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Abstract. This work investigates the problem of 6-Degrees-Of-Freedom
(6-DOF) object tracking from RGB-D images, where the object is rigid
and a 3D model of the object is known. As in many previous works, we
utilize a Particle Filter (PF) framework. In order to have a fast tracker,
the key aspect is to design a clever proposal distribution which works
reliably even with a small number of particles. To achieve this we build
on a recently developed state-of-the-art system for single image 6D pose
estimation of known 3D objects, using the concept of so-called 3D ob-
ject coordinates. The idea is to train a random forest that regresses
the 3D object coordinates from the RGB-D image. Our key technical
contribution is a two-way procedure to integrate the random forest pre-
dictions in the proposal distribution generation. This has many practical
advantages, in particular better generalization ability with respect to
occlusions, changes in lighting and fast-moving objects. We demonstrate
experimentally that we exceed state-of-the-art on a given, public dataset.
To raise the bar in terms of fast-moving objects and object occlusions,
we also create a new dataset, which will be made publicly available.

1 Introduction

In this paper we address the problem of tracking the pose of a previously known
rigid object from a RGB-D video stream in real-time. The object pose is typically
expressed relative to the camera and has 6-DOF, three for orientation and three
for position. A solution to this problem has great impact in many application
fields, ranging from augmented reality, human-computer interaction, to robotics.
However, given constraints on high precision, real-time, as well as robustness to
real world situations, such as occlusions and changes in lighting conditions, this
is still an open problem.

Building on the results of multiple decades of research on object tracking, very
recently several researchers have re-investigated pose estimation [14, 21, 4] and
tracking approaches [16, 8, 18] in order to exploit new RGB-D sensor technology
and to ensure real-time support through GPU based implementations. For the
tracking problem the PF framework [12] has become a preferred choice as it can
model multi-modal probability densities that are essential for successful tracking
of objects with occlusions.

As described in more detail in Sec. 3.2 the PF framework incrementally traces
the posterior probability density of the 6D pose through a set of samples from
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the 6D Euclidean Group SE(3)1. Key ingredients to the PF are a model for
the relative motion of the object over time, as well as an observation model
for the image formation process. In single image pose estimation approaches,
like [4], solely the observation model is used. An important difficulty in the
application of the PF framework to 6D pose tracking is the high dimensionality
of the state space, as each particle represents a 6D pose estimate. This either
demands for a huge number of particles prohibiting real-time systems or for an
importance sampling approach (compare [10]) based on a proposal distribution
that effectively approximates the posterior probability distribution. Any pose
estimation approach can be used to implement a proposal distribution as shown
by Stückler et al. in [24], where a multi-resolution surfel representation of the
tracked object was utilized.

In this work we demonstrate the combination of the PF framework with the
recently developed concept of object coordinate regression which has achieved
state of the art results for one shot estimation of camera pose [22] or object
pose [4]. The object coordinate regression framework is detailed in Sec. 3.1.
It exploits random forests to automatically learn optimal features from RGB-
D training images. Brachmann et al. [4] have shown that such learning based
approaches can efficiently deal with changes in illumination and with partial
occlusions. Given this distinction between a training and test phase, our system
works as follows. Given a potentially large selection of 3D objects, here 4, and 20
in [4], as well as example images of background, we first train a random forest.
At test time, we know which object we want to track and use the output of
the forest only for this particular object. Note, a straightforward extension, not
evaluated in this work, is to jointly do multiple object detection and tracking.
In this work, we carefully extend the work [4] to the 6D pose tracking problem.
Our main contributions are:

– A new model-based 6D pose tracking framework, based on the concept of
predicting 3D object coordinates, which helps to generalize better to real-
world settings of fast-moving objects, occlusions and changes in lighting.

– The technically new aspect is a two-way procedure for optimally using the
output of the object coordinate regression framework to determine the pro-
posal distribution of the tracker.

– A new, challenging 6D pose tracking data set that will be publicly available.
– A system that exceeds state of the art results on 6D model-based tracking.

