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1. Introduction 

The multivariate analysis of variance problem for the normal case 

may be posed as follows: Let X: p x n be a random matrix such that 

its column vectors are independently distributed as 

is an unknown positive-definite matrix; moreover, 

h (•,I:), where I: 
p 

(1.1) 

where A: n x m is a known matrix of rank r and ®: m x p is a 

matrix of unknown parameters. The problem is to test HO: G "® = 0 

against H
1

: G"® ~ 0, where G., is a known s xm matrix of rank 

such that G = A 'B for some B: n XS • This problem can easily be 

reduced to the following canonical form: Let Y
1

, ••• , Y
0 

be n 

independently distributed p x 1 random vectors such that 

s 

Y
0

,..,,, llp(µa,I:), where 1-Lr+l= ••• = ~ = O, and E along with µ,
1

, ••• , µ,r 

are unknown, t being positive-definite. The problem is to test 

(1.2) 

against 

n 

= IJ, = 0 
s 

Hi_: "not H
0

" , where s :s; r • In this set-up 
s 

s
0 

= I: Y Y" and 
a=l a a 

Se= I: Y Y' are called the sums of products (s.p.) matrices due to 
c:,pr+l a a 

the hypothesis H
0 

and error, respectively; the corresponding degrees 

of freedom are s and ne = n-r. 

The following tests (represented by their acceptance regions) are 

most-often considered in the literature: 

(a) Likelihood-ratio test: 
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(b) Roy's maximum-root test: 

(1.4) max[characteristic root of 
-1 

sose ] :s: k2 

(c) Lawley-Hotelling's trace test: 

(1.i5) tr(s
0
s;

1) :s: k
3 

(d) Pillai's trace test: 

(1.6) tr [s
0 

(s
0 

+ Se .)-l] :S: k
4 

Note that the first three tests are defined only when n ~ p in 
e .-

which case Se is non-singular with probability 1. The last test is 

defined when n + s > p • All these four tests are members of a class 
e 

of invariant tests which is defined as follows. 

Let 

= (Yl, •••, Ys), y(2) = (Ys+l' ••• , Yr), 

y(3) = (Yr+l' •••, Yn) • 

A set of sufficient statistics is given by 

(1.8) 

St is positive-definite when ~ + s ~ p. Consider the following 

transformation: 

(1.9) 

where 

L E (9 = the class of all s x s orthogonal matrices, 
s 

A Et = the class of all p x p nonsingular matrices, 
p 

BE~ = the class of all p x (r-s) matrices. 
p,r-s 

This transformation keeps the above model and the testing problem 

invariant. The composition of two such transformations is given by 
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(1.10) 

Then the collection G of (L, A, B) with the above binary operation 

is a group of transformations acting on ln x In x g+ , where 
p,s p,r-s p 

g+ = the collection of all p x p positive-definite matrices. 
p 

Let 'G be the class of all non-randomized tests invariant under G. 

Lemma. When n + s > p, a set of maximal invariants under G 
e 

in the space of sufficient statistics (Y(l)' Y(
2

), St) is given by the 

-1 
ordered non-zero characteristic roots of s

0
st , denoted by d

1
< ••• < dt 

where l = min(s,p). 

test. 

When n + s ~ p there is no non-trivial invariant 
e 

Suppose ne ~ p and let c
1
~ ••• ~ c

1 
be the ordered non-zero 

characteristic roots of 
-1 

Sl1 e • Then d. = c./(l+ci). 
]. l. 

Next we shall consider two important special cases. 

(I) s = 1, I1e ~ p. The acceptance regions of all the above four tests 

reduce to 

(1.11) 

This is the UMP invariant test for its size. 

(II) p = 1, ne ~ 1. The acceptance regions of all the above four 

tests reduce to 

(1.12) 

This is also the UMP invariant test for its size. 

