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1. Introduction 
 

Navigation is one of the most critical factors in determining the operational suitability of 
any unmanned vehicle for its designated environment. In fully autonomous vehicles, due to 
the lack of a human operator to perform the navigation task, there is a fundamental 
requirement to incorporate estimation techniques that can provide the desired information 
necessary for navigation. Such information includes position, attitude, and velocity of the 
vehicle. In most vehicles, estimating this information is a relatively straight forward process 
due to the information available from the measurement sensors, particularly position 
information from Global Positioning System (GPS) sensors. 
This chapter will focus on the more difficult problem of navigation, particularly positioning, 
where GPS reception is limited or non-existent. One example where GPS is only partially 
available is the case of an Autonomous Underwater Vehicle (AUV) where the vehicle is 
forced to use dead-reckoning in between GPS sightings in order to navigate accurately. 
Though an underwater environment is used within the context of this example, the 
techniques examined can be equally applied anywhere where GPS reception is 
compromised by other electromagnetically opaque mediums, satellite availability or even 
deliberate denial. 
When using dead reckoning, due to the integrative nature of the position estimate, the error 
of the position estimate will grow unbounded. The growth in this error is caused by errors 
in the velocity and attitude estimates which are in turn affected by the accuracy of the 
navigational filter and the accuracies of the measurements observing these states. The 
accuracy of the measurement sensors is typically related to cost, thus some of the effects can 
be negated through more precise (expensive) equipment. For a given cost the single biggest 
factor affecting the accuracy of the navigational estimate is the navigation filter itself.  
There have been numerous papers on the accuracy of various algorithms employed in the 
generic problem of state estimation (Arulampalam et al., 2001). Research pertaining to 
navigation algorithms for underwater vehicles have almost exclusively concentrated on 
ways to improve positioning accuracy below the surface through the use of ranging 
information other than GPS (Caiti et al., 2004). The methodology most prevalent in the 
literature is Simultaneous Localization And Mapping (SLAM) (Choset & Nagatani, 2001; 
Dissanayake et al., 2001)where information used for mapping, such as sonar ‘pings’, is fed 
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back into localization estimate as the map is being built. This process correlates the position 
of the vehicle with the map, thereby improving both positioning accuracy and map 
information. 
When an AUV is in an environment that is devoid of any distinctive seabed features, SLAM 
may perform poor, as it is the motion of the AUV relative to these features that provides 
most of the information in the localization aspect of SLAM. In this context the navigation 
algorithm has to estimate the position of the vehicle solely using dead reckoning and thus 
the filter becomes the most significant factor in determining the accuracy of the position 
estimate. This brings out the critical question addressed in this chapter, which filters are best 
at minimizing the growth error in the position estimate using dead reckoning and which are 
best at reacquiring an accurate position estimate when GPS or other positioning information 
become available again after a period of dead reckoning. 
The Bayesian filter algorithm, specifically the recursive Bayesian estimation, is chosen as the 
class of filters to be examined in this chapter for the following reasons. Bayesian filtering in 
general is advantageous in that the filter represents an estimate of a state’s probability 
distribution function (pdf) rather than a particular estimate of a state (Ristic et al., 2004), and 
as such can inherently accommodate uncertain models and incorporate uncertainties of 
noisy measurements thus making the filter more robust. This robustness comes at the cost of 
increased computational demand due to the necessity of estimating the whole error 
distribution rather than a single solution. The recursive Bayesian filter algorithm is in 
comparison to its batch method equivalents more memory and computationally efficient 
since, due to its recursive nature, only information pertaining to the current estimate needs 
to be stored and processed. Recursive methods also have the capability of achieving higher 
accuracy since the estimate at a particular time is based on all the previous measurements as 
opposed to a fixed window of measurement, as used in batch methods. The computational 
efficiency, robustness to noise, and improved accuracy of the recursive Bayesian filter make 
it the ideal filter architecture for real-time state estimation for a navigation system. 
The recursive Bayesian estimation algorithm in itself is, however, intractable due to the 
infinite number of solutions in a continuous solution space. In this chapter the filters that 
will be considered are all implementations that are based on the recursive Bayesian filter 
architecture, yet the algorithms are made tractable by applying simplifying assumptions or 
approximations to the pdf being estimated. These implementations consist of three main 
classes: Kalman Filters (KF), Particle Filters (PF), and Grid-based Filters (GF). The filters that 
are assessed in this chapter belong to the KF and PF classes since the GF class is more 
applicable for discrete or bounded solution spaces (Doucet et al., 2001).  
This chapter aims to present a comprehensive analysis of a variety of KF and PF 
implementations by implementing these filters to estimate the navigational state of an AUV 
in a simulated environment. In the test-scenario, shown in Fig. 1, the simulated vehicle first 
manoeuvres on the surface before diving down to 50 meters to perform a raster scan 
covering an area of 500 m x 500 m and finally returning to the surface at the point where it 
had originally submerged. GPS position measurements are only available on the surface. 
This scenario has been chosen to compare the two most critical aspects of any navigational 
estimator, namely the error growth and integration of new observations after a period of 
absence. In the case of AUV navigation this increased estimation error can cause some filters 
to perform poorly or not at all when presented with new position information from the GPS 
that is inconsistent with their own estimate. 

 

 
Fig. 1. Simulated raster-scan mission trajectory 
 
This chapter will first cover the requirements of and limitations placed on a navigation 
system, and then review the concepts and algorithms used by the Bayesian filters in the 
particular context of the navigation estimation case. This will include: 
 Requirements – what information is required of the navigation system by other 

systems (e.g., motion control systems) on the vehicle, and what limitations are placed 
on the system due to measurement and computational constraints. 

 Dynamics – the kinematic and kinetic models used in defining the motion of a free 
moving rigid body vehicle, i.e., a vehicle with six degrees of freedom (6-DoF).  

 Sensors – the instruments used to acquire the set of observation measurements from 
which the vehicle’s state vector can be estimated, as well as the mathematical models 
that relate the sensor measurements to the states being estimated.   

 Estimators – a representative set of KF and PF variants that have been used for   
vehicular navigation. 

The chapter will then conclude with a comparison of the selected filters based on the 
aforementioned test scenario illustrated in Fig. 1, using the vehicle dynamics and sensor 
models provided.  

 
2. Requirements 

A navigation system is required to maintain a navigational solution at all times during a 
mission. A navigation solution, �, in (3) is an estimate of the pose (state) of the vehicle in (1). 
This estimate consists of translational, ��, and rotational, Θ, position (i.e., position and 
attitude) coordinates �, in (2), and translational, ���, and rotational, ���� , velocity 
coordinates, �, in (2). 
 ��� � ����� � ���� � ����� � �� � ��������� Θ � ����� (1) 

 � � � ������� � � � � ���Θ � (2) 
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� � ��η� (3) 
 
This estimate is built on the stream of measurements being acquired by sensors that can be 
related to the states of interest. These measurements may be consistent or inconsistent over 
the duration of a mission. If the measurements are inconsistent then the navigation system 
maintains estimates of the states using knowledge of the dynamics of the system and the 
remaining measurements. This most commonly occurs while estimating position when GPS 
is unavailable, but can also affect velocity estimates when velocity measurements are 
unavailable due to the limited range of the acoustic based velocity sensors. 
On an AUV there are a variety of power and physical size constraints on the vehicle due to 
mission requirements, and these constraints present themselves as computational 
restrictions on any embedded algorithms being used onboard, including the navigation 
system. Most of the vehicle power budget is highly prioritised for propulsion and control 
actuation, making the budget for computation limited and tightly constrained. This situation 
has been mitigated somewhat since the introduction of Li-ion battery technology in that the 
amount of power available on a vehicle has now increased significantly. There have also 
been significant improvements in the performance and efficiency of the computing 
platforms used, through advancements in computer architectures and silicon technology. 
Over the past few years several alternatives that could be used as suitable computational 
platforms for AUVs have been developed. These platforms include: 
CPU – Central Processing Unit – the ubiquitous x86 based compact PCI 104 architecture 
which is currently the most commonly used architecture for mobile robotics. 
DSP – Digital Signal Processors – microprocessor optimised for digital signal processing 
which constitutes the majority of calculations in a navigation system.  
FPGA – Field Programmable Gate Arrays – reconfigurable integrated circuits enabling 
parallel architectures and optimal custom-built hardware implementation. 
GP-GPU – General Purpose - Graphic Processor Units – essentially highly parallel data 
processing units which are suitable for digital signal processing and control applications. 

 
3. Dynamics 
 

To estimate the dynamic state of an AUV, first the equations that describe its motion must 
be defined and as such the dynamic navigation equations of a 6-DoF vehicle are presented. 
These equations are used to define the vehicle’s kinematic and kinetic behaviour. They cover 
the co-ordinate frames used to represent the state information and the transformations that 
convert information represented in one frame to another frame. Rigid body dynamics and 
equations that model the hydrodynamic forces and moments acting on the vehicle are also 
included. 

 
3.1 Reference Frames 
Before reviewing the principles of navigation in underwater environments, certain reference 
frames need to be defined. A reference frame is a co-ordinate frame in which information 
can be represented. The frames that are used in underwater navigation are: 
 ECEF – The Earth Centered Earth Fixed reference frame is a three dimensional Euclidean 

space with an xe, ye, ze cartesian representation whose origin is at the centre of the earth 

 

and is stationary in reference to the earth’s surface. As illustrated in Fig. 2a, the xe axis of 
this reference frame projects out of the earth’s surface at 0⁰N 0⁰E, the ye axis out at 0⁰N 
90⁰E, and the ze axis out at 90⁰N the geographic north pole. This frame is used in long 
distance navigation over significant portions of the earth surface, as any point in the 
vicinity of the earth can be defined in this frame. 