2 Related Work

Almost two decades ago the PF has been introduced for 2D visual tracking by
Isard and Blake [15]. Based on a statistical observation model and a motion
model the PF approximates the posterior distribution of the object’s position in
a non parametric form, using a set of samples. Ten years later Pupilli et al. [20]
adapted the framework to 6-DOF camera tracking using edge features. Shortly

1 The group of rigid body transformations.
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later Klein et al. [16] presented an implementation that utilized the GPU for
the evaluation of its observation model, which usually is the bottleneck in PF
applications. The GPU implementation enabled them to deal with hidden edges
while allowing a speedup [16].

The number of necessary particles and therefore the runtime can be reduced
by guiding particle sampling with a proposal distribution. Ideally the proposal
distribution is very close to the posterior distribution. Furthermore, it needs to
exploit both the observation model and the motion model in order to improve
over the standard PF as well as over one shot pose estimation. Bray et al. [5]
improved hand pose tracking with a proposal distribution, which was defined
as the mixture of two distributions both represented as a particle ensemble.
The first particle ensemble is constructed in the default manner by applying the
motion model to the sampled posterior distribution of the previous frame. The
second ensemble is constructed by moving the resulting particles further to local
optima and using them as centers of a mixture of normal distributions. Teuliere
et al.[26] used a similar approach to edge-based tracking of simple objects from
luminance images. Corresponding approaches for 3D pose tracking from RGB-D
videos can be found in [9, 7, 18].

A PF that has to operate on the 6D Euclidean group SE(3) brings some
theoretical challenges. The definition of probability distributions and calculation
of average rotations is not straight forward. A theoretical analysis of these issues
can be found in [6] and [17]. While earlier methods relied on simple random walk
motion models, Choi et al. [9] used autoregressive models that assume a more
or less constant pose velocity and were thus able to deal with faster motion.

With the availability of RGB-D sensors, the question of the best image fea-
tures for the observation model has sparked recent research. Stückler et al. [24]
use RGB-D images to learn 3D surfel maps of objects and use them in a PF
operating on RGB-D. Choi et al. [8] present in their recent work a highly opti-
mized GPU implementation that uses a traditional mesh representation. Their
observation model is based on comparing rendered images and observations us-
ing color as well as depth features. Learning of the best features in a random
forest has been successfully applied to pose estimation of articulated objects [25],
camera pose [22] and object poses [4]. In these approaches a random forest is
trained to predict part or object probabilities and in the latter two approaches
also coordinates in a reference coordinate system of the background scene or
the learned objects. During detection the output of this discriminative model
is used as input to an optimization procedure for the 3D-pose with respect to
an observation model. Brachmann et al. [4] improve over this basic concept by
beneficially incorporating the predicted object probabilities and coordinates into
the observation model, which is formulated in form of an energy.

In this work we build a PF tracking framework with the energy based obser-
vation model of [4] and carefully design a proposal distribution that intelligently
exploits the input RGB-D image as well as the output of the trained discrimina-
tive model. In this way we combine the robustness of the discriminative model
with respect to changes in illumination and the robustness of the PF framework
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with respect to occlusions. Furthermore, we use a two-way PF that builds on
similar ideas as annealed PF approaches as previously proposed in [16] and [2].
The random forest approach is in spirit similar to boosting based approaches
that have been examined in the area of tracking in the works [19, 13, 1, 27]. Fi-
nally, our approach also uses GPU rendering features to efficiently evaluate the
observation model.

3 Method

Given a stream of RGB-D images of a moving object our goal is to estimate in
each frame t the object poseHt. We assume that a 3D model of the corresponding
object is available. We define the pose Ht as the transformation that maps a
point from the local coordinate system of the object to the coordinate system of
the camera. We cast pose estimation as a tracking problem and solve it with a
PF framework. In Sec. 3.1 we introduce a regression forest, that predicts object
probabilities and local object coordinates. This output is used in several steps
of our approach. Then, we briefly reiterate the basic PF framework (Sec. 3.2).
We follow with a description of our motion model (Sec. 3.3) and our definition
of particle likelihood (Sec. 3.4). Finally, in Sec. 3.5 we describe how we adapt
sampling of particles according to a proposal distribution which concentrates
on image areas where high particle likelihood is expected. This is the main
component to facilitate efficient and robust pose tracking.

