrm{O}$	0.0808	0.2
KOH	0.0598	
KF	0.0801	
KCl	0.1933	
KH	0.2589	
$\mathrm{Ca}\left(\mathrm{CH}_{3}\right)_{2}$	0.4458	0.2
$\mathrm{Ca}(\mathrm{OH})_{2}$	0.0815	
CaF_{2}	0.1081	
CaO	0.1641	
CaH	0.2404	
CaCl_{2}	0.1655	
ScF_{3}	0.4034	0.8
TiF_{4}	0.5150	0.8
VF_{5}	0.5503	0.8
$\mathrm{V}(\mathrm{CO})_{6}$	0.7311	
VO	0.6628	
CrF_{6}	0.5895	0.8
$\mathrm{Cr}(\mathrm{CO})_{6}$	0.8216	
$\mathrm{MnH}(\mathrm{CO})_{5}$	1.0213	0.8
$\mathrm{Fe}(\mathrm{CO})_{5}$	1.0795	0.8
CoF_{3}	0.8090	0.8
$\mathrm{CoH}(\mathrm{CO})_{4}$	1.2060	
NiF_{2}	2.081	0.8
$\mathrm{Ni}(\mathrm{CO})_{2}$	0.8900	
CuF	0.2235	0.8
CuF_{2}	0.8067	
ZnF_{2}	0.4965	0.8

optimal d - and f-functions for different compounds are given in Table XV, and the UHF energies obtained with $6-31 \mathrm{G}^{*}$ basis sets are shown in Table II. They are lower than the $6-31 \mathrm{G}$ energies for two reasons. First, the Cartesian d and f-type Gaussians contain functions of lower angular momentum. These functions improve the description of the occupied orbitals. Second, unlike ATOM-SCF, the GAUSSIAN 94 program does not impose the angular symmetry on atomic orbitals. This leads to the contamination of s orbitals with d-functions, and p orbitals with f functions, which further lowers the energy for atoms not in S state.

III. PERFORMANCE

We have performed a number of geometry optimization calculations with the $6-31 \mathrm{G}^{*}$ basis set for the molecules for which there is experimental data on their geometric parameters in the gas phase. The results are summarized in Table XVI. The overall discrepancy between experimental values and those calculated with the $6-31 \mathrm{G}^{*}$ set is rather significant. The bond lengths are strongly overestimated in $\mathrm{K}_{2}, \mathrm{CaO}$, and $\mathrm{Fe}(\mathrm{CO})_{5}$ molecules. In order to analyze the discrepancy, we performed additional calculations in these cases.

TABLE XVI. Calculated and experimental equilibrium geometries. Bond lengths are given in angstroms, angles are in degrees.