Except for these two special cases UMP invariant test does not 

exist. All the above four tests are· known to be admissible. Instead 

of comparing the power functions of different tests we shall be concerned 

in this paper with the behavior of the power function of a given test 
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with respect to the non-centrality parameters involved; in particular 

we shall study whether the unbiasedness property is satisfied by a given 

test. 

Let Ti, ... , ~ be the possible non-zero characteristic roots of 

~-i __ ~ ( 
~ t1M , where M = µ

1
, Then the power function of any test 

in tG involves M and E only through We shall study 

conditions under which the power function of an invariant test increases 

monotonically in each 
2 

'r. • 
l. 

Under some additional conditions we shall 

get a more refined property of this monotonicity. 

2. Monotonicity of the power functions of the UMP invariant tests in 

the two special cases. 

The monotonicity property in the above two special cases can be 

easily proved using the following elementary result. 

Theorem 2.1: Let Z be a random variable distributed as N(0,1). Then 

(2.1) rr(T) E P{)z + ·rl s; k} 

for k > 0 is a syunnetric function of 'r and decreases monotonically 

2 
as T increases • 

The theorem is proved easily by studying the first derivative of 

rr with respect to 'r. Later we shall show that this result also holds 

when the density of Z is symmetric about the origin and unimodal (with 

the mode at the origin). It will also be extended to the multivariate 

case. 

Corollary 2.1. Let z
1 

and z
2 

be independently distributed according 

to the non-central chi-square ~ (,,-
2

) and the central chi-square 
1 

2 \i
2 

distributions, respectively; n
1 

and n
2 

are positive intege~s 

and T
2 

is the non-centrality parameter of z
1

• Then 
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(2.2) (o < k) 

is a monotonically decreasing function of ,2,. 

Proof. Write 

where z
1
i's are independently distributed as N(•,l) with 

ezll = 'I" and ezla = 0 for a > 1; moreover are distributed 

independently of z
2

• Such a decomposition of z
1 

is clearly possible • 

. Now apply Theorem 2.1 for z
11 

holding z
2 

and z
1
a's for c:i > 1 fixed. 

The above corollary is true also for non-integral positive n
1 

and 

n
2

• One may use the monotone likelihood-ratio property of the non-central 

F-distribution. 

Let us now consider the two special cases given by s = 1 and p = 1. 

Case I. s = 1, ne ~ p. The critical region of the Hotelling's 

2 
T -test can be expressed as 

where is the upper a-fractile of the F-distribution with a 

and b degrees of freedom. The power of this test is 

(2.4) Pr[F -p+l ( ,..2) > Fa -p+l] ' p,ne p,ne 

where 
2 ~ -1 

'I" = J.Li_E µ
1

• It follows from Corollary 2.1 that the power 

of this test increases monotonically with ,2,. 

Case II. p = 1, n ~ 1. The critical region of the ANOVA F-test 
e 

can be expressed as 

s n 
t y2 / t ~ > {sin } Fa • 

1 
a · 

1 
a e s ,n 

a= a=r+ e 
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The power of this test is 

(2.6) 

where 

Pr [F ( -r2) > Fa ] , 
s ,ne s ,ne 

2 s 2 
T = E µ,. /E • Again, Corollary 2.1 shows that the power of 

. 1 l. 
1= 

this test increases monotonically with 
2 

T • 

3. Mathematical preliminaries. 

The key to all the results in this paper is the following well­

known inequality due to Brunn-Minkowski. 

Theorem 3. l. Let A
1 

and A
2 

be two non-empty convex sets in Rn • 

Then 

where 

vl/n (A +A)~ v11n (A)+ v11n (A) 
n 1 2 n 1 n 2 ' 

V stands for then-dimensional volume, and 
n 

This inequality was first proved by Brunn [5] in 1887 and the 

conditions for equality to hold were derived by Minkowski (26] in 1910. 