3.1 Discriminative Prediction of Object Probabilities and Object
Coordinates from a Single RGB-D Image

In order to assess the likelihood of particles (Sec. 3.4), and to concentrate hy-
potheses sampling on promising image areas (Sec. 3.5) we utilize a discriminative
function. This function takes local image patches as input and estimates the fol-
lowing two outputs for the center pixel of each patch: the probability p(c) of
the pixel belonging to object c, and its coordinate yc in the object coordinate
system. We follow exactly the setup of [4] to achieve this mapping densely for
each pixel of the current frame t using decision forests.

Note that we train the forest jointly for multiple objects although, in this
work, we consider tracking one pre-specified object c only. During test time,
discriminative predictions are only calculated for object c. Other objects, which
the forest might know, are not considered. However, the same forest can provide
predictions for different objects, so that training has to be done only once. In
the following we give a short summary on training and prediction.
Training. We train an ensemble T of decision trees T j . Each tree is trained
separately using a set of object images as well as neutral background images.
Object images are segmented and show object c in different poses. Each pixel
within a segmentation mask is furthermore annotated with its object coordinate
yc. Trees operate on simple scale-invariant depth and RGB difference features
[22]. During training we select for each node one feature out of a randomly gen-
erated pool that maximizes the standard information gain defined on a discrete
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set of labels. These labels are obtained by separating object c into ncell cells
with a 3D grid resulting in ncell discrete labels per object. One additional label
is assigned to the background class.

We do not restrict tree depth but stop growing when less than a minimum
number of pixels arrive at a node. At each leaf lj we approximate the object
probability p(c|lj) by the fraction of pixels at that leaf that belong to object c.
The estimate of the object coordinate yc,lj is found by running mean-shift on
all pixels of object c in leaf lj and taking the largest mode.
Prediction. Each pixel of an input image is run through each tree in T and
arrives at leafs (l1, . . . , l|T |). This results in a list of object probabilities (p(c|l1),
. . . , p(c|l|T |)) and object coordinates (yc,l1 , . . . , yc,l|T |) for each object c. The
object probabilities of all trees are combined with Bayes rule over all known
objects and the background class to obtain the final p(c) for each pixel [4].

3.2 PF for 3D pose tracking

A PF approximates the current posterior distribution p(Ht|Z1:t) of the pose Ht

at time t given all previous observations Z1:t. In each time step t the posterior
distribution is represented by a set of samples St = {H1

t , . . . , H
N
t }, which are

referred to as particles. Each particle has two velocity vectors vt and et attached.
They correspond to the previous translational and rotational motion respectively.

The PF requires an observation model and a motion model. The former
describing the likelihood p(Zt+1|Ht+1) of an observation given a pose. The latter
describing the probability p(Ht+1|Ht,vt, et) of a pose given the previous pose
Ht as well as the last velocity vectors. With each new frame t + 1 a new set of
particles St+1 is found in three steps:

1. Sampling: For each particle Hi
t an intermediate particle Ĥi

t+1 is sampled

according to the motion model p(Ĥi
t+1|H

i
t ,v

i
t, e

i
t). New velocities vi

t+1 and

eit+1 are calculated (see supplemental note for details) using Hi
t and Ĥi

t+1.
2. Weighting: Each intermediate particle is assigned a weight πi

t+1, which is

proportional to the likelihood p(Zt+1|Ĥ
i
t+1) of the observed data given the

pose Ĥt+1.
3. Resampling: Finally, the set St+1 = {H1

t+1, . . . , H
N
t+1} of unweighted parti-

cles (with their attached velocities), is randomly drawn from {Ĥ1
t+1, . . . , Ĥ

N
t+1}

using probabilities proportional to the weights πi
t+1.

The number of particles required to approximate the 6D posterior distribution
can be drastically reduced if the sampling is concentrated in areas where one
expects the true pose of the object. This is done using a proposal distribution
q(Ht+1|Ht,vt, et) in the sampling step instead of the original motion model.
To compensate for the fact that we sample from a different distribution, the
calculation of weights has to be adjusted according to Eq. (19) in [10]:

πi
t+1 ∝ p(Zt+1|Ĥ

i
t+1)

p(Ĥi
t+1|H

i
t ,v

i
t, e

i
t)

q(Ĥi
t+1|H

i
t ,v

i
t, e

i
t)

(1)
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In the following we describe the specifics of our implementation of the PF frame-
work: the motion model, the observation likelihood, and finally, our main contri-
bution, the construction of our proposal distribution. An overview of our tracking
pipeline can be found in Fig. 1.
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Fig. 1. Our tracking pipeline. For each frame t the RGB-D image(a) is processed
by the forest to predict object probabilities and local object coordinates(b). We use
the observed depth from the original image, the forest predictions and the particles
from the last frame together with our motion model(d) to construct our proposal
distribution(c). Particles are sampled(e) according to the proposal distribution, then
weighted(f) and resampled(g). Our final pose estimate is calculated as mean of the
resampled particles(h).

