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Abstract. It was a long-standing open problem whether the minimum
weight dominating set in unit disk graphs has a polynomial-time
constant-approximation. In 2006, Ambühl et al solved this problem by
presenting a 72-approximation for the minimum weight dominating set
and also a 89-approximation for the minimum weight connected domi-
nating set in unit disk graphs. In this paper, we improve their results by
giving a (6 + ε)-approximation for the minimum weight dominating set
and a (10 + ε)-approximation for the minimum weight connected domi-
nating set in unit disk graphs where ε is any small positive number.
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1 Introduction

Consider a graph G = (V, E). A subset A of V is called a dominating set if
every node in V − A is adjacent to a node in A, and furthermore, A is called
a connected dominating set if the subgraph G[A] induced by A is connected. A
graph is called a unit disk graph if every node is associated with unit disk (a disk
of diameter one) in the Euclidean plane and there is an edge between two nodes if
and only if two corresponding disks have nonempty intersection. Therefore, when
we place each node at the center of its associated disk, an edge (u, v) exists if
and only if d(u, v) ≤ 1. The unit disk graph is a mathematical model for wireless
sensor networks when all sensors have the same communication range. Both the
dominating set and the connected dominating set have important applications
in the study of wireless sensor networks [3].

Given a unit-disk graph G = (V, E) with node weight c : V → R+, find
a dominating set with minimum total weight. This is an NP-hard problem [4]
and it was open for a long time whether there exists a polynomial-time constant-
approximation for this problem. In 2006, Ambühl et al [1] solved this problem by
presenting a 72-approximation for the minimum weight dominating set and also a
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89-approximation for the minimum weight connected dominating set in unit disk
graphs. In this paper, we improve their results by giving a (6+ε)-approximation
for the minimum weight dominating set and a (10 + ε)-approximation for the
minimum weight connected dominating set in unit disk graphs where ε is arbi-
trarily small positive number.

2 Preliminaries

Firstly, we set a fixed constant 0 < μ <
√

2/2. Suppose all the nodes of the given
unit disk graph are contained in the interior area of a square with edge length
mμ. Then, we divide this square into a m×m grid such that each cell is a square
with edge length μ. We may assume that no node lies on any cut-line of the grid
since, if such a case occurs, we can always make a little move of the grid to have
cut-lines away from nodes. For a cell e and a node subset D, let D+(e) denote
the subset of all nodes each of which is able to dominate (i.e., adjacent to) a
node in e and D(e) = e∩D. Ambühl et al [1] studied the following subproblem:

Subproblem-on-Cell: Find a minimum weight subset of V +(e) to
dominate V (e).

They found that this subproblem has a polynomial-time 2-approximation,
which results in a 72-approximation for minimum weight dominating set in whole
unit disk graph. A key lemma in establishing the 2-approximation is as follows.

Lemma 1. Consider a set P of points lying inside a horizontal strip and a set
D of disks with radius one and with centers either above or below the strip (Fig.
1). Give each disk with a nonnegative weight. Suppose the union of all disks
covers P . Then the minimum weight subset of disks covering P can be computed
in time O(m4n) where n = |P | and m = |D|.

This lemma is very useful in the whole paper.

Fig. 1. A covering problem about a strip

3 Main Result

Our new results are based on several new arguments and new ideas.
Firstly, we set μ =

√
2/2 and establish some new results about a cell e.
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Let A, B, C, D be four vertices of e and divide outside of e into eight areas as
shown in Fig. 2. For any node p ∈ V (e), let ∠p be a right angle at p such that
two edges intersecting horizontal line AB each at an angle of π/4. Let Δlow(p)
denote the part of e lying inside of ∠p. Similarly, we can define Δup(p), Δleft(p)
and Δright(p) as shown in Fig. 3.

Lemma 2. If p is dominated by a node u in area LM then every point in
Δlow(p) can be dominated by u. The similar statement holds for CL and Δleft(p),
CR and Δright(p), and UM and Δup(p).

Proof. Since Δlow(p) is a cover polygon, it sufficient to show that the distance
from u to every vertex of Δlow(p) is at most one.

Suppose v is a vertex of Δlow(p) on BC (Fig. 4). Draw a line L′ perpendicular
to pv and equally divide pv. If u is below L′, then we have d(u, v) ≤ d(u, p) ≤ 1. If
u is above L′, then d(u, v) ≥ d(u, p), then ∠uvp < π/2 and hence ∠uvC < 3π/4.
It follows that d(u, v) < μ/ cosπ/4 = 1.

A similar argument can be applied in the case that the vertex v of Δlow(p) is
on DA or on AB. �
Consider two nodes p, p′ ∈ V (e). Suppose p is on the left of p′. Extend the left
edge of ∠p and the right edge of ∠p′ to intersect at point p′′. Define Δlow(p, p′)
to be the part of e lying inside of ∠p′′ (Fig. 5). Similarly, we can define Δup(p.p′).