Later in 1935 Lusternik [25] generalized this result for non-empty 

arbitrary measurable sets A
1 

and A
2 

and derived conditions for 

equality to hold. 

This inequality led Anderson [1] to generalize Theorem 2.1 to the 

multivariate case. We shall present here a minor extension of Anderson's 

result. Following Anderson we shall call a non-negative function f on 

Rn unimodal, if 

K _ (x E Rn: f(x} ~ u} 
f,u 

is convex for all u, 0 < u < ~ We shall call a (real-valued) function 

f on Rn centrally symmetric if f(x) = f(-x) 
n 

for all x ER • 
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Theorem 3.2. Let G be a group of linear Lebesgue measure preserving 

transformations of Rn onto Rn. Let f be a non-negative (Borel• 

measurable) function on Rn such that f is unimodal, integrable with respect 

to the Lebesgue measure ~n on Rn, and f(x) = f{gx) for all g E G, 

x E Rn. Let· E be a convex set in Rn such that E = gE for all g · 

in G • Then for any fixed 'r E Rn and any 'I"* in the convex-hull 

of the G-orbit of T defined by G(T) = {gT: g E G} 

j f(x)dx ~ 

E+T* 

Proof. First note that 

f f(x)dx • 

E+'i 

(3.4) ! f(x)dx = .r: llu [Kf ,u n (E+'!') ]du , 

E+T 

where K 
f,u 

is defined in (3.2). Then for g E G, Kf = gKf , 
,u ,u 

~ [Kf n (E+T)] = ~ [gKf n g{E+T)] n ,u n ,u 

= µ,. [Kf n (E+gT)] • n ,u 

and 

Note that Kf n (E+T) and Kf n (E+gT) 
,u ,u 

are~ either empty or 

m 
non-empty. Let g

1
, ••• , gm be in G and 

m 
0 ~ 1. ~ 1, t A.= 1. Then 

l. • 1 l. 
1.= 

m 

'T* = t 1. g. T , where 
. 1 l. l. 
l.= 

(3.6) Kf n (E+'I*) ::, E Ai [Kf n (E+gT) ] , 
,u . l ,u 

1= 

whenever Kf n (E+,-) is non-empty. Theorem 3.l now yields 
,u 

= ~ [Kf n (E+T)] • n ,u 

Integrating with respect to u yields the theorem. 
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W~ shall improve Theorem 3.2 by using a condition on f which 

is stronger than unimodality. Following Das Gupta [11] we shall call 

a non-negative function f on Rn 0-unimodal (or, strongly unimodal) 

if for any x
0

, x
1 

in Rn and any O < 8 < 1 

(Borel-measurable) 

Theorem 3.3. Let f be a non-negative 0-unimodal function on Rn 

such that f is integrable with respect to µ • Then for any two 
n 

Borel-measurable non-empty sets E
0 

and E
1 

(3.9) f f(x)dx ~ [ Jf(x)dx]
1

-
8

[ J f(x)dx]
9

• 

(l-8)Eo+8E1 Eo El 

Proof. For u E R
1 

define 

(3.10) C = {(x,u) E Rn x R
1
: f(x) ~ exp(-u)}. 

Let C be the u-section of C • Then for any measurable set E c Rn 
u 

00 

(3.11) J f(x)dx =J ~n[Cu n E] exp(-u)du. 

E ..DO 

We assume that the integrals in the left-hand side of (3.9) are positive 

(excluding the trival cases). Define 

Let S. be the support of h. (i = 0,1) • 
i i 

Then for 

u
1 

E s
1

, u = (l-e)u
0 

+ eu
1 

(3.13) he(u) ~ [ho(uo)]
1
-
9
[hl(ul)]

9 
• 

To see this, note that 

From Brunn-~!:i.nkowski-Lusternik inequality we get 

e l/n(C n E ) 
µ,n u 1 • 

1 
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Applying the arithmetic-mean geometric-mean inequality we finally get 

Multiplying both the sides by 

we get (3.13). The following lemma will now yield the theorem. 