3.3 Our Motion Model

The motion model describes which movements of the object are plausible be-
tween two frames. Generally speaking, we assume our object roughly continues
its previous motion, and that an additional random normally distributed trans-
lation is applied to our pose together with a random rotation around the center
of the object. More specifically we assume the rotation to be around a uniformly
chosen random axis and the angle of the rotation to be normally distributed. We
will introduce a continuous probability distribution on SE(3) representing such
a random motion. It will be reused in the context of our proposal distribution
as described in Sec. 3.5.

Let Rt and Tt be the homogeneous 4x4 matrix representations of the rota-
tional and translational component of the pose Ht = TtRt. We model the change
of the pose between two time steps t and t+ 1 separately for both components:
Ht+1 = Tt+1Rt+1 with Tt+1 = ∆T

t Tt, Rt+1 = ∆R
t Rt where ∆T

t and ∆R
t are 4x4

translation and rotation matrices, representing the change in the rotational and
translational component respectively. Note that ∆R

t contains the relative rota-
tion around the object center and not the camera center. Translational change
is defined as:

∆T
t = T

(

λTvt + ωT

)

(2)

The vector ωT contains independent zero centered Gaussian noise with σ2
T vari-

ance. The symbol λT stands for a damping parameter. It determines how much
the previous translation, described by the velocity vector vt is continued. Finally,
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T (v) shall be the translation matrix corresponding to the translation vector v.
The rotational change is defined as:

∆R
t = R(ωRθ)R(λRet) (3)

The symbol ωR stands for a random unit vector that defines the rotation axis of
the random movement. Here θ is a Gaussian distributed zero centered random
variable determining the rotation angle2. Its variance is σ2

R. The symbol λR

stands for a damping parameter. It determines how much the previous rotation,
described by the rotational velocity vector et is continued. Finally, R(e) shall
stand for the rotation matrix corresponding to the rotation vector3 e.

Based on the model described above we can calculate the probability den-
sity p(Ht+1|Ht,vt, et) for a transition to pose Ht+1 given the previous pose
Ht. We approximate our motion model using the following density function
f(Ht+1;H

pred
t , Σmm, κmm), which is described at the end of this section:

p(Ht+1|Ht,vt, et) ≈ f(Ht+1;H
pred
t , Σmm, κmm) (4)

This function describes the probability of an arbitrary pose Ht+1 with respect
to the predicted pose Hpred

t , which is found by extrapolating previous motion
given by the velocity vectors vt and et. The probability distribution depends on
the variance in the translational component through Σmm and the variance of
the rotational component through κmm. The diagonal matrix Σmm = Iσ2

T , the
term κmm = 1/σ2

R and

Hpred
t = T (λTvt)TtR(λRet)Rt (5)

The density function f(H;H ′, Σ, κ) corresponds to the random motion described
in Eqs. (2) and (3):

f(H;H ′, Σ, κ) = fn(v
diff ;0, Σ)fvm(θdiff ; 0, κ)φ(θdiff ) (6)

It consists of a zero centered multivariate normal distribution fn(v
diff ;0, Σ)

and a zero centered von Mises distribution fvm(θdiff ; 0, κ). While the vector
vdiff denotes the translational difference between H ′ and H, the symbol θdiff

stands for the angle of the difference rotation. The normal distribution models
the translational noise ωT introduced in Eq. (2). The von Mises distribution in
Eq. (6) is a close approximation for a wrapped normal distribution, it models the
Gaussian rotational noise introduced by θ in Eq 3. Note that the random rotation
axis ωR of Eq. (3) has no influence on the density, since each rotation axis has
equal probability. Also note that an additional factor φ(θdiff ) is necessary to
map the 1D density over angles onto the group of rotations SO(3). A more
detailed discussion of φ(θdiff ) can be found in the supplemental note.