 ECI – The Earth Centered Inertial reference frame represents the true inertial frame in 
the confines of the earth. It is much like ECEF but does not rotate with the earth, rather 
the xe and ye axes point to specific points in the celestial sphere. Although the ECI frame 
is used for inertial measurements, in the case of slow moving vehicles and for short 
missions ECEF can be considered as inertial. 

 NED – The North East Down reference frame is defined as a ‘flat earth’ frame in that it 
makes use of the assumption that for relatively small distances the surface of the earth 
can be considered to be flat. The origin of the NED is placed at some arbitrary point on 
the earth reference ellipsoid. The axes of this frame, as the name suggests, points north, 
east and down for axes xn, yn, and zn, respectively, as shown in Fig. 2a. This frame is 
used when the flat earth assumption holds as it simplifies the equations in comparison to 
ECEF. 

 BODY – The body-fixed frame is a reference frame which is fixed to the vehicle. The 
origin of the frame is located at a convenient position in relation to the vehicle usually 
the centre of gravity (or buoyancy in the case of underwater vehicles). The axes of this 
frame project out of the front (bow), right (starboard) and bottom (keel) of the vehicle for 
the xb, yb, and zb axes, respectively, as presented in Fig. 2b. The body-fixed frame is used 
to define the dynamics of the vehicle as well as the measurements as many of the 
measurement sensors are attached to the vehicle. 
 

 
Fig. 2. Reference frames ECI, ECEF and NED (a), NED and BODY frame (b) 

 
3.2 NED to Body-Fixed Frame Conversion 
While it is convenient to represent the vehicle’s velocities in the body-fixed frame, it is more 
convenient to represent the vehicle’s position in the NED frame. The consequence of using 
two frames is the necessity of transforming information between the frames. In the case of 6 
DoF dynamics of a free moving body, the velocity information represented in the body-fixed 
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3.2 NED to Body-Fixed Frame Conversion 
While it is convenient to represent the vehicle’s velocities in the body-fixed frame, it is more 
convenient to represent the vehicle’s position in the NED frame. The consequence of using 
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frame, υ��must be rotated such that the same velocity information is represented in the NED 
frame���� . To rotate the velocity information, each of the vectors, ������������ , are applied to 
two rotational matrices, ����Θ� and ���Θ�, respectively. 

 
3.2.1 Linear Velocity Transformation 
The linear velocity transformation matrix ����Θ� � ���� transforms the translational 
velocities defined in the body-fixed frame, ���, into the velocities in the NED frame, ���, 
based on the rotational differences between the two frames represented using Euler angle 
notation Θ (4). ����Θ� consists of three rotations, one for each Euler angle (5), and is defined 
in (6) using the common convention zyx (Titterton & Weston, 2004), where ��� is rotated by �, then by θ, and then by ψ. The order of rotations as shown in (6) is not arbitrary, due to 
the compounding effect of the rotational order. 
 ��� � ����Θ���� (4) 

 ���� � �� 0 00 c�� � � ��� �0 ��� � c�� � � � ���� � � c�� � 0 ��� �0 � 0���� � 0 c�� �� � ���� � �c�� � ���� � 0��� � c�� � 00 0 �� (5) 

 ����Θ� �� ������������ 
 ����Θ� � � �c�� � c�� � � ��� � c�� � � c�� � ��� � ��� � ��� � ��� � � c�� � ��� � c�� ���� � c�� � c�� � c�� � � ��� � ��� � ��� � � c�� � ��� � � ��� � ��� � c�� �� ��� � c�� � ��� � c�� � c�� � � 

(6) 
 
 

(7) 

 
3.2.2 Angular Velocity Transformation 
The angular velocity transformation matrix ���Θ� � ���� transforms the body-fixed 
rotational velocity information, ���� , into the NED frame, Θ� , based on the rotational 
difference between the frames (8). Similar to (4), the transformation conforms to the zyx 
rotational ordering as shown in (9) for the same reasons given for the linear velocity 
transformation. For clarity, consider �����Θ�, given in (10), in which ��  is rotated by ����, 
added to �� , then the sum rotated by ���� and added to �� , as described in (9). This effect is in 
contrast to (4) where the whole vector is rotated. 
 Θ� � ���Θ�����  (8) 
  ���� � ���00� � ����� �0��0� � ����� ����� �00�� � �� �����Θ�Θ�  (9) 

 �����Θ� � �� 0 � ��� �0 c�� � c�� � ��� �0 � ��� � c�� � c�� �� � ���Θ� � �� ��� � ��� � c�� � ��� �0 c�� � � ��� �0 ��� � c�� �⁄ c�� � c�� �⁄ � (10) 

 

 

3.2.4 Unit Quaternion 
Unit quaternion is a four element replacement of the three element Euler angle 
representation. The main motivation for quaternions is to avoid singularities, commonly 
called ‘gimbal lock’, that can occur in the three element representation when θ=±90°. When 
the pitch attains these values, the rotational matrix ���Θ� become undefined due to the 
trigonometric functions used in the rotation. A quaternion is a four element array that is 
described as a four dimensional vector in a complex space (Fossen, 2002), or alternatively a 
complex number (11) with one real and three complex components. Replacing the Euler 
infomation in (3) with (11) yields an alternative state vector, � (12). Using a complex space 
representation is advantageous due to the implied orthogonality of a complex number.  
 � � �� � ��� � ��� � ��� � ��� �� �� ���� (11) 
 � � �� �� q�� (12) 
 
A unit quaternion is essential for representing frame rotations as any non-unit magnitudes 
will scale the transformations rather than a pure rotational transformation. A unit 
quaternion must satisfy (13) and as such a normalization would consist of (14). 
 ��� � � (13) 
 �� � ���� (14) 

 
When applying the same principle to unit quaternions as to Euler angles in defining (4), (15) 
results. As evident in (15), an advantage of the unit quaternion representation is the absence 
of trigonometric relationships in the rotation matrix ����q� thus simplifying the 
computation. When applying unit quaternion definition to (8), (16) is produced. Equation 
(16), similar to (15), produces a result that contains no trigonometeric functions and likewise 
simplifies the computation. 
 ����q� � �� � 2���� � ���� 2����� � ����� 2����� � �����2����� � ����� � � 2���� � ���� 2����� � �����2����� � ����� 2����� � ����� � � 2���� � ����� (15) 

 

���q� � ���� ��� ����� ��� ���� �� ������ �� �� � (16) 

 
3.3 Kinematics 
Kinematics are the equations of motion that relate the state of any body at one point in time 
to another point in time due the geometric nature of space and the motion of the object in 
that space. For a free body in three dimensional space, the 6-DoF equations of motion 
comprising the three translational and three rotational degrees of freedom (Titterton & 
Weston, 2004), are defined as (17). 
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(6) 
 
 

(7) 

 
3.2.2 Angular Velocity Transformation 
The angular velocity transformation matrix ���Θ� � ���� transforms the body-fixed 
rotational velocity information, ���� , into the NED frame, Θ� , based on the rotational 
difference between the frames (8). Similar to (4), the transformation conforms to the zyx 
rotational ordering as shown in (9) for the same reasons given for the linear velocity 
transformation. For clarity, consider �����Θ�, given in (10), in which ��  is rotated by ����, 
added to �� , then the sum rotated by ���� and added to �� , as described in (9). This effect is in 
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 Θ� � ���Θ�����  (8) 
  ���� � ���00� � ����� �0��0� � ����� ����� �00�� � �� �����Θ�Θ�  (9) 

 �����Θ� � �� 0 � ��� �0 c�� � c�� � ��� �0 � ��� � c�� � c�� �� � ���Θ� � �� ��� � ��� � c�� � ��� �0 c�� � � ��� �0 ��� � c�� �⁄ c�� � c�� �⁄ � (10) 

 

 

3.2.4 Unit Quaternion 
Unit quaternion is a four element replacement of the three element Euler angle 
representation. The main motivation for quaternions is to avoid singularities, commonly 
called ‘gimbal lock’, that can occur in the three element representation when θ=±90°. When 
the pitch attains these values, the rotational matrix ���Θ� become undefined due to the 
trigonometric functions used in the rotation. A quaternion is a four element array that is 
described as a four dimensional vector in a complex space (Fossen, 2002), or alternatively a 
complex number (11) with one real and three complex components. Replacing the Euler 
infomation in (3) with (11) yields an alternative state vector, � (12). Using a complex space 
representation is advantageous due to the implied orthogonality of a complex number.  
 � � �� � ��� � ��� � ��� � ��� �� �� ���� (11) 
 � � �� �� q�� (12) 
 
A unit quaternion is essential for representing frame rotations as any non-unit magnitudes 
will scale the transformations rather than a pure rotational transformation. A unit 
quaternion must satisfy (13) and as such a normalization would consist of (14). 
 ��� � � (13) 
 �� � ���� (14) 

 
When applying the same principle to unit quaternions as to Euler angles in defining (4), (15) 
results. As evident in (15), an advantage of the unit quaternion representation is the absence 
of trigonometric relationships in the rotation matrix ����q� thus simplifying the 
computation. When applying unit quaternion definition to (8), (16) is produced. Equation 
(16), similar to (15), produces a result that contains no trigonometeric functions and likewise 
simplifies the computation. 
 ����q� � �� � 2���� � ���� 2����� � ����� 2����� � �����2����� � ����� � � 2���� � ���� 2����� � �����2����� � ����� 2����� � ����� � � 2���� � ����� (15) 

 

���q� � ���� ��� ����� ��� ���� �� ������ �� �� � (16) 

 
3.3 Kinematics 
Kinematics are the equations of motion that relate the state of any body at one point in time 
to another point in time due the geometric nature of space and the motion of the object in 
that space. For a free body in three dimensional space, the 6-DoF equations of motion 
comprising the three translational and three rotational degrees of freedom (Titterton & 
Weston, 2004), are defined as (17). 
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�� � ����� � ����Θ� � � �����Θ� 0���0��� ���Θ�� � ������� � (17) 

 
Alternatively, applying (17) to a quaternion form (11) yields (18). 
 �� � ����� � ����q� � � �����q� 0���0��� ���q�� � ������� � (18) 

 
Equation (17) or (18) can be used to define the motion of any freely moving object in three 
dimensional space as it does not consider how the motion is created. This results in (18) 
being valid for any mobile platform regardless of context. 