Molecule	Point group	Parameter	6-31G	6-31G*	Expt.
$\mathrm{K}_{2}{ }^{\text {a }}$	$C_{\infty \nu}$	$r\left(\mathrm{~K}^{\text {K }}\right.$)	4.192	4.202	3.923
$\mathrm{KOH}^{\text {b }}$		r (K O)	2.263	2.244	2.212
		$r(\mathrm{OH})$	0.951	0.944	0.91
$\mathrm{KCl}^{\text {a }}$		$r(\mathrm{~K} \mathrm{Cl})$	2.845	2.777	2.79
$\mathrm{CaO}^{\text {c }}$		$r(\mathrm{Ca} \mathrm{O})$	2.226	2.038	1.822
$\begin{aligned} & \mathrm{TiCl}_{4}{ }^{\mathrm{C}} \\ & \mathrm{VOCl}_{3}{ }^{\mathrm{d}} \end{aligned}$	$\begin{gathered} T_{d} \\ C_{3 \nu} \end{gathered}$	$r(\mathrm{Ti} \mathrm{Cl})$	2.202	2.202	2.170
		r (V O)	1.518	1.490	1.570
		$r(\mathrm{~V} \mathrm{Cl})$	2.162	2.138	2.142
		$\angle \mathrm{ClVCl}$	110.6	110.5	111.3
$\mathrm{Cr}(\mathrm{CO})_{6}{ }^{\text {c }}$	O_{h}	$r(\mathrm{Cr} \mathrm{C})$	1.968	1.987	1.92
		$r(\mathrm{C} \mathrm{O})$	1.137	1.119	1.16
$\mathrm{MnH}^{\text {a }}$	$D_{3 h}$	$r(\mathrm{Mn} \mathrm{H})$	1.789	1.789	1.731
$\mathrm{Fe}(\mathrm{CO})_{5}{ }^{\mathrm{e}}$		$r_{\mathrm{ax}}(\mathrm{Fe} \mathrm{C})$	2.050	2.035	1.807
		$r_{\text {eq }}(\mathrm{Fe} \mathrm{C})$	1.830	1.859	1.827
		$r_{\text {aver }}(\mathrm{C} \mathrm{O})$	1.134	1.117	1.153
$\mathrm{Ni}(\mathrm{CO}) 4^{\text {c }}$	T_{d}	$r(\mathrm{Ni} \mathrm{C)}$	1.850	1.866	1.838
		$r(\mathrm{C} \mathrm{O})$	1.134	1.117	1.141
$\mathrm{CuF}^{\text {a }}$		$r(\mathrm{CuF})$	1.754	1.729	1.743
$\mathrm{ZnH}^{\text {a }}$		$r(\mathrm{Zn} \mathrm{H})$	1.630	1.615	1.595

${ }^{\mathrm{a}}$ Experimental geometry from Ref. 22.
${ }^{\mathrm{b}}$ Experimental geometry from Ref. 23.
${ }^{\mathrm{c}}$ Experimental geometry from Ref. 24.
${ }^{\mathrm{d}}$ Experimental geometry from Ref. 25.
${ }^{\mathrm{e}}$ Experimental geometry from Ref. 26.

The Hartree-Fock method is known to overestimate significantly the iron-ligand bond lengths. ${ }^{16}$ Our MP2 (secondorder Moller-Plesset) geometry optimization for iron pentacarbonyl significantly reduced the $\mathrm{Fe}-\mathrm{C}$ bond lengths, making them even shorter than the experimental ones. This result is consistent with the calculated iron-ligand distance for ferrocene ${ }^{17}$ and $\mathrm{FeCO}^{+},{ }^{18}$ where the Hartree-Fock model also significantly overestimates $\mathrm{Fe}-\mathrm{C}$ bond length, while MP2 underestimates it. Good agreement with experimental $\mathrm{Fe}(\mathrm{CO})_{5}$ geometry can be achieved through the complete active space second-order perturbation theory (CASPT2) ${ }^{19}$ and coupled-cluster ${ }^{20}$ methods.

The uncontraction of the valence basis function and addition of two extra polarization functions had only minor effect on the bond distance in K_{2}. The overestimation of the bond length in potassium dimer was also observed in the pseudopotential calculation and is attributed to the missing core-valence interaction terms. ${ }^{21}$ In the case of all-electron calculations such overestimation can, therefore, be also attributed to the neglected correlation between core and valence electrons.

The overestimation of the bond length in CaO can be attributed to the basis set deficiency. Addition of a second polarization d function to calcium with the exponent of 2.0 leads to the optimized bond length of $1.8745 \AA$, which is an improvement of the agreement with experiment by 75%. A further study of the basis set requirements for the systems with multiple bonds might be necessary.

The performance of the $6-31 G^{*}$ basis set for the rest of
the molecules gives an agreement with experiment similar to that for the molecules with second-row elements. ${ }^{9}$

IV. CONCLUSIONS

The $6-31 G^{*}$ polarization basis set has been extended to elements K through Zn . It can be used both in the Cartesian or spherical harmonic representation of the basis functions of higher angular momentum. The Hartree-Fock calculations on a sample set of molecules shows that for single bonded metal-ligand systems the agreement with experimental geometries is similar to that for the second-row atoms. The agreement is worse for multiple bonded systems, often due to the shortcomings of the Hartree-Fock model.