Lemma 3. Let K be a subset of V +(e)−V (e), which dominates V (e). Suppose
p, p′ ∈ V (e) are dominated by some nodes in K ∩LM (or K ∩UM), but neither
p nor p′ is dominated by any node in K ∩ (CL ∪ CR). Then every node in
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Fig. 2. Outside of e is divided into eight areas
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Fig. 3. Δlow(p), Δup(p), Δleft(p) and Δright(p)
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Fig. 4. The proof of Lemma 2
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Fig. 5. Δlow(p, p′)

Δlow(p, p′) can be dominated by nodes in K ∩(U ∪L) where U = UL∪UM ∪UR
and L = LL ∪ LM ∪ LR.

Proof. By Lemma 2, it suffices to consider a node u lying in Δlow(p, p′)\(Δlow(p)∪
Δlow(p′). For contradiction, suppose u is dominated by a node v in K ∩ (CL ∪
CR). If v ∈ CL, then Δleft(v) contains p and by Lemma 2, p is dominated by
v, a contradiction. A similar contradiction can result from v ∈ CR. �
Define Δlow(∅) = ∅, and Δlow({p}) = Δlow(p). Also, define Δlow({p, p′}) =
Δlow(p, p′) if p is on the left of p and Δlow({p, p′}) = Δlow(p) if p and p′ on a
vertical line and p is higher than p′. Similarly, define Δup(W ) for a subset W of
at most two vertices in V (e).

Now, consider an optimal solution Opt for the minimum weight dominating
set and its total weight is denoted by opt. Let C be the set of all cells in the grid
and C′ = {e ∈ C | e ∩ Opt 
= ∅}.

For e ∈ C − C′, choose p (p′) to be the leftmost (rightmost) node in V (e),
which is dominated by a node in Opt+(e)∩LM , but not by any node in Opt+(e)∩
(CL ∪ CR); if there are more than one such p (p′), then choose the highest one.
Choose q (q′) to be the leftmost (rightmost) node in V (e), which is dominated
by a node in Opt+(e) ∩ UM , but not by any node in Opt+(e) ∩ (CL ∪ CR); if
there are more than one such q (q′), then choose the lowest one.
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Define

W =
{

{p, p′} if p and p′ exist
∅ otherwise,

and

W ′ =
{

{q, q′} if q and q′ exist
∅ otherwise,

By Lemma 3, every node in V1(e) = Δlow(W ) ∪ Δup(W ) can be dominated by
Opt+(e) ∪ (U ∪ L) and every node in V2(e) = V (e) \ V1(e) can be dominated by
Opt+(e) ∩ (L∗ ∪ R) where L∗ = UL ∪ CL ∪ LL and R = UR ∪ CR ∪ LR.

Let H1, ..., Hm be m horizontal strips and Y1, ..., Ym m vertical strips. For
every e ∈ C′, choose a node ve ∈ e ∩ Opt. Let U = {ve | e ∈ C′} and ZU be the
set of nodes dominated by U . For each cell e, denote V +

1 (e) = V +(e) ∩ (U ∪ L∗)
and V +

2 (e) = V +(e) ∩ (L ∪ R) and each strip Hi (Yi), denote Opt+(Hi) =
(∪e∈(C−C′)∩Hi

Opt+1 (e)) \ U (Opt+(Yi) = (∪e∈(C−C′)∩Yi
Opt+2 (e)) \ U).

For each strip Hi, we compute a minimum weight subset OPT (Hi) from
set (∪e∈(C−C′)∩Hi

V +
1 (e)) \ U to dominate (∪e∈(C−C′)∩Hi

V1(e)) \ ZU and for
each strip Yi, compute a minimum weight subset of (∪e∈(C−C′)∩Yi

V +
2 (e)) \ U to

dominate (∪e∈(C−C′)∩Yi
V2(e))\ZU . Putting U , OPT (Hi) and OPT (Yi) together,

we would obtain a dominating set with total weight at most

c(U) +
m∑

i=1

c(Opt+1 (Hi)) +
m∑

i=1

c(Opt+2 (Yi)).

Note that a node can be in Opt+1 (Hi) or Opt+2 (Yi) for at most six (horizontal or
vertical) strips. Therefore,

c(U) +
m∑

i=1

c(Opt+1 (Hi)) +
m∑

i=1

c(Opt+2 (Yi)) ≤ 6opt.

This means that we obtain a dominating set with total weight at most 6opt.
However, computing this dominating set has a trouble because C′ and U are

defined by Opt and for each cell, p, p′, q, q′ are also determined by Opt. Don’t
worry! This trouble can be removed by consider all possible C′, all possible U and
all possible p, p′, q, q′. This idea gives the following approximation algorithms.