 
3.4 Kinetics 
Kinetics, now commonly known as analytical dynamics or just dynamics, can be described 
as a branch of mathematics that deals with the motion of bodies and the influences that 
create the motion, namely forces and torques. Kinetics, in contrast to kinematics, 
incorporates the causes of the motion as well as the motion itself. 
The basic premise of dynamics is expressed in Newton’s Second Law F= ma. Expanding 
Newton’s Second Law to three dimensional space, as found in a freely moving body with 
mass M and force Fi exerted upon it, and using the principle of superposition of forces result 
in the generalized kinetic equation (19). 
 ��� � � ���

���  (19) 

 
The components of (19), M and Fi, are defined by two distinct effects, rigid body dynamics 
and hydrodynamics. 

 
3.4.1 Rigid Body Dynamics 
Rigid body dynamics apply Newtonian mechanics using only forces involved with the 
‘rigid’ body of the vehicle and do not include forces produced by motion of the vehicle 
through the medium. In (20), the effect from the intrisic interia of the vehicle, ���, and the 
forces apparent due to the motion of the reference frame, namely the ‘coriolis force’, �������, and the control forces,����, are modelled. 
 ����� � ������� � ��� (20) 

 
3.4.2 Vehicle Hydrodynamics 
When describing the motion of a vehicle through a fluid, in this case an AUV through water, 
there is a generalized equation given in (21) which expands from (20) and parameterizes this 
motion (Fossen, 2002).  
 ��� � ����� � ����� � ���� � � � � (21) 

 

where � and ����� add the effect of ‘added mass’ (Fossen, 2002) to (20), i.e. � � ��� � �凋 
and ���� � ������ � �凋���, while ����� characterises hydrodynamic drag, ���� does the 
same for buoyancy and gravitational effects, and � models external disturbances. 

 
3.4.3 Navigation Equations 
Collating (21) and (17) or (18), a concise representation of the 6-DoF dynamics of an 
underwater vehicle, accurate to the second order, can be represented in (22).  
 �� � ����� � ����� � ����� � �������� � �����  (22) 

 
4. Sensors 

An AUV employs a variety of exteroreceptive and proprioceptive sensors to obtain 
information about the surrounding environment and the vehicle itself. This section will 
review some of the most common sensors that can provide information related to (3). The 
review will cover the information available from these sensors, limitations of these sensors 
and sources of noise.  AUVs are particularly susceptible to limitations in sensors since the 
ranges and capabilities of the sensors are limited to what can be carried by the vehicle based 
on power, size, and cost constraints.  

 
4.1 IMU 
An Inertial Measurement Unit (IMU) is an orthogonal triad of accelerometers and 
gyroscopes that can detect the three translational accelerations and rotational velocities 
experienced by any free moving body in three dimensional space. Integrating this 
information yields position and attitude in a process called dead reckoning. These sensors 
are defined as inertial sensors as they use the inertia of an internal reference mass or 
structure to generate the measurements and, as a consequence, they are completely self-
contained. 
There are two main configurations, namely ‘inertial-frame’ IMUs and ‘strapdown’ IMUs. An 
inertial-frame IMU mechanically maintains its orientation using the gyroscopes, while the 
accelerometers stay in the same frame effectively mechanically integrating the rotational 
rates. Being mechanical, these systems are large and power hungry and thus unsuitable for 
small AUVs. In strapdown IMUs, all the sensors are attached to the vehicle and the 
information is computationally integrated. The advent of the microprocessor makes this 
integration a relatively trivial process. 

 
4.1.1 Accelerometers 
An accelerometer measures translational acceleration in the inertial frame of the sensor 
(vehicle). In principle, accelerometers measure acceleration by measuring the deflection of a 
mass attached to a spring. The most suitable technology for use in an IMU is MEMS 
accelerometers. MEMS accelerometers use either a pendulous mass or a resonant beam 
structure. In the pendulous mass architecture, as illustrated in Fig. 3a, a capacitance is 
generated that is related to the displacement of the proof mass. In the resonant beam 
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3.4.2 Vehicle Hydrodynamics 
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there is a generalized equation given in (21) which expands from (20) and parameterizes this 
motion (Fossen, 2002).  
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and ���� � ������ � �凋���, while ����� characterises hydrodynamic drag, ���� does the 
same for buoyancy and gravitational effects, and � models external disturbances. 

 
3.4.3 Navigation Equations 
Collating (21) and (17) or (18), a concise representation of the 6-DoF dynamics of an 
underwater vehicle, accurate to the second order, can be represented in (22).  
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4. Sensors 

An AUV employs a variety of exteroreceptive and proprioceptive sensors to obtain 
information about the surrounding environment and the vehicle itself. This section will 
review some of the most common sensors that can provide information related to (3). The 
review will cover the information available from these sensors, limitations of these sensors 
and sources of noise.  AUVs are particularly susceptible to limitations in sensors since the 
ranges and capabilities of the sensors are limited to what can be carried by the vehicle based 
on power, size, and cost constraints.  

 
4.1 IMU 
An Inertial Measurement Unit (IMU) is an orthogonal triad of accelerometers and 
gyroscopes that can detect the three translational accelerations and rotational velocities 
experienced by any free moving body in three dimensional space. Integrating this 
information yields position and attitude in a process called dead reckoning. These sensors 
are defined as inertial sensors as they use the inertia of an internal reference mass or 
structure to generate the measurements and, as a consequence, they are completely self-
contained. 
There are two main configurations, namely ‘inertial-frame’ IMUs and ‘strapdown’ IMUs. An 
inertial-frame IMU mechanically maintains its orientation using the gyroscopes, while the 
accelerometers stay in the same frame effectively mechanically integrating the rotational 
rates. Being mechanical, these systems are large and power hungry and thus unsuitable for 
small AUVs. In strapdown IMUs, all the sensors are attached to the vehicle and the 
information is computationally integrated. The advent of the microprocessor makes this 
integration a relatively trivial process. 

 
4.1.1 Accelerometers 
An accelerometer measures translational acceleration in the inertial frame of the sensor 
(vehicle). In principle, accelerometers measure acceleration by measuring the deflection of a 
mass attached to a spring. The most suitable technology for use in an IMU is MEMS 
accelerometers. MEMS accelerometers use either a pendulous mass or a resonant beam 
structure. In the pendulous mass architecture, as illustrated in Fig. 3a, a capacitance is 
generated that is related to the displacement of the proof mass. In the resonant beam 
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structure, variations in the resonant frequency of the beam due to acceleration induced 
loading are measured. These values are converted to voltages and subsequently converted 
to digital representations. 

 
4.1.2 Gyroscopes 
Gyroscopes are devices that can measure rotational velocity in the inertial frame. For use in 
small underwater vehicles, gyroscopes can be classified into two classes, optical based and 
MEMS technology based. Optical based technologies, such as ring-laser gyroscopes and 
fibre-optic gyros, all use the same principal. A structured light beam is first split and then 
sent in opposing directions around a circular path, resulting in a phase difference between 
the two beams whenever a rotational change occurs – this is known as ‘the Sagnac effect’. 
The intensity of the recombined beams is related to the rotational rate. MEMS gyroscopes 
use a resonant beam or ring structure. A resonant structure will tend to vibrate in the same 
direction and any vibration not parallel or orthogonal to this axis is related to rotational 
motion – this is known as ‘the coriolis effect’ and is shown in Fig. 3b. This motion can be 
detected as a capacitance changes. 

 
Fig. 3. MEMS Accelerometer (a), and Gyroscope (b) Structures 

 
4.1.3 MEMS Sensors 
While MEMS sensors are smaller, cheaper, and use much less power than their counterparts, 
they have one downside, i.e., reduced accuracy. The errors generated from the non-idealities 
in MEMS sensors include: 
 Fixed-Bias (��) - a bias in the measurement due to offset in the zero of the sensor and/or 

A/D biases (m/s2). 
 Scale Factor (��) - a scaling constant which defines the relationship between the 

measured voltage or binary value and the perceived acceleration (m/s2/V or 
m/s2/LSB). This can include second or higher order terms. 

 Cross Coupling (��) - is a matrix that represents the sensitivity of a sensor to motion or 
fields orthogonal to its desired axis of sensitivity.  

 Temperature based��� ) - some of the errors mentioned previously, specifically bias and 
scale errors, can also be affected by the ambient temperature. 