2 Please note, that because of its circular nature, applying rotations with the normally
distributed angles θ will result in angles distributed in the interval between 0 and
2π according to a wrapped normal distribution. Such a distribution is difficult to
handle and we will use a von Mises distribution as approximation.

3 Direction and length of a rotation vector correspond to rotation axis and rotation
angle, respectively.
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3.4 Our Observation Likelihood

We use a likelihood formulation based on the energy E(H) from [4]:

p(Zt+1|H) ∝ exp(−αE(H)) (7)

where α is a control parameter determining how harshly larger energy values
should be punished. The energy term is a weighted sum of three components
Edepth(H), Ecoord(H) and Eobj(H). Detailed equations can be found in [4].
The depth component Edepth(H) punishes deviations between the observed and
rendered depth images within the object mask. The other two components are
concerned with the output of the forest. The coordinate component Ecoord(H)
punishes deviations between each pixels true object coordinates for pose H and
the object coordinates predicted by the forest. The object component Eobj(H)
punishes deviation between the ideal segmentation obtained by rendering and
the soft segmentations predicted by the trees in form of p(c|lj).

In contrast to [4], we use a simple modification of the depth term, that copes
better with occlusion. Depth values that lie in front of the object can be explained
by occlusion. This is not the case for depth values that lie behind the object.
Our modified depth term accounts for this by reducing the threshold of possible
punishment for values in front of the object. A detailed description can be found
in the supplemental note.

3.5 Our Proposal Distribution

Our proposal distribution allows our method to cope with unexpected motion
and occlusion, while maintaining high accuracy. It allows us to approximate the
posterior distribution p(Ht|Z1:t) more accurately with a small number of parti-
cles. The construction of our proposal distribution is described in the following,
and subsumed in Fig. 2.

A proposal distribution describes the sampling of a new particle Ĥi
t+1 on the

basis of an old particle Hi
t . We define the proposal distribution q(Ht+1|Ht,vt, et)

for the particle Hi
t as a mixture of two parts (Fig. 2(o)):

q(Hi
t+1|H

i
t ,v

i
t, e

i
t) = (1− αprop)f(Hi

t+1;H
i,pred
t , Σprop, κprop)

+αpropf(Hi
t+1;H

est
t+1, Σ

prop, κprop)
(8)

The mixture is governed by the weight αprop. Both parts reuse the density
function defined in Eq. (6) with variance parameters Σprop and κprop, which
can be found in the supplemental note. The first part of Eq. (8) is centered on

Hi,pred
t which is the extrapolation of the current particle Hi

t according to our

motion model as described in Eq. (5). Hence, Hi,pred
t differs for each particle Hi

t .
The second part of Eq. (8) is centered on a preliminary estimate Hest

t+1 which is
found based on the output of our discriminative function (Sec. 3.1). It does not
depend on Hi

t , but is shared among all particles.
Regarding Hest

t+1, we will discuss two different ways to quickly obtain a good
estimate: One way finds a local estimate H local

t+1 , the other way finds a global



6-DOF Model Based Tracking via Object Coordinate Regression 9

Depth

p(c)

yj

Sampled6D
Pose

Hypotheses

Particles
(t)

Motion
Model

Moved
Particles

Weighted
Hypotheses

Estimated
PDF

Mean
Pose

Ref ned
Pose

Mean
Pose

Ref ned
Pose

Optimized
Pose

Estimated
PDF

local

global
(a) (b) (d)

(c)

(f)

(e)

(g) (h)

(i) (j)

(k) (l)

(m)
(n) (o)

Hlocal
t+1

Hglobal
t +1

q(H |H )t+1 t
i i

Hest
t+1

Fig. 2. To construct our proposal distribution we first calculate a continuous repre-
sentation of the prior distribution for the pose at the current frame (a-d). Next we
determine two pose estimates Hlocal

t+1 (light gray) and H
global
t+1 (dark gray). The local

estimate is calculated based on a local search on propagated solutions via the motion
model (i-j). The global estimate is based on the pose sampling scheme from [4] (e-l).
We choose the particle with the lower energy and use it as starting point for a final
optimization (n). Our final proposal distribution q(Hi

t+1|H
i
t) for particle Hi

t is a mix-
ture of two components (o): one centered on Hi

t and one on the newly found particle
in (n). This figure represents component (c) of Fig. 1.