6-Approximation: Put input unit-disk graph G = (V, E) in the interior of a
mμ × mμ square S. Divide the square S into an m × m grid such that each cell
is a μ × μ square. Let C be the set of m2 cells. Let C′ ⊆ C. For each cell e ∈ C′,
choose a node ve ∈ V (e) and let U = {ve | e ∈ C′. For every subset C′ and every
U , compute a node subset A(C′, U) in the following way:

Step 1. For every cell e ∈ C − C′ and for every W ⊆ Vlow(e) with
|W | ≤ 2 and every W ′ ⊆ Vup(e) with |W ′| ≤ 2, let V1(e) =
Δlow(W ) ∪ Δlow(W ′) and V2(e) = V (e) − V1(e).

Step 2.1. For each horizontal strip H , compute a minimum weight subset
OPT (H) of (∪e∈H\C′V +

1 (e)) \U to dominate (∪e∈H\C′V1(e)) \
ZU .
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Step 2.2. For each vertical strip Y , compute a minimum weight subset
OPT (Y ) of ∪e∈Y \C′V +

2 (e) to dominate (∪e∈H\C′V2(e)) \ ZU .
Step 2.3. Compute O = (∪HOPT (H)) ∪ (∪Y OPT (Y )) to minimize the

total weight c(O) over all possible combinations of W , W ′ for
all e ∈ C − C′.

Step 3. Set A(C′, U) = O(C′) ∪ U .
Step 4. Finally, compute a A = A(C′, U) to minimize the total weight

c(A(C′, U)) for C′ over all subsets of C and U over all choices.

We now estimate the time for computing A. There are O(2m2
) possible subsets

of C, nO(m2) possible choices of U and O(n4m2
) possible combinations of W and

W ′ for all cells in C − C′. For each combination, computing all OPT (H) and
all OPT (Y ) needs time O(n5). Therefore, total computation time is nO(m2). A
good news is that when m is a constant, this is a polynomial-time. A bad news
is that in general, m is not a constant. However, we can use partition again to
make a constant m!

Theorem 1. For any ε > 0, there exists (6+ε)-approximation with computation
time nO(1/ε2) for the minimum weight dominating set in unit disk graph.

Proof. Choose m = 12 max(1, �1/ε
). Put input unit-disk graph G into a grid
with each cell being an mμ × mμ square. For each cell e, solve the problem for
subset of nodes within distance one to cell e to dominate the nodes in cell e with
the 6-approximation algorithm. Union them together and denote this union by
A(P ) for the partition P induced by this grid. Shift this grid in diagonal direction
with distance one in each time. This results in m partitions P1, ..., Pm. Choose
A = A(Pi) to be the one with the minimum weight among A(P1), ..., A(Pm). We
claim c(A(Pi)) ≤ (6 + ε)opt.

In fact, each disk with radius one can cross cutlines of at most four partition.
When a disk with radius one and center at a vertex u crosses a cutline of a
partition Pj , u may involve more than one, but at most four mμ × mμ cells’
subproblems. It follows that

c(A) ≤ (1 + 12/m)opt ≤ (1 + ε)opt.

Now, the total computation time is m · nO(m2) = nO(1/ε2). �

Next, we study the minimum weight connected dominating set problem in unit
disk graphs: Given a unit-disk graph G = (V, E) with weight c : V → R+, find
a connected dominating set with minimum total weight.

Theorem 2. For any ε > 0, there exists a (10 + ε)-approximation with compu-
tation time nO(1/ε2) for the minimum weight connected dominating set in unit
disk graphs.

Proof. We first compute a (7 + ε)-approximation D for the minimum weight
dominating set and then connect D with nodes of total weight at most 4opt
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where opt is the minimum weight of connected dominating set. This can be done
due to the following:

(1) Let OPT be the minimum weight connected dominating set for G. Then,
we can find a minimum-length spanning tree T for D ∪ OPT such that every
node in OPT −D has degree five by the method in the proof of Lemma 1 in [2].

(2) Using method in [5], we can construct from T a spanning tree T ′ for D
such that each edge (u, v) of T ′ is a path between u and v in T and each node
in OPT \ D appears in at most four edges of T ′. If we assign the weight of edge
(u, v) of T ′ equal to the total weight of nodes on the path between u and v. The
total edge-weight of T ′ is at most 4opt.

(3) We can compute a tree T ∗ with weight as small as that of T ′ in the
following:

Step 1. Construct a complete graph H on D. For each edge (u, v), as-
sign cost w(u, v) with the minimum total weight of internal
nodes on a path between u and v in graph G.

Step 2. Compute a minimum spanning tree T ′′ of H and map T ′′ back
to G in order to obtain a tree T ∗ for connecting all connected
component of D.

Then we can finished the whole proof. �

4 Conclusion

In this paper we gave an improved constant-factor approximation algorithm to
compute minimum weight connected dominating set in unit disk graphs. We
divided our algorithm into two parts. The first part selected a minimum weight
dominating set for a given unit disk graph, and then the first part connects this
dominating set by inserting several disks into the dominating set. The first part
is a (6+ε)-approximation, while the whole algorithm is a (10+ε)-approximation.
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