 Quiescent Noise (�) - is the noise that occurs when the instrument is sensing a zero state. 
This value is used to define the random error, noise, in the output signal.  

(a) (b) 

 

Combining these effects to define a relationship between (3) and the measurement produces 
(23).  
 ���� � ��� 0 00 �� 00 0 ��� � � ��� ���� � ������ �� � � � � �������� � �������� � � � (23) 

where ���� � ������� � ������� � ����� �����������c����� ���
���� � ������� � ������� � ����� 0 ���� ������ 0 �������� ��� 0 � �� �������cc�l���m����� 

 
Most modern MEMS sensors have factory calibration for many of these errors, however, 
some of the errors are not static but change very slowly over the lifetime of the device in a 
process known as ‘ageing’. These residual errors can be accounted for using various offline 
or online parameter estimation techniques. Assuming the sensors are calibrated, (23) 
simplifies to (24).  
 ���� � � � � (24) 

 
4.2 Compass 
A compass is a sensor that measures the earth’s magnetosphere. The core of most modern IC 
based magnetometers uses the ‘Hall Effect’ principle. The Hall Effect dictates that in 
presence of a magnetic field, the electron flow in a conductor will be distorted orthogonally 
to the current flow, and the magnetic field producing a voltage difference across the 
conductor that is proportional to the magnetic field. 
MEMS based magnetometers have many of the same errors as MEMS IMU components 
such as scale, ���, and misalignment, ��, but have two extra sources of error due to the 
interaction of the sensed magnetic field with nearby magnetic materials: 
 Hard Iron Errors (���) - The largest error induced in the magnetic field tends to be 

unwanted magnetic fields produced by surrounding electrical equipment or magnetic 
abnormalities in the environment. These hard iron errors produce a bias in the resulting 
measurement due to the summation of the desired and interfering magnetic fields. 

 Soft Iron Errors (���) - When non-magnetized magnetic materials are exposed to an 
external magnetic field, they will distort the field in vicinity of the material. 

Combining these errors to define a relationship between the measurement and (3) produces 
(25). 
 �� � ��������������Θ��� � ���� � � (25) 
 
Most of the errors that occur in MEMS based magnetometers can be removed through 
calibration. The only effect that cannot be calibrated for are hard iron errors due to local 
magnetic abnormities which must be removed using online estimation (Gebre-Egziabher et 
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process known as ‘ageing’. These residual errors can be accounted for using various offline 
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based magnetometers uses the ‘Hall Effect’ principle. The Hall Effect dictates that in 
presence of a magnetic field, the electron flow in a conductor will be distorted orthogonally 
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conductor that is proportional to the magnetic field. 
MEMS based magnetometers have many of the same errors as MEMS IMU components 
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measurement due to the summation of the desired and interfering magnetic fields. 
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calibration. The only effect that cannot be calibrated for are hard iron errors due to local 
magnetic abnormities which must be removed using online estimation (Gebre-Egziabher et 

www.intechopen.com



Mobile Robots Navigation468

 

al., 2001) if the error is significant enough to be of concern. Once calibration or estimation 
has removed the above errors (25) simplifies to (26). 
 �� � �����Θ��� � � (26) 

 
4.3 GPS 
The Global Positioning System (GPS) is a global navigation satellite system (GNSS) which 
consists of an array of satellites that is used by a receiver to triangulate the receiver’s 
position anywhere in the world depending on satellite availability (Tsui, 2005). 
GPS operates on the principle that, given a common time reference, a range to a satellite can 
be calculated by the time difference between transmission from the satellite and reception 
by the receiver of a radio signal multiplied the speed of light. This measurement is called a 
pseudo-range (PR), as the measurement is a range calculated from a time difference rather 
than a direct range measurement. Using three satellite range measurements and positions, ���� , the three values that constitute a position in 3D space, ��, can be solved using 
simultaneous equations (27). 
A common time reference does not exist, however, as the receiver only has a quartz crystal 
oscillator whereas each of the satellites have atomic clocks that are accurate to a few 
nanoseconds being periodically corrected by the GPS control segment. This problem can be 
solved by including a receiver clock offset, ���, into the triangulation problem (27). Since 
four unknowns now exist, a minimum number of four satellites are required for a position 
fix (Tsui, 2005). 
 ��� � ��� � ��� � ���� ����� � ��� � ��� � ���� ������ � ��� � ��� � ���� �� (27) 

 
The main sources of error in this system are: 
 Clock Inaccuracies (���) - as mentioned previously there exists a clock bias due to clock 

drift that is compensated for in the positioning algorithm. Remaining inaccuracies in the 
clock can create ranging errors of up to two meters.  

 Satellite Geometry – the apparent angle between satellites as perceived by the receiver 
can have a significant effect on the triangulation problem. If the angles are small, any 
error in the range measurement from one of the satellites can significantly affect the 
resolved position with errors as large as 100 - 150 meters. 

 Satellite Orbits – Even though GPS satellites are very accurately placed in orbit, errors in 
this orbit can still occur. ‘Ephemeris data’ transmitted within the GPS signal contains 
correction information, limiting the effect of orbit errors to less than two meters. 

 Multipath Effect –The line of sight ‘desired’ signal between satellite and receiver can be 
corrupted by delayed multipath reflections of itself. Typically the error for multipath is 
no more than a few meters. 

 Atmospheric Effects – The speed of the GPS signals are affected by their passage through 
the atmosphere, particularly the ionosphere which slows down electromagnetic waves 
proportional to � ��⁄  (Tsui, 2005). This has motivated the use of dual frequency receivers 

 

which receive a GPS signal on two frequencies. The amount that each signal is slowed by 
can be calculated using the time difference between the reception of the GPS signals on 
the two frequencies. 

 Relativistic Effects – Due to relativistic effects, the atomic clock onboard the satellite runs 
slower than on earth and so is tuned before launch to account for these effects. 

 Selective Availability (SA) – This refers to the inclusion of pseudo noise by the US 
government to restrict access to high quality position information. SA was removed in 
May 2000. 

Although the addition of a second frequency can be used to compensate for ionspheric 
errors, it does nothing to compensate for some of the other effects or for ionospheric errors 
in single frequency receivers. In such cases, the use of systems, like WAAS or EGNOS (Tsui, 
2005), can be used to provide coarse corrections for atmospheric, clock, and orbit related 
errors. 

 
4.4 SONAR 
SOund Navigation And Ranging (SONAR) is an acoustic method for determining the range 
and bearing of a target or of the sonar device itself, if multiple targets are at known 
locations. 
There are two types of sonar: active and passive. In this chapter, the discussion will be 
restricted to active sonar systems as they are the most pertinent in relation to navigation. 
Active sonar assumes that sound has a finite speed, �, in any medium, thus a range to a 
feature, ���, can be determined if the time difference between transmission and reception, ��, 
can be measured. By using a transceiver to transmit a focused sound pulse (ping) and 
receive the return signal (echo), target information can be extracted from the amplitude, 
round trip time, and transceiver azimuth (28) of the echo. 
 �2 ��� � ��� � ���� (28) 

 
There are several varieties of active sonar systems, the most common are scanning sonar, 
side-scan sonar, and multibeam (bathymetric) sonar systems. 
The errors in any sonar system are highly nonlinear, the most significant being: 
 Refraction – the path of the sonar ping can become curved, changing the ensonified area, 

due to the non uniformity of the temperature and density of the water over the trajectory 
of the ping. 

 Scattering – when the angle of incidence of the ping to the target is not ideal, the 
reflection is diffuse rather than specular, resulting in a poor return with the possibility of 
multipath reflections producing errant echoes. 

 Speed of sound – any error in the value of the sound speed due to temperature, salinity, 
or density fluctuations, will produce a proportional error in the range calculation. 

Many of the above errors cannot be calibrated for and must be accounted for using robust 
signal processing and estimation algorithms within the sonar. 
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position anywhere in the world depending on satellite availability (Tsui, 2005). 
GPS operates on the principle that, given a common time reference, a range to a satellite can 
be calculated by the time difference between transmission from the satellite and reception 
by the receiver of a radio signal multiplied the speed of light. This measurement is called a 
pseudo-range (PR), as the measurement is a range calculated from a time difference rather 
than a direct range measurement. Using three satellite range measurements and positions, ���� , the three values that constitute a position in 3D space, ��, can be solved using 
simultaneous equations (27). 
A common time reference does not exist, however, as the receiver only has a quartz crystal 
oscillator whereas each of the satellites have atomic clocks that are accurate to a few 
nanoseconds being periodically corrected by the GPS control segment. This problem can be 
solved by including a receiver clock offset, ���, into the triangulation problem (27). Since 
four unknowns now exist, a minimum number of four satellites are required for a position 
fix (Tsui, 2005). 
 ��� � ��� � ��� � ���� ����� � ��� � ��� � ���� ������ � ��� � ��� � ���� �� (27) 

 
The main sources of error in this system are: 
 Clock Inaccuracies (���) - as mentioned previously there exists a clock bias due to clock 

drift that is compensated for in the positioning algorithm. Remaining inaccuracies in the 
clock can create ranging errors of up to two meters.  

 Satellite Geometry – the apparent angle between satellites as perceived by the receiver 
can have a significant effect on the triangulation problem. If the angles are small, any 
error in the range measurement from one of the satellites can significantly affect the 
resolved position with errors as large as 100 - 150 meters. 

 Satellite Orbits – Even though GPS satellites are very accurately placed in orbit, errors in 
this orbit can still occur. ‘Ephemeris data’ transmitted within the GPS signal contains 
correction information, limiting the effect of orbit errors to less than two meters. 