estimate Hglobal
t+1 . While a proposal distribution based on a local estimate is

sufficient in most cases, it may fail in situations with fast unexpected motion. The
global estimate on the other hand depends on the quality of the discriminative
prediction and may at times give noisy results. As a consequence, we apply a
combination of the two approaches:

Hest
t+1 = argminH∈HE′(H);H = {H local, Hglobal} (9)

Note, that this is our main technical contribution. Energy E′(H) will be defined
below. The preliminary estimate Hest

t+1 is optimized (Fig. 2(n)) using a general
purpose optimizer (details can be found in the supplemental note).

The remainder of this section is concerned with the calculation of H local
t+1 and

Hglobal
t+1 . First, however, we discuss how we represent prior knowledge used in

both estimates.
Prior Knowledge. The proposal distribution should be an estimate of the pos-
terior p(Ht+1|Z1:t+1). Both of our estimates should thus include not only knowl-
edge taken from the current observation i.e. the likelihood and results from the
discriminative function, but also information from the previous particle set i.e.
the prior. To include the prior we perform the following preparatory steps. We
take the last set of particles St = {H1

t , . . . , H
N
t } and move each particle accord-

ing to the motion model (Fig. 2(a-c)). The result is an extrapolated set of parti-
cles S̃t+1 = {H̃1

t+1, . . . , H̃
N
t+1}. In order to obtain a continuous representation we

reuse the distribution f(H;Hcenter, Σ, κ) (Eq. (6)). We fit f(H;Hcenter, Σ, κ) to
the set S̃t+1 (Fig. 2(d)). The resulting parameters are H̃center, Σ̃, κ̃. For details
on the fitting procedure, please refer to the supplemental note. The distribution
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f(H; H̃center, Σ̃, κ̃) is a representation of the knowledge we have about the pose
at the current time t+1 without considering the current observation Zt+1. It is
a representation of the prior.
Local Estimate. To find H local

t+1 , we use H̃center (Fig. 2(i)) as starting point
for refinement as described in [4] (Fig. 2(j)). This refinement is done by repeat-
edly finding inlier pixels. Their predicted object coordinates together with the
observed depth values enable a rough but quick optimization using Kabsch al-
gorithm. In order to include prior knowledge in the refinement we change the
objective function to:

E′(H) = αE(H)− ln f(H; H̃center, Σ̃, κ̃) (10)

Because of this adjustment of the objective function the resultingH local
t+1 becomes

a local maximum a posteriori (MAP) estimate.

Global Estimate. Calculation of the global estimate Hglobal
t+1 is based on a

sampling scheme similar to the one in [4]. We sample a set of m particles Ȟi

(Fig. 2(e-g)). Details can be found in the supplemental note. Then, the particles
Ȟi are weighted using the distribution f(H; H̃center, Σ̃, κ̃) (Fig. 2(h)). Finally,
their weighted mean is calculated (Fig. 2(k)) and used as initialization for the
refinement (Fig. 2(l)), again using E′(H) from Eq. (10) as objective function.

This yields Hglobal
t+1 .

4 Experiments

Some RGB-D object tracking datasets have been published in recent years. For
example, Fanelli et al. [11] recorded a dataset to track human head poses using a
Kinect camera. Song and Xiao [23] used a Kinect camera to record 100 RGB-D
video sequences of arbitrary objects but do only provide 2D bounding boxes as
ground truth. For our purpose, we found only one relevant dataset from Choi
and Christensen [8]. It consists of 3D object models and synthetic test sequences.
For further evaluation, we recorded a new more challenging and realistic dataset
on which we compared our approach. Additionally, we conduct experiments to
demonstrate that our proposal distribution achieves superior results when un-
expected object motion occurs.

Kinect Box Milk Orange Juice Tide

Fig. 3. Example images of the dataset provided by Choi and Christensen [8].

Dataset of Choi and Christensen [8]. The dataset of Choi and Christensen
[8] provides four textured 3D models and four synthetic test sequences (1000
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RGB-D frames). To generate the test sequences, each of the four objects was
placed in a static texture-less 3D scene and the camera was slowly moved around
the object. The authors provide the ground truth camera trajectory which is
error-free since it was generated through rendering. Fig. 3 shows one image of
each sequence.