ACKNOWLEDGMENT

This research is supported by the the Chemistry Division of the NSF.
${ }^{1}$ W. J. Hehre, L. Random, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
${ }^{2}$ K. Dobbs and W. J. Hehre, J. Comput. Chem. 8, 867 (1987).
${ }^{3}$ A. Schafer, H. Horn, and R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992).
${ }^{4}$ A. Schafer, C. Huber, and R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994).
${ }^{5}$ A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970).
${ }^{6}$ J. L. C. Thomas, J. Charles W. Bauschlicher, and M. B. Hall, J. Phys. Chem. A 101, 8530 (1997).
${ }^{7}$ F. E. Jorge and A. B. F. da Silva, J. Chem. Phys. 104, 6278 (1996).
${ }^{8}$ W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972).
${ }^{9}$ M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, and J. A. Pople, J. Chem. Phys. 77, 3654 (1982).
${ }^{10}$ B. Roos, C. Salez, A. Veillard, and E. Clementi, Technical report, IBM Research Laboratory, San Jose, CA (unpublished).
${ }^{11}$ R. P. Brent, in Algorithms for Minimization without Derivatives (PrenticeHall, Englewood Cliffs, New Jersey, 1973), Chap. 7.
${ }^{12}$ W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipies in FORTRAN, 2nd ed. (Cambridge University Press, New York, 1994).
${ }^{13}$ P. J. Hay, J. Chem. Phys. 66, 4377 (1977).
${ }^{14}$ GAUSSIAN 94, Revision D.4, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople (Gaussian, Inc., Pittsburgh PA, 1995).
${ }^{15}$ The $6-31 \mathrm{G}$ and $6-31 \mathrm{G}^{*}$ basis sets are available for anonymous downloading at $\mathrm{ftp} . c h e m . n w u . e d u$, or via world wide web at $\mathrm{ftp}: / / \mathrm{ftp} . c h e m . n w u . e d u /$ pub/basis.
${ }^{16}$ J. Demuynck, A. Strich, and A. Veillard, Nouv. J. Chim. 1, 217 (1977).
${ }^{17}$ W. Klopper and H. P. Luthi, Chem. Phys. Lett. 262, 546 (1996).
${ }^{18}$ A. Ricca, J. Charles W. Bauschlicher, and M. Rosi, J. Phys. Chem. 98, 9498 (1994).
${ }^{19}$ B. J. Persson, B. Roos, and K. Pierloot, J. Chem. Phys. 101, 6810 (1994).
${ }^{20}$ H. P. Luthi, J. Mol. Struct. 388, 299 (1996).
${ }^{21}$ G. H. Jeung, J. P. Malrieu, and J. P. Daudey, J. Chem. Phys. 77, 3571 (1982).
${ }^{22}$ G. Herzberg, Molecular Spectra and Molecular Structure, 2nd ed. (Krieger, Malabar, Florida, 1989).
${ }^{23}$ E. F. Pearson and M. B. Trueblood, J. Chem. Phys. 58, 826 (1973).
${ }^{24}$ CRC Handbook of Chemistry and Physics, 78th ed., edited by D. R. Lide (CRC Press, Boca Raton, Florida, 1997).
${ }^{25}$ K. Karakida and K. Kuchitsu, Inorg. Chim. Acta 13, 113 (1975).
${ }^{26}$ B. Beagley and D. G. Schmidling, J. Mol. Struct. 22, 466 (1974).

[^0]: ${ }^{\text {a) }}$ E-mail: rassolov@chem.nwu.edu
 ${ }^{\text {b }}$ Present address: Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, 3335 Q. Ave., MS K8-91, Richland, WA 99352.