 Multipath Effect –The line of sight ‘desired’ signal between satellite and receiver can be 
corrupted by delayed multipath reflections of itself. Typically the error for multipath is 
no more than a few meters. 

 Atmospheric Effects – The speed of the GPS signals are affected by their passage through 
the atmosphere, particularly the ionosphere which slows down electromagnetic waves 
proportional to � ��⁄  (Tsui, 2005). This has motivated the use of dual frequency receivers 

 

which receive a GPS signal on two frequencies. The amount that each signal is slowed by 
can be calculated using the time difference between the reception of the GPS signals on 
the two frequencies. 

 Relativistic Effects – Due to relativistic effects, the atomic clock onboard the satellite runs 
slower than on earth and so is tuned before launch to account for these effects. 

 Selective Availability (SA) – This refers to the inclusion of pseudo noise by the US 
government to restrict access to high quality position information. SA was removed in 
May 2000. 

Although the addition of a second frequency can be used to compensate for ionspheric 
errors, it does nothing to compensate for some of the other effects or for ionospheric errors 
in single frequency receivers. In such cases, the use of systems, like WAAS or EGNOS (Tsui, 
2005), can be used to provide coarse corrections for atmospheric, clock, and orbit related 
errors. 

 
4.4 SONAR 
SOund Navigation And Ranging (SONAR) is an acoustic method for determining the range 
and bearing of a target or of the sonar device itself, if multiple targets are at known 
locations. 
There are two types of sonar: active and passive. In this chapter, the discussion will be 
restricted to active sonar systems as they are the most pertinent in relation to navigation. 
Active sonar assumes that sound has a finite speed, �, in any medium, thus a range to a 
feature, ���, can be determined if the time difference between transmission and reception, ��, 
can be measured. By using a transceiver to transmit a focused sound pulse (ping) and 
receive the return signal (echo), target information can be extracted from the amplitude, 
round trip time, and transceiver azimuth (28) of the echo. 
 �2 ��� � ��� � ���� (28) 

 
There are several varieties of active sonar systems, the most common are scanning sonar, 
side-scan sonar, and multibeam (bathymetric) sonar systems. 
The errors in any sonar system are highly nonlinear, the most significant being: 
 Refraction – the path of the sonar ping can become curved, changing the ensonified area, 

due to the non uniformity of the temperature and density of the water over the trajectory 
of the ping. 

 Scattering – when the angle of incidence of the ping to the target is not ideal, the 
reflection is diffuse rather than specular, resulting in a poor return with the possibility of 
multipath reflections producing errant echoes. 

 Speed of sound – any error in the value of the sound speed due to temperature, salinity, 
or density fluctuations, will produce a proportional error in the range calculation. 

Many of the above errors cannot be calibrated for and must be accounted for using robust 
signal processing and estimation algorithms within the sonar. 
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4.5 DVL 
A Doppler Velocity Log (DVL) is a form of downward looking sonar that rather than simply 
measuring the round-trip time of the sonar ping, it can also measure the Doppler shift, �� � ��, in the return signal which is related to the speed of the vehicle relative to the seabed, ����, and the speed of the wave in the medium, �, via (29). 
 ���� � ��� � ������  (29) 

 
DVLs typically use four transponders that all approximately point down but are each offset 
in a different direction by a given angle, usually 30°, as illustrated in Fig. 4. These four 
measurements provide enough information to determine the velocity of the transponder in 
three dimensions relative to some other reference (30). If the seafloor is in range of the DVL’s 
beams, the velocity relative to the ground can be determined. If not, the DVL can determine 
its velocity to a given body of water below the vehicle. 
 

���� � �c�� ��� ��� ��� ��� ��� ��� ��� c�� ���c�� ��� ��� ��� ��� ��� ��� ��� c�� ���c�� ��� ��� ��� ��� ��� ��� ��� c�� ���c�� ��替 ��� ��替 ��� ��替 ��� ��替 c�� ��替� ��� (30) 

 

 
Fig. 4. DVL Transponders 
 
DVLs suffer from the same error sources as sonar. As a consequence, many of these errors 
cannot be calibrated for and must be accounted for using robust signal processing and 
estimation algorithms. 

 
4.6 CTD 
A CTD is a sensor triad comprising a conductivity, a temperature, and a pressure sensor. 
The CTD can thus determine the salinity and density, as well as the temperature of the 
surrounding water. The first two parameters are crucial for correcting the sonar range 
information. AUV depth, �,  below the surface of the water can be determined using (31) 
which is dependent on the pressure above atmospheric pressure, � � ��, and density of the 
water, �. Depending on required accuracy and operating environment, the density of water 
can be assumed to be constant making (31) purely proportional to pressure. For more 
accurate results, the surrounding water density and salinity can be determined from CTD 
measurements using high-order polynomials fitted to experimental data as described in ‘The 
International Equation of State of Seawater 1980’ (IESS 1980).  
 

 

� � � � ����  (31) 

 
4.7 Acoustic Positioning 
There have been several attempts to augment the onboard navigation sensors by the use of 
acoustic beacons. Typical schemes include long baseline (LBL), short baseline (SBL), and 
ultra-short baseline (USBL) positioning systems. In LBL systems, four GPS positioned 
beacons are located at the corners of an AUV’s operating site. The AUV determines its 
position by transmitting a single pulse and then working its distance from each beacon from 
the time taken for the signal to be retransmitted by the beacons and received by the AUV. 
SBL systems use three or more separate beacons that are centrally connected to a surface 
vessel to provide synchronised timing. An initiator signal is sent by one of the beacons and a 
reply, generated by the AUV, is received by all beacons. The position of the AUV is then 
calculated and sent back to the AUV. USBL systems, conversely, use only a single beacon 
which is rigidly mounted on a precisely located object, and a receiver array mounted on the 
AUV. Distance from the beacon is determined from the signal return time, and direction by 
measuring the phase shift of the reply signal on the receive array. 
Acoustic positioning systems have their drawbacks, the most significant of which is that 
such systems restrict the autonomous nature of the vehicle since the vehicle has to remain in 
an area that is covered by the beacons system. Other problems with acoustic positioning 
occur due to multipath reflections, occlusion and interference from other transponders in 
the vicinity. 

 
5. Estimators 
 

Navigation estimation systems are filtering mechanisms that process the available 
measurements to obtain an estimate of the required information with minimal noise 
corrupting the solution. This section will review the use of filters that employ a recursive 
Bayesian technique. This set of filters encompasses the Kalman filter family which includes 
the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF), as well as the 
particle filter family which includes the Sequential Importance Re-sampling (SIR) filter, the 
Regularized Particle filter, the Monte Carlo Localizer (MCL), and the Measurement-Assisted 
Partial Re-sampling (MAPR) Particle filter. 

 
5.1 Bayesian Filtering 
The general Bayesian filter approach defines how the pdf (probability distribution function) 
of a given state’s estimate evolves over time based on the state dynamics (i.e., ‘state model’), 
observations of the state (measurements), and the uncertainties of each ‘observation 
model’(Ristic et al., 2004). The principle of Bayesian filtering states that:  
If state and observation models are known as (32) and (33), respectively, then the state 
estimate, ���|��, can be propagated from time k-1 to k via (34) and (35). 
 �� � ���������� ����� (32) �� � ������ ��� (33) 
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the time taken for the signal to be retransmitted by the beacons and received by the AUV. 
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which is rigidly mounted on a precisely located object, and a receiver array mounted on the 
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such systems restrict the autonomous nature of the vehicle since the vehicle has to remain in 
an area that is covered by the beacons system. Other problems with acoustic positioning 
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Navigation estimation systems are filtering mechanisms that process the available 
measurements to obtain an estimate of the required information with minimal noise 
corrupting the solution. This section will review the use of filters that employ a recursive 
Bayesian technique. This set of filters encompasses the Kalman filter family which includes 
the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF), as well as the 
particle filter family which includes the Sequential Importance Re-sampling (SIR) filter, the 
Regularized Particle filter, the Monte Carlo Localizer (MCL), and the Measurement-Assisted 
Partial Re-sampling (MAPR) Particle filter. 

 
5.1 Bayesian Filtering 
The general Bayesian filter approach defines how the pdf (probability distribution function) 
of a given state’s estimate evolves over time based on the state dynamics (i.e., ‘state model’), 
observations of the state (measurements), and the uncertainties of each ‘observation 
model’(Ristic et al., 2004). The principle of Bayesian filtering states that:  
If state and observation models are known as (32) and (33), respectively, then the state 
estimate, ���|��, can be propagated from time k-1 to k via (34) and (35). 
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����|����� � � ����|�����������|���������� (34) ����|��� � ����|�������|���������|�����  (35) 

where ����|����� � � ����|�������|������� ���  

 
These equations can conveniently be defined as a two-phase system in which a prediction of 
the new state value is made based on the previous value and the state dynamics (34) and the 
prediction is then corrected by any available observations (35). 