Lemma 3.3.l. Let g
0 

and g
1 

be non-negative (Borel-measurable) 

integrable functions on R
1 

with ~on-empty supports given by s
0 

and s
1

, 

respectively. Let g be a non-negative Borel-measurable integrable function 

. 1 
on R such that for 0 < 8 < 1 x = (1-a)xo + 9x1, xi E Si 

Then 

j g(x)dx 

(1-e)s0+es1 

~ ( J go(x)dx]
1

-
0c J gl{x)dx]

9 

so sl 

Proof. First we shall assume that g. rs 
l. 

are bounded. Let c. be 
l. 

the supremum of g
1

• ci's are assumed to be positive (excluding the 

trival case). Define 

(3.20) A.= {x* = (x,z) E R2: g.(x) > c.z, z > 0, x Es.}, 
J. 1 l. l. 

i = 0,1, and 

(3.21) · A= {x* = (x,~) E R2
: g(x) > z c~-

0
cf, z > o, x E (1-a)so + esl}. 

Let A.(z) and A(z) be the z-sections of A. and A~ respectively. 
l. l. 

For O < z < 1 both A
0

(z) and A
1

(z) are non-empty, and 

A(z) ::, (1-9)A0(z) + eA.
1 

(z) • 

Moreover, 

co 1 
r g.(x)dx = c. r u...(A.(z))dz 
~ i iJo·J. i 
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We may assume that the integrals in the left-hand side of (3.19) are 

positive, the result is trivial otherwise. 

By the one-dimensional Brunn-Minkowski-Lusternik inequality 

for O < z < 1. Now it follows that 

In the general case, define 

j gi (x), if gi (x) :; k 

gik(x) = ( k , if gi (x) > k • 

Then gik (x) t gi (x) as k ~ 00 • Now apply the above result to 

gik's and appeal to the monotone convergence theorem. 

Theorem 3.4. Let f be a function on Rn satisfying the conditions 

in Theorem 3.3. Let E be a convex set in Rn , and for T E Rn 

define 

h( T) = J f (x)dx 

E+T 

Then h is a 0-unimodal function on Rn, i.e. 

n 
for O < 6 < 1 , T. E R • 

l. 

Proof. Apply theorem 3.3 with. E
0 

= E + -r
0

, E
1 

= E + -r
1

, and note 

that (1-e)E
0 

+ SE
1 

= E + [ (1-e) ,-
0 

+ e-r
1 
J • 
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Corollary 3.4.1. Define h as in Theorem 3.4. Suppose 

(3.30) h(T1) = ••• = h( T ) = h( T) 
m 

for T's 
i 

and T in Rn• Then 

m 
(3.31) h( ~ A.T.) ~ h(T) 

. 1 1. 1. 
1.= 

m 
for O ~ l. ~ 1, E l. = 1. 

1. i=l 1. 

4. Study on monotonicity in the general case. 

For studying tests in 'G we shall reduce the problem further. 

2 2 
Recall that ,-

1
, ••• , Tl are the l largest characteristic roots of 

It is possible to write 

(4.1) 

where Q: p x p and L: s x s are orthogonal matrices, and 

(4.2) "(T) -- r. l\*(OT) I 00 1, ( ) ( ) u l ] fl* T = diag Tl' •••, Tl , 

Define 

(4.3) 

Then the columns of U and V are independently distributed as 

h (~,I), and eu = ~(,-), m = 0. Note that the nonzero characteristic 
p p 

roots of (uu')(UU'+vv')-l are the same as those of s
0
s~1

• This shows 

that the power function of any test in tG depends on E,M only 

through T • We shall now write s
0 

= UU', Se = vv' , St = s
0 

+ Se • 

For a non-randomized test ~, let A~ be its acceptance region. 