To gather the training data for our random forest we rendered RGB-D images
of each model. We sampled the full view sphere of the model regularly with
fixed distance and including in-plane rotation. For the background set we used
renderings from multiple 3D scenes from Google warehouse. We trained three
decision trees with a maximum feature patch size of 20 pixel meter and ncell =
125 discrete labels per object. We trained the trees for all 4 objects jointly.
For each testing sequence the object to be tracked is assumed to be known, and
predictions are only made for this object. Our PF uses 70 particles. The complete
list of parameters is included in the supplemental note.

3

2.5

2

1.5

1

0.5

0

Choi and Christensen Our approach

mean translational

error (mm)

mean rotational

error (deg)

Fig. 4. Averaged translation and rotation
RMSE on the dataset of [8].

Fig. 5. Reconstructed motion trajectory
(green) for one sequence of our dataset
(Cat, sequence 1). Ground truth is de-
picted blue for comparison.

While testing we follow the evaluation protocol of Choi and Christensen [8]
and compute the Root Mean Square Error (RMSE) of the translation parameters
X,Y and Z and the rotation parameters Roll, Pitch and Yaw. We average the
translational RMSE over three test runs, the coordinates (X,Y and Z), as well
as over the four objects to obtain one translational error measure. We do the
same for rotational RMSE. We compare to the numbers provided in [8] which
also include results for the tracking implementation of the Point Cloud Library
(PCL) [3]. We base our comparison on the results in [8] achieved with 12800
particles, for which the lowest error is reported.

Our method results in an average translational RMSE of 0.83 mm compared
to 1.36 mm for [8], i.e. we achieve a 38% lower translational error (PCL: 18.7
mm). For the average rotational RMSE we report 1.38 deg compared to 2.45
deg in [8], which is 43% lower (PCL: 29.6 deg). We achieve these results while
keeping the computation time on our system4 comparable to the one reported

4 Intel Core i7-3820 CPU @ 3.6GHz with a Nvidia GTX 550 TI GPU
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in [8]. Figure 4 depicts the average RMSE over all objects. Detailed results
including run-times can be found in Table 1.

Objects Tracker RMSE
X (mm) Y (mm) Z (mm) Roll (deg) Pitch (deg) Yaw (deg) Time (ms)

PCL 43.99 42.51 55.89 7.62 1.87 8.31 4539
Kinect Box Choi and Christensen 1.84 2.23 1.36 6.41 0.76 6.32 166

Our 0.83 1.67 0.79 1.11 0.55 1.04 143

PCL 13.38 31.45 26.09 59.37 19.58 75.03 2205
Milk Choi and Christensen 0.93 1.94 1.09 3.83 1.41 3.26 134

Our 0.51 1.27 0.62 2.19 1.44 1.90 135

PCL 2.53 2.20 1.91 85.81 42.12 46.37 1637
Orange Juice Choi and Christensen 0.96 1.44 1.17 1.32 0.75 1.39 117

Our 0.52 0.74 0.63 1.28 1.08 1.20 129

PCL 1.46 2.25 0.92 5.15 2.13 2.98 2762
Tide Choi and Christensen 0.83 1.37 1.20 1.78 1.09 1.13 111

Our 0.69 0.81 0.81 2.10 1.38 1.27 116

Table 1. Comparison of the translation error (X,Y,Z), rotation error (Roll, Pitch,
Yaw) and computation time on the synthetic dataset of Choi and Christensen [8] with
results from our method, [8] and the PCL.

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 6. (a)-(c) Our objects from left to right Cat, Toolbox, Samurai. (d) color frame and
(e) depth frame recorded with the commercially available Kinect camera.(f) Probability
map and (g) predicted 3D object coordinates from a single tree mapped to the RGB-
cube for the object Cat.

Our dataset. The dataset which was provided by [8] is problematic for several
reasons: testing sequences are generated synthetically without camera noise, and
without occlusion. The objects are placed in a texture-less and static environ-
ment. In a static scene, a tracking method can in theory use the entire image
to estimate the motion of the camera instead of estimating the motion of the
object. Furthermore, the camera is moved around the object. The statistics of
object motion when the camera is moved are very different from a situation
where the camera is static and the object is moved. E.g., a complete vertical flip
of the object is unlikely in the first scenario.