 
5.2 Kalman Filter 
The Kalman filter is an implementation of the general recursive Bayesian filtering approach. 
It is a recursive filter for linear systems and is generally considered to be a Linear Quadratic 
Estimator (LQE). The Kalman filter is a computable approximation of the general equation 
(32)-(35) and achieves this by placing linear and Gaussian assumptions on (32)-(33), thus 
resulting in (36)-(37). These assumptions ensure that for all times, (34)-(35) will be Gaussian 
and thus can be represented using the mean and covariance (Ristic et al., 2004). 
 �� � �������� � ���� (36) �� � ���� � �� (37) 
 
The Kalman filter applies Bayesian filtering to (36)-(37), and defines (38)-(43). 
 ���|��� � ���������|��� (38) ��|��� � ���� � ��������|��������  (39) ���|� � ���|��� � ����� � �����|���� (40) ��|� � ��|��� � ������� (41) 

where  �� � �� � ����|������ (42) �� � ��|���������� (43) 

 
5.2.1 EKF  
The Extended Kalman Filter (EKF) is a modification of the standard Kalman Filter to 
accommodate the use of nonlinear equations in defining (32)-(33). This is accommodated by 
the use of the Jacobian operator to provide a linear approximation, (52)-(53), of (44)-(45) at x. 
An important note in relation to accuracy is that, the Jacobians of (52)-(53) are accurate to a 
first-order Taylor series expansion of (44)-(45). Replacing (44)-(45) with (52)-(53), where 
required, produces (46)-(53). 
 �� � ���������� (44) �� � ������ (45) 
 

 

���|��� � ����������|���� (46) ��|��� � ���� � �侮�������|����侮����  (47) ���|� � ���|��� � �� ��� � ������|����� (48) ��|� � ��|��� � ������� (49) 
where  �� � �� � �����|������� (50) �� � ��|����������� (51) �侮��� � �椛淡島貼������ ����������入貼����入貼�|入貼� (52) ��� � �椛淡島�����������入���入|入貼�  (53) 

 
The EKF has been heavily used and has become the de facto standard for nonlinear 
filtering/estimation. Navigation and in particular vehicular navigation has been the most 
defining application for the EKF. The EKF despite its proliferation is not an optimal filter  
(Ristic et al., 2004) due to the accuracy of ��� � �� being dependent on the error between (44)-
(45) and (52)-(53). When this error is zero, the equations breakdown to (36)-(37). 
The EKF has proliferated in navigation applications as it provides reasonable estimates 
despite its non-optimality, and it is relatively simple to implement as well as 
computationally cheap to support.  

 
5.2.2 UKF 
The Unscented Kalman Filter (UKF) is a modification of the standard Kalman Filter. Unlike 
the EKF, which makes a linear approximation of the nonlinear system (52)-(53), the UKF 
makes no approximation or assumption of the system or measurement model. Rather, the 
UKF approximates the Gaussian distribution via a set of appropriately placed sample 
points, sigma points. This method is motivated by the logic that it is possible to make a more 
accurate approximation to a Gaussian distribution using well placed sample points, creating 
a sample mean and covariance, rather than a linear approximation of a nonlinear function 
using a Jacobian operator (Ristic et al., 2004). These points are placed according to the 
unscented transform (Ristic et al., 2004), giving the Kalman Filter variant its name. Replacing  ��� � ��  with a set χ which are related by (55)-(56), and using the unscented transform (54), 
produce (57)-(66).  The unscented transform places sigma points, χi, according to the scaled 
(by κ) matrix square root of Pa. Pa is the covariance matrix P augmented with the control or 
measurement covariance matrices Q and R respectively. P is augmented such that the sigma 
points are placed as to capture the most information about the effect of the control or 
measurements. na is the size of the augmented state vector, xa, which is the x augmented 
with zeros to accommodate the size Pa. This augmenting can be performed in two different 
ways, either Q augments P for (57)-(59) and R augments P for (60)-(66), or Q and R all 
augment P for (57)-(66). 
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�� � �� � � ��0���0���� �� � ��� � ��� � �� � ����� � ������ �� � �2��� � �� � � �� � � �2��
� (54) 

�� � � �������
���  (55) 

� � � ����� � ������ � �������
���  (56) 

 ��|���� � �������|���� � (57) ���|��� � � ����� ��|�������
���  (58) 

��|��� � ���� � � ��|���� ���|���� � ���|�������|���� � ���|��������
���  (59) 

�̂�|��� � � ����� �����|���� ����
���  (60) ���|� � ���|��� � ����� � �̂�|���� (61) ��|� � ��|��� � ������� (62) 

where �� � ������� (63) �� � �� � ��� (64) ��� � � ����� ���|���� � ���|����������|���� � � �̂�|��������
���  (65) 

��� � � ����� ������|���� � � �̂�|����������|���� � � �̂�|��������
���  (66) 

 
The UKF has one drawback in that, in the navigational estimation context, it is not as 
computationally efficient as the EKF, due to the requirement for multiple evaluations of the 
state dynamic equation (57) and a large matrix squareroot operation (54) which, however, 
can be offset somewhat with Cholesky decomposition (Ristic et al., 2004). The UKF is not 
affected by the nonlinearities in the dynamics, and as such produces an estimate that 
captures the ‘true’ mean and covariance more accurately than that of the EKF. The 
unscented transform used for defining the relationship between sample points and ��� � �� is 
accurate to the third order Taylor series expansion for Gaussian distributions, as opposed to 
only first-order for the Jacobians in the EKF. 

 

 

5.3 Particle Filtering 
 The particle filter is an alternative means of implementing the Bayesian filtering algorithm. 
The hypothesis of the particle filter is that an arbitrary distribution can be approximated by 
a multinomial distribution with a sufficiently large number of sample points in the solution 
space. Alternatively, a particle filter represents the pdf of the state estimate as a weighted set 
of sample points, i.e., ‘particles’ in the solution space (67). Particle filtering is also referred to 
as the Sequential Monte Carlo method as it is a recursive sequential analogue to the Markov 
Chain Monte Carlo (MCMC) batch methods (Doucet et al., 2001). A particle filter uses 
Sequential Importance Sampling (SIS), which is a recursive version of importance sampling. 
Equations (32)-(35) are applied to the multinomial representation (67) to produce (68)-(69). 
In the particle filter, a sample, ��� , is drawn from the proposal density (68) whose weight is 
modified based on the support from the proposal, likelihood, and transitional densities (69). 
 ����|����� � � ��� ���� � ��� ��

���  (67) 

so ��� � ���������� � ��� (68) ��� � ����� �������� ������ ������ ������ ������ � ��� (69) 

 
 As a consequence of the finite number of particles being evaluated, the drawback of the 
basic algorithm becomes evident due to a shortcoming of the SIS algorithm. If allowed to 
run unattended, the weights will converge to a point where all but one of the weights will 
have a mass of zero with the remaining particle having all the mass, a weight of one. This 
condition is defined as particle degradation and has the consequence that only one particle 
is contributing to the solution voiding the principle of the particle filter hypothesis. All 
particle filters employ a re-sampling stage (Douc et al., 2005) to redistribute the particles so 
as to avoid degradation, and produce a proposal density ����|����� ��� that ensures x is 
drawn from an appropriate subset of the solution space. Two methodologies are available 
for resampling in a particle filter. The first is to only resample when it is needed via some 
fitness measure of the particle weights (70), and this methodology produces an architecture 
that conforms to the SIS with Resampling (SISw/R) frame work. Alternatively resampling 
can occur at every epoch, regardless of particle fitness, fitting under the definition of 
Sequential Importance Resampling (SIR). 
  ����� � �∑ ���� ������  (70) 

 
An appropriate choice of proposal density is crucial as it can, if optimal, minimize the 
variance of the sample weights introduced in the sampling stage. An example of this is the 
first practical particle filter implementation, the ‘Bootstrap’ particle filter (Ristic et al., 2004), 
whose SIR architecture is one of two essential factors for the filter’s successful operation. The 
other factor is that the bootstrap filter makes convenient use of (71) for the proposal 
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can occur at every epoch, regardless of particle fitness, fitting under the definition of 
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distribution, which can easily be sampled from and which simplifies (69) to produce (72) but 
is not optimal. 
 ���������� � ��� � ���������� � (71) ��� � ����� �������� � (72) 
 
Sequential Importance Resamping (SIR) is the principal architecture employed in effectively 
all particle filter implementations. Applications related to mobile robots include target 
identification and tracking both airborne and marine (Ristic et al., 2004), terrain navigation , 
airborne navigation , underwater navigation , and Simultaneous Localization And Mapping 
(SLAM) . The bootstrap architecture however has a drawback, that is when the system noise 
is small or the likelihoods are peaked, the particles within the bootstrap filter can still 
degenerate due to lack of diversity and poor proposal choice, respectively. There are 
numerous variations of the SIR architecture, as used in the original bootstrap particle filter, 
that are designed to address this problem. Most of the variants consist of modifying two 
stages of the particle filter: the proposal stage, thus changing the proposal density used, and 
the resampling stage, thus changing the resampling densities used.  

 
5.3.1 Resampling 
Resampling consists of creating a new unweighted set X, from a weighted set X*, whose 
distribution reflects X* resulting in the weights being normalized and avoiding degradation. 
All current resampling algorithms use the same technique to sample from the posterior. 
They all create a new set X by applying uniformly generated random numbers to an inverse 
of the cumulative distribution function (cdf) of the state estimate (73) (Doucet et al., 2001). 
This is not a cdf in the conventional sense in that it does not accumulate over the solution 
space but over the particle indices indicated in Fig. 5. 
 