We shall first consider acceptance regions in the space of U and V. 
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The power function of a test cp is 

(4.4) 

For cp E IG the power function of ~ will be denoted by 

TT( T;<p). G
• 2 I 1.ven T. s 

1. 
and the structure of ~ in (4.2) the 

diagonal elements of ~ in (4.2) are not uniquely defined. In 

particular, by choosing Q and L appropriately it is possible to 

write in (4.2) ~ = ti(De T) , as well as, ti = ~(r'r) , where De is 

an t x t diagonal matrix with diagonal elements as :!: 1, and r 

is an l x t orthogonal permutation matrix, i.e. . .. , 
for some permutation of (1, ... , t) • Hence for 

rr( T;~) = rr(0e.,-;cp) = rr(r,-;~) 

for any such matrices De and r and for all TE Rt. 

Let U. be the i th column ~ector of U and u-(i) be the 
]. 

matrix U with U. deleted. For a region A in (u,v) space, let 
]. 

A(u(i) ,v) be the section of A in the u
1

-space, i.e. 

(4.6) ( (i) ) _ { P. ( ) } A u ,v - u. E R • u,v EA • 
]. 

For any test cp E IG and all u(i) and v 

A {u(i),v) = -A (u(i),v), 
cp cp 

and for all v 

(4.8) A~(v) = -Acp(v) , 

where A.(v) is the section of 
~ 

Acp in the u-space. 

Later we shall require Acp to be a region in the space of 

(u,vv') , or in the space of (u,uu' + VV') • For that purpose we 

denote the acceptance region of cp as Acp to mean that it is a region 

in )l\ X g;+ 
p,s p • 
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Next we shall introduce four subclasses of ~G as follows: 

(1) l~l) is the set of:.all cp E IG such that the acceptance region 

A (in the space of U and V) is convex in the space of each 
cp 

column vector of U for each set of fixed values of V and of the other 

column·vectors of U, i.e. for every i and all ;i(i) and v the set 

A. (;i(i),v) is convex. 
cp 

(2) 1i2 ) is the set of all cp E IG such;:that the acceptance region 

-Acp 

(4) 

~ 
that 

is convex in the space of U for each set of fixed value of V. 

1~3) is the set of all cp E IG such that the acceptance region 

(in the space of (U,VV
1
)) is convex in U and VV 1

• 

1i4) is the set o.f all cp E IG such that the acceptance region 

(in the space of (u, st =UU' + VV')) is convex in U and st. Note 

,i1) ::) ,~2) ::) 1~3) • 

Theorem 4.1. For cp E l~l) the power function of cp given by 

TT( ,r,cp) is a symmetric function in each 

each ]T
1

} increases separately. 

T. and monotonically increases as 
l.' 

Proof. The first part of the theorem follows from (4.5). For 

i = 1, ••• , J, 

where e 

e [1-cp(u,v)fu(i) = u(i), v = v] 
T 

is the p.d.f. corresponding the 

= j f {u. )du. 

Acp{u(i),v)+~.e 
1 

1 0 

h (O,I) and e. 
p p -a. 

is the 

vector in RP with 1 at the i th position and the other components 

being o. 
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Now we shall use Theorem 3.2. Note that the density function f 

is unimodal and centrally symmetric. A~(u(i),v) is convex and centrally 

symmetric. Specialize G in Theorem 3.2 to be the group of sign trans­

formations on RP. Note that the distribution of U(i) and V is 

free from '1"- • Hence 
]. 

(
::-(i) ) ,~.( i) ::{i) -

P(U. E Acp u ,v + X.T.e
1 

U' = u , V = v] 
]. ]. ]. 

(4.10) = P(Ui E ArnC~i) ,v) + (l+X)T.e./2 - (l-1'..)T.e.!2Ju. = u., V = v] 
T Xl.l. 1. 1.1. 1. 1. 

(::{i) ) 1-;a:: p (U. E Acp u , V + .,. . e. ui 
1. 1. 1. 