To address these issues we introduce our own dataset which consists of three
objects. The objects were scanned in using Kinect, and six RGB-D testing se-
quences were recorded (350+ frames each). The objects are moved quickly in
front of a static camera and are at times strongly occluded. Ground truth poses
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Fig. 7. Example images from our dataset. Blue object silhouettes depict ground truth
and green silhouettes depict the estimated poses. The first four columns show correctly
estimated poses and the last column missed poses.

were manually labeled by hand annotation followed by ICP. In Fig. 7 five images
of each object are shown. For our dataset we trained decision trees as discussed in
the previous section, but with renderings of our scanned-in objects, and a set of
arbitrary RGB-D office images as background set. We keep all other training pa-
rameters as in the previously described experiment. We compare our approach to

Objects Sequence

Ratio
of

frames
used

Method
Our Approach Brachmann et al.

full proposal
distribution

local proposal
distribution

Accuracy Accuracy Accuracy

Cat
1

100% 100% 89% 66.8%
33% 91.5% 90.4%

2
100% 99.4% 100% 44.2%
33% 94.9% 87.8%

Samurai
1

100% 96.3% 96.7% 72%
33% 68.6% 52.4%

2
100% 92.3% 98.1% 33.7%
33% 55.4% 29.1%

Toolbox
1

100% 88.8% 88.5% 54.7%
33% 81.2% 68.2%

2
100% 100% 100% 59.4%
33 89.9% 34.5%

Fig. 8. Accuracy measured on our
dataset. Comparison of our full proposal
distribution to the local proposal dis-
tribution and to [4]. Evaluation is done
based on all frames and on every third
frame of the image sequences.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(a) (b) (c) (d) (e)

Fig. 9. Average accuracy over all se-
quences for (a) [4]. Our full proposal dis-
tribution using (b) all frames and (d) ev-
ery third frame of the sequence. Our local
proposal distribution using (c) all frames
(e) every third frame of the sequence.

the one shot pose estimation from [4]. We exactly adhere to their training setup
and parameters (3 trees, maximum patch size 20 pixel meter, 210 hypotheses
per frame, Gaussian noise on training data). We measure accuracy as in [4] as
the fraction of frames where the object pose was estimated correctly.

While our approach achieves 96.2% accuracy on average over all sequences
the approach of [4] only estimates 58.9% of the poses correctly. Even though [4]
is inherently robust to occlusion, the heavy occlusions in our dataset still cause
it to fail. In contrast, our approach is able to estimate most poses correctly by
using information from previous frames. The results are depicted in Fig. 9 (a)
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and (b). Additionally, we computed rotational and translational distances to the
ground truth for both methods. The distribution of errors for one sequence is
depicted in Fig. 10. The plots again show the large number of outlier estimations
of [4] (rightmost bins). The plots also reveal that concerning correct poses, our
approach leads to much more precise estimations.

To show that our full proposal distribution (Sec. 3.5) increases the robustness
of our method we conducted the following experiment: We define a simplified
variant of the proposal distribution, which is based only on H local

t+1 to which we
also apply the final optimization. We term this variant local proposal distribution.
We use it together with 120 particles since it needs less computation time. For
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Fig. 10. Histogram of rotational and translational errors for our approach in compar-
ison to [4], which is a single frame pose estimation framework.

this experiment, we artificially increase motion in our test sequences by using
only every third frame. As before, we measure the number of correctly estimated
poses. In this challenging setup the full proposal distribution achieves 80.3%
accuracy on average while the local proposal distribution achieves only 60.4%
accuracy. The results are depicted in Fig. 9 (b)-(e). Table 8 provides detailed
information for the achieved accuracy on all sequences.

Fig. 5 shows the estimated object motion path for one sequence with fast
motion. The plot illustrates precision and robustness of our approach.

5 Conclusion

We have introduced a novel method applying the concept of 3D object coordinate
regression to 6-DOF pose tracking. We utilize predicted object coordinates in
a proposal distribution, making our method very robust with regard to fast
movements in combination with occlusion. We have evaluated our method on
the dataset by Coi and Christensen and demonstrated that it yields superior
results. The method was additionally evaluated using a new dataset, specially
designed for RGB-D 6-DOF pose tracking, which will be made available to the
community.
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