A uniform number applied to (73) produces a value defining the index of a particle. The 
indicated particle’s state then constitutes a sample in the new distribution. There are four 
common resampling algorithms: Multinomial, Stratified, Systematic, and Residual. These 
four algorithms are differentiated by how the uniformly distributed numbers are generated. 
 ��� � � �� � � � �� ��� �� � �������� ��� ��� � ���  (73) 
 
Multinomial -  for i = 1,..,N, ui ~ u((0,1]) 
 Stratified      - for i = 1,..,N, ui ~ u((N-1(i-1), N-1i]) 
 Systematic   -  for i = 1,..,N, ui = N-1(i-1) + u1   where  u1 ~ u(0,N-1]  
Residual       - for i = 1,..,m  Ni = |Nωi| + N’i  where |Nωi| is the integer 
       part and denotes the number 
then       of samples from Xi 
 for i = 1,..,(N-R), ui ~ u((0,1])    where R = nm|Nωi| 

 

 
Fig. 5. CDF Example 

 
5.3.2 Regularized Particle Filter 
The Regularized particle filter uses regularization of the empirical distribution by means of a 
kernel method (74) in the resampling stage. Regularization avoids particle degradation by 
generating diversity through exploiting the smoothness that is contained in the distribution 
in a continuous space. This diversity makes the filter more robust at the expense of the 
theoretical disadvantage that the samples are no longer asymptotically approximate to those 
of the posterior. 
 ��� � � ��� � �������� (74) 
 
5.3.3 MCL Particle Filter 
The Monte-Carlo Localizer was developed specifically for robots that operate in buildings 
(Doucet et al., 2001) to offset the drawbacks of the case dependent quality of the bootstrap 
filter’s proposal choice. The MCL employs a modified resampling stage that uses the 
observations in the generation of the resampled distribution. The resampling stage of the 
MCL includes the observation by drawing samples from not only the prior, as in the 
bootstrap filter, but a fixed percentage from the likelihood as well (75). This indirectly 
improves the proposal distribution when the likelihoods are peaked, by placing particles at 
suitable points in the solution space according to the likelihood before applying to (71), thus 
indirectly producing (68).  
 ��� � � �� � � � � � �� ��� �� � �������� ��� ��� � ������ � � �� � � � �� ��� �̃� � �������� ��� � �����  (75) 

 
5.3.4 Auxiliary Particle Filter 
The Auxiliary particle filter uses a simulation based method to define the proposal 
distribution. The proposal density is generated in a three stage process. First, a deterministic 
projection of the set xk from the set xk-1 is generated, as shown in (76), based on some 
characteristic of x. Second, the weights are modified in (77) based on this prediction and 
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stages of the particle filter: the proposal stage, thus changing the proposal density used, and 
the resampling stage, thus changing the resampling densities used.  
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Resampling consists of creating a new unweighted set X, from a weighted set X*, whose 
distribution reflects X* resulting in the weights being normalized and avoiding degradation. 
All current resampling algorithms use the same technique to sample from the posterior. 
They all create a new set X by applying uniformly generated random numbers to an inverse 
of the cumulative distribution function (cdf) of the state estimate (73) (Doucet et al., 2001). 
This is not a cdf in the conventional sense in that it does not accumulate over the solution 
space but over the particle indices indicated in Fig. 5. 
 
A uniform number applied to (73) produces a value defining the index of a particle. The 
indicated particle’s state then constitutes a sample in the new distribution. There are four 
common resampling algorithms: Multinomial, Stratified, Systematic, and Residual. These 
four algorithms are differentiated by how the uniformly distributed numbers are generated. 
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5.3.2 Regularized Particle Filter 
The Regularized particle filter uses regularization of the empirical distribution by means of a 
kernel method (74) in the resampling stage. Regularization avoids particle degradation by 
generating diversity through exploiting the smoothness that is contained in the distribution 
in a continuous space. This diversity makes the filter more robust at the expense of the 
theoretical disadvantage that the samples are no longer asymptotically approximate to those 
of the posterior. 
 ��� � � ��� � �������� (74) 
 
5.3.3 MCL Particle Filter 
The Monte-Carlo Localizer was developed specifically for robots that operate in buildings 
(Doucet et al., 2001) to offset the drawbacks of the case dependent quality of the bootstrap 
filter’s proposal choice. The MCL employs a modified resampling stage that uses the 
observations in the generation of the resampled distribution. The resampling stage of the 
MCL includes the observation by drawing samples from not only the prior, as in the 
bootstrap filter, but a fixed percentage from the likelihood as well (75). This indirectly 
improves the proposal distribution when the likelihoods are peaked, by placing particles at 
suitable points in the solution space according to the likelihood before applying to (71), thus 
indirectly producing (68).  
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5.3.4 Auxiliary Particle Filter 
The Auxiliary particle filter uses a simulation based method to define the proposal 
distribution. The proposal density is generated in a three stage process. First, a deterministic 
projection of the set xk from the set xk-1 is generated, as shown in (76), based on some 
characteristic of x. Second, the weights are modified in (77) based on this prediction and 
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current observations. Last, the resultant multinomial distribution is resampled according to 
(73). This resampling creates a set of indices that denote the collection of particles at k-1 
which if propagated according to the bootstrap filter (71)-(72) create a distribution 
equivalent to ����� ������ � ���. 
 ���� � �|��� � �������� ����������� ������  (76) ��� � ������ ���������� ����������� ������ � ������ � ������������������� (77) 

 
5.3.5 Rao-Blackwellised Particle Filter (RBPF) 
Rao-Blackwellisation is a method of marginalizing states with Gaussian error distributions 
resulting in two systems: a linear Gaussian system (78) which can be processed by Kalman 
filter algorithms (36)-(43), and a nonlinear non-Gaussian system (79) which can be estimated 
by particle filter algorithms (67)-(69). This split approach avoids the ‘curse of 
dimensionality’ by lowering the number of dimensions to be estimated by the particle filter. 
With less dimensions, the particle filter will require significantly less particles to obtain a 
given accuracy. However, this comes at the expense of significantly increased computational 
cost per particle, since each particle will need to propagate a Kalman representation of the 
marginalized states. The RBPF has been studied for navigational purposes but has received 
most attention in tracking applications (Ristic et al., 2004). 
 ��� � ��������� � ���� (78) ��� � ��� � ��������� � ���� (79) 

 
5.3.6 Hybrids 
As can be seen, the above set of variants is all concerned with either indirectly or directly 
defining the proposal density for the given problem. This has led to the proliferation of 
hybrid filters in which a Kalman Filter variant is used to estimate (80) for a particle filter. 
Examples of this include the Extended Particle Filter and the Unscented Particle Filter. 
In these filters, the EKF (44)-(53) or UKF (54)-(66) equations are used to generate a mean and 
covariance estimate, ���� ���� , for each particle, ��� , such that they can be used as the proposal 
density (80). 
 ���������� � ��� � ������ � ��� � (80) 
 
As revealed in (80) N particles, i.e., N Kalman filter representations need to be calculated at 
each time step k and as such present a significant computational burden but with the benefit 
of significantly increased accuracy. This trade off is much like the RBPF in that although 
more computationally intensive per particle, it requires fewer particles to achieve a given 
accuracy. 

 

 

5.3.7 MAPR Particle Filter 
The Measurement Assisted Partial Resampling (MAPR) particle filter is a novel new particle 
filter algorithm which is based on the bootstrap algorithm (71)-(72) with a modified 
resampling stage (Lammas, 2008). In place of the resampling scheme described in (73), 
MAPR uses a heuristic resampling scheme which nominates a proportion of the particles for 
resampling. This heuristic resampling scheme draws on influences from the Regularised (74) 
and MCL (75) particle filters and is designed to minimise variance in the particle weights 
introduced due to the resampling process. 

 
6. Implementation and Analysis 

To compare the algorithms detailed in the previous section, the algorithms are implemented 
in a navigational system and tested in the scenario described in the introduction and 
illustrated in Fig. 1. To implement this navigational system, the state (25) and measurement 
(26) models must be defined. In this scenario, the vehicle dynamics (22) defines the state 
models (44), (57), and (69), and the measurement equations (23)-(31) define the observation 
models (45), (58), and (69). The filters are run synchronously at 100 Hz in order to mitigate 
some of the nonlinearity effects of the Kalman Filter variants. This sampling rate is chosen 
under the consideration that, within a reasonable range, the smaller the sample period, the 
better the linear approximation to a nonlinear function. The particle filters are run using a 
particle population of 1000, i.e., N=1000, which is generally considered as insufficient, for all 
but the MAPR filter, to estimate the given scenario which has a state vector with 10 states. 
For the sake of clarity and conciseness, the results presented will be restricted to four of the 
aforementioned filters, namely the EKF, UKF, Bootstrap, and MAPR filters. The 
measurements available in this scenario are taken from the IMU, DVL, Compass, and GPS 
modules described in Table 1. In the scenario, it is assumed that the seafloor is visible to the 
DVL transponders from the surface, and as such provides a continuous stream of velocity 
measurements. This premise means that only the position states needed to be estimated via 
dead reckoning, i.e., for the period of time the vehicle is submerged. 
 