= u., 
1. 

V = v] , 

where -1 ~ x
1 
~ 1 and the conditio~al p.d.f. of Ui is taken as i. 

Taking expectation with respect to U. and V we find that rr(T;cp) 
1. 

increases if -1 ~ X. ~ 1, holding 
1. 

the other components of T fixed. 

Since f is also 0-unimodal the result would also follow from 

Corollary 3.4.1. 

In the above theorem we need only ne + s > p. 

Corollary 4.1.1. If cp E 1~2) the power function of cp is a 

symmetric function in each Ti and increases monotonically in each 

Proof. Simply note that 

Let H be the group of transformations acting on R
1 

defined as 

t 
follows. For T E R , h E H 

(4.11) hT = (e
1

T. , ••• , eAT. ) 
1 1 :IJ ]. l 

where ei = + 1 and (i1 , ••• , it) is a permutation of (1, ••• , £). 
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Theorem 4.2. If ~ E t~3) , and 1' E Rt 

(4.12) 

where 'r* is any point in the convex-hull of the H-orbit of 1', 

provided ne ~ p+l • 

~ 

Proof. The joint density p
0 

of U and Se= VV under H
0 

is 

a-unimodal when n ~ p+l • For h E H, 1' E Rl 
e 

(4.13) 

m 

For h. EH and O :s: )... :s: 1, I:)...= 1 
i i l i 

m m 
( 4 .14) t X. ~ ( h 'T) = Ll ( t X. hi 1') • 

i=l i i i=l i 

Moreover 

(4.15) 

The theorem now follows from Corollary 3.4.1. 

Theorem 3.4 also yields the following. 

Corollary 4.2.1. If ~ E 1~3) the power function of ~ given by 

TT( T;cp) is a 0-unimodal function of 'T, provided Ile ~ p+l • 

Theorem 4.3. If ~ E t~4) the result in Theorem 4.2 holds provided 

n ~ p+l. 
e 

Proof. The joint density of U and St under H
0 

is given by 

~~p-1 

(4.16) q(u,st) = C exp(-½tr(st))[det(st•uu#)] 2 
if st•uu# Es; 

= 0 otherwise. 

The following facts show that q is a a-unimodal function when 

De ~ p+l 
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(i) If A
0 

and A
1 

are p x p positive-definite marices 

(4.17) det((l-8)A0 + 0:\.
1

) ~ (detA.
0

)
1

-
8

(detA
1

) 8 , 

for O < 9 < 1. 

(ii) Let u<0), u<1) 

for O < 9 < 1 • Then 

be elements ;_n rn 
p,s 

(1-e)u(0)u(o) .. + eu<1)u(l) .. 

(4.18) 

and U ~ (1-e)u<0) + eu<1) 

{iii) If A
0 

and A
1 

are non-negative definite p x p matrices 

(4.19) 

The rest of the proof is the same as that of Theorem 4.2. 

Corollary 4.3.l. If ~ E 1~
4

) the power function of ~ given by 

rr(T;~) is a 0-unimodal function of T, provided ne ~ p+l. 

Next we shall study the four standard invariant tests given in 

Section 1. 

Theorem 4.4. (a) The likelihood-ratio test is in 1il) • 

(b) Roy's ma.~imum root test is in 1~3) • 

(c) La.wley-Hotelling's trace test is in 1i3) • 

(d) Pillai's trace test is in ,£4). 
(e) Pillai 1s trace test is in l(l) if and 

G 
only if the 

aut-off point R
4 

s; max(l, p-nt) • 

Proof. (a) Let w
1 

=(u{i),V) then the acceptance region of the 

likelihood-ratio test can easily be expressed as 

(4.20) 1 + u~(w.w~)-1u. s; (detVV .. )/k det(w.w.
1
~) 

l. l.l. l. 1.· 

which is clearly convex in U. for fixed W •• 
l. l. 
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(b) No~e that 