Part No. 
Sensors Biases 

Vendor Description Data Hz RMS Case 1 Case 2 

MMA7260Q Freescale 3 axis 
accelerometer* ax,ay,az 100 0.0063 0 0.01 

CRS03-04 Silicon 
Sensing 

3x 1 axis 
Gyroscopes* ωx,ωy,ωz 100 0.0045 0 0.01 

HMR3000 Honeywell Compass  , θ, 
Tx,Ty,Tz 

20 0.002 
0.001 

N/A LEA-4T uBlox GPS PR1:N 
δ1:N 10 20 

0.03 
Explorer Teledyne DVL V1:4 7 0.0055 
* the 3 axis accelerometer and the 3 single axis gyroscopes aligned 
orthogonally form an Inertial Measurement Unit (IMU) 
Table 1. Sensors and Intrinsic Errors 
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current observations. Last, the resultant multinomial distribution is resampled according to 
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filter algorithms (36)-(43), and a nonlinear non-Gaussian system (79) which can be estimated 
by particle filter algorithms (67)-(69). This split approach avoids the ‘curse of 
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With less dimensions, the particle filter will require significantly less particles to obtain a 
given accuracy. However, this comes at the expense of significantly increased computational 
cost per particle, since each particle will need to propagate a Kalman representation of the 
marginalized states. The RBPF has been studied for navigational purposes but has received 
most attention in tracking applications (Ristic et al., 2004). 
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As can be seen, the above set of variants is all concerned with either indirectly or directly 
defining the proposal density for the given problem. This has led to the proliferation of 
hybrid filters in which a Kalman Filter variant is used to estimate (80) for a particle filter. 
Examples of this include the Extended Particle Filter and the Unscented Particle Filter. 
In these filters, the EKF (44)-(53) or UKF (54)-(66) equations are used to generate a mean and 
covariance estimate, ���� ���� , for each particle, ��� , such that they can be used as the proposal 
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As revealed in (80) N particles, i.e., N Kalman filter representations need to be calculated at 
each time step k and as such present a significant computational burden but with the benefit 
of significantly increased accuracy. This trade off is much like the RBPF in that although 
more computationally intensive per particle, it requires fewer particles to achieve a given 
accuracy. 

 

 

5.3.7 MAPR Particle Filter 
The Measurement Assisted Partial Resampling (MAPR) particle filter is a novel new particle 
filter algorithm which is based on the bootstrap algorithm (71)-(72) with a modified 
resampling stage (Lammas, 2008). In place of the resampling scheme described in (73), 
MAPR uses a heuristic resampling scheme which nominates a proportion of the particles for 
resampling. This heuristic resampling scheme draws on influences from the Regularised (74) 
and MCL (75) particle filters and is designed to minimise variance in the particle weights 
introduced due to the resampling process. 

 
6. Implementation and Analysis 

To compare the algorithms detailed in the previous section, the algorithms are implemented 
in a navigational system and tested in the scenario described in the introduction and 
illustrated in Fig. 1. To implement this navigational system, the state (25) and measurement 
(26) models must be defined. In this scenario, the vehicle dynamics (22) defines the state 
models (44), (57), and (69), and the measurement equations (23)-(31) define the observation 
models (45), (58), and (69). The filters are run synchronously at 100 Hz in order to mitigate 
some of the nonlinearity effects of the Kalman Filter variants. This sampling rate is chosen 
under the consideration that, within a reasonable range, the smaller the sample period, the 
better the linear approximation to a nonlinear function. The particle filters are run using a 
particle population of 1000, i.e., N=1000, which is generally considered as insufficient, for all 
but the MAPR filter, to estimate the given scenario which has a state vector with 10 states. 
For the sake of clarity and conciseness, the results presented will be restricted to four of the 
aforementioned filters, namely the EKF, UKF, Bootstrap, and MAPR filters. The 
measurements available in this scenario are taken from the IMU, DVL, Compass, and GPS 
modules described in Table 1. In the scenario, it is assumed that the seafloor is visible to the 
DVL transponders from the surface, and as such provides a continuous stream of velocity 
measurements. This premise means that only the position states needed to be estimated via 
dead reckoning, i.e., for the period of time the vehicle is submerged. 
 

Part No. 
Sensors Biases 

Vendor Description Data Hz RMS Case 1 Case 2 

MMA7260Q Freescale 3 axis 
accelerometer* ax,ay,az 100 0.0063 0 0.01 

CRS03-04 Silicon 
Sensing 

3x 1 axis 
Gyroscopes* ωx,ωy,ωz 100 0.0045 0 0.01 

HMR3000 Honeywell Compass  , θ, 
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Two variants of this scenario are analysed based on Table 1. The first variant (Case 1) 
assumes a perfectly calibrated IMU, with only Gaussian noise left as the source of errors. 
The second variant (Case 2) assumes a more realistic IMU which, apart from Gaussian noise, 
has a bias of 0.01 rad/s for the gyroscopes and 0.01 m/s2 for the accelerometers. This 
arrangement allows analysis of the robustness of the four filters to ‘non-ideal’ measurements 
in comparison to ‘ideal’ measurements. 
A Monte Carlo trial of the scenario is performed for each of the four filters to compare the 
systematic characteristics. Each trial consists of 400 runs, following the same trajectory with 
independently identically distributed (i.i.d.) measurements. The results of these trials for 
unbiased (ideal) IMU and the biased (non-ideal) IMU are presented in Fig. 6 and Fig. 7, 
respectively. Figs. 8a and 8b show the cross-track errors of the estimates presented in Fig. 6a 
and Fig. 7a, respectively. 
Figs. 6a and 6b show the top down view of the estimated raster trajectory and the estimate 
and the residual of the surge, u, respectively. As can be seen in Fig. 6b, the EKF and UKF 
produce a smaller error compared to the particle filter variants. This behaviour is 
predictable since the errors in this scenario assume only Gaussian noise and for the given 
sampling rate, the EKF and UKF with their associated limited nonlinearities in (22) and (23)-
(32) should theoretically produce an optimal solution. It should also be noted that although 
the Kalman variants are optimal in this case, the MAPR’s position estimate is still 
comparable to those of the Kalman Filters, as shown in Fig. 8a, and its surge estimate though 
degraded is still less than 5mm/s. 
 

 
Fig. 6. Raster Scan (a) and Surge Estimates (b) for the Unbiased Case 
 
Fig. 7 shows the result of the more realistic scenario which includes residual bias errors in 
the IMU. In Fig. 7a, it can be seen that the EKF and Bootstrap filters suffer significantly in 
their position estimates from these biases when compared with Fig. 6a. Similarly, significant 
distortions in the velocity estimate due to the biases are also evident in Fig. 7b. Though the 
UKF suffers in a similar way to the EKF and Bootstrap filters in estimating the velocity, the 
UKF can still estimate the position accurately. The reason for the deterioration of the EKF 
estimates is because, despite there being minimal nonlinearities in the measurements, GPS 
still contains non-negligible nonlinearities which is compounded by its limited availability 
and by the critical impact of poor initial estimates on the dead reckoning process. Likewise, 

 

for the Bootstrap filter, limited GPS availability and the impact of initial estimates are also 
compounding factors, however, in this case the initial error is due to inadequacies in the 
bootstrap filter for small particle population, i.e., N=1000. As evident in Fig. 7b, the best 
performance in term of estimating velocity in this case is the MAPR filter which has an error 
six times less than that of the next accurate estimate, UKF. 
 

 
Fig. 7. Raster Scan (a) and Surge Estimates (b) for the Biased Case 
 
In Fig. 7a, as in Fig. 6a, the position error of the UKF and MAPR filter appear to be 
comparable. However, in Fig. 8, the difference between the unbiased and biased cases 
becomes more evident. In Fig. 8a, with no biases and only Gaussian noise, it can be seen 
that, apart from the Bootstrap filter, all the filters have a comparable cross-track error, with 
the MAPR filter being marginally less accurate than the Kalman filters. In Fig. 8b, with the 
inclusion of biases, the MAPR clearly has a smaller cross-track error than that of the UKF in 
almost all parts of the trajectory except for a small section at the start which exhibits a larger 
error. 
In conclusion, although some navigation filters may work more accurately than others with 
‘ideal’ sensors, the performance degradation of these filters in the presence of increasing 
sensor bias is evident as demonstrated in the test scenario presented here. This has the 
consequence that filters that may appear not to be desirable in the ideal test may actually 
perform better than the perceived optimal choice under realistic conditions. As such, the use 
of high-fidelity simulation and field testing of proposed navigation algorithms is essential to 
identify the optimal selection. As shown in this section, although the merits of the MAPR 
filter may not seem apparent for ideal or very expensive sensor suites, the MAPR filter 
performs better than the UKF which is considered to be the best of the filters in the ideal 
situation. Moreover, the MAPR filter retains many of the desirable advantages of particle 
filters, such as multimodal distributions which are commonly encountered when using 
SLAM-based positioning. The multimodal distributions result from multiple-position 
hypothesises due to the similarity of different features or different angles of the same 
feature, as viewed by the sensors. This multimodal support is increasingly desirable as the 
use of SLAM for positioning becomes more prolific in mobile robotic applications.  
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identify the optimal selection. As shown in this section, although the merits of the MAPR 
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filters, such as multimodal distributions which are commonly encountered when using 
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Fig. 8. Cross-Track Error for Unbiased Case (a) and Biased Case (b)  

 
7. Conclusion 

The chapter has provided a review of various sensing modalities and filtering techniques 
used in AUV navigation. Specifically, a range of suitable navigation sensors as carried by 
modern AUVs is discussed, as a basis for selecting a sensor platform that is appropriate for 
the intended navigation algorithm and application. A set of algorithms, based on the 
Bayesian filter family, is reviewed. These filters include various versions of Kalman and 
particle filters, as well as the new MAPR particle filter developed by the authors. 
Implementations and analyses of these filters, in the context of a navigation estimation 
system for an AUV, are provided. These implementations have been tested based on the 
growth in the filters’ state estimate errors, particularly with respect to position estimates, 
during a raster scan mission, typical for survey class AUVs. The information provided will 
allow vehicle designers to consider the use of these concepts for the purpose of improving 
performance and efficiency, and reducing vehicle instrumentation costs. 
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