(4.21) 

max ch((uu')s;
1

] ~ k
2 

= n [(U,Se ): a W'a ~ k2a 'sea] • 

aERP 

It follows from (~J8) that the region a 'uu 'a ~ k
2
a 'Se a is convex 

in (u,se) • 

(c) For a matrix BE tn 
··1>,s 

~ 1 ' L 1 

tr(s~) '(s;2U) .~ [tr(B'~eB) tr(U 5e--ir) ]2 

(4.22) ~ (½) tr(B 'se.B + u's;
1
u) • · 

Hence 

(4.23) 

the equality is attained when B = s;1u. Hence the region in (U,Se) 

given by tr(UU#)s;
1 ~ k

3 
is the intersection of the regions 

(4.24) tr(B 'u) -½ tr(B #Se B) ~ jk
3 

for B E tn • However, each such region (4.a-1-) is convex in (u, 5e ) • 
p,s 

(d) The proof is the same as in {c) • 

(e) The proof of this result is rather involved and we refer to 

[29]. Note however that tables for k
4 

are partially available and 

even then they were obtained when ne ~ p. 

Examples of other tests in ,ii) (i = l,2,3,4) are given in [6] 9 

[27], [17], [36], [15]. A step-down test of H
0 

vs. l\ is given in 

[32]; however, this test is not in IG. This test can easily be shown 

to be unbiased since it is given in terms of F tests. Only partial 

results are known for the monotonicity property of this test; see [7] 

and (10]. 
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For the case p = 1 the power function of the F-test increases 

monotonically in ne and decreases in s when the other parameters are 

held fixed. For s = 1, the power of the Hotelling's ir2-test increases 

if ne increases, or if p decreases when the other parameters are held 

fixed. The proofs of these two results are given in [8]. Similar results 

for the general case are only known in very special situations; see [10], 

[9]. 

General MA.NOVA models. 

The general MA.NOVA model introduced by Potthoff and Roy [30] may 

be described as follows: Let X: p x n be a random matrix such that its 

column vectors are independently distributed as N ( ~,I:) 
p 

with an unknown 

positive-definite matrix I:; moreover ex~ = A
1 

&\
2 

, where A
1

: n x m is 

a known matrix of rank r , A
2

: q x p is a known matrix of rank q , and 

®: m x q is a matrix of unknown parameters. The problem is to test 

H
0

: A
3 

® A
4 

= 0 against H
1

: A
3 

® A
4 

/: 0 , where A
3 

® A
4 

is 

bilinearly estimable, and A
3

: s x m and A
4
: q xv are known matrices 

of ranks s and v, respectively. This problem can be reduced to the 

following canonical form: Let 

[yll yl2 yl3 q-v 

(5.1) Y= y21 y22 y23 V 

y31 y32 y33 p-q 

s r-s n-r 

be a random matrix such that its column vectors are independently 

distributed as N (•,E) , and 
p 

(5.2) eY = [~~ ~ ~ l 
0 0 0 

The problem is to test H
0

: M
21 

= 0 against ~l I= o. 
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Let us partition L as in the above. 

A class of tests invariant under a certain group of transformations which 

keeps the problem invariant is obtained by Gleser and Olkin [18]. However, 

this problem is generally viewed in the conditional set-up described below. 

The column vectors of 

(5.4) 

are conditionally independently distributed as Nq(•,2°), given Y
31

, 

Y
32 

and Y
33

; t is the covariance matrix of the first q components 

given the last p-q components derived from t. The conditional 

expectation of Y is 

(5.5) 

where ~ is the matrix of regression coefficients. In this conditional 

set-up the s.p. matrices due to error and the hypothesis H
0 

are respectively 

defined by (assuming n-r ~ p-q) 

(5.6) 

(5.7) 

where 

(5.8) 

s~ = Y23Y;3 - Y23Y33CY33Y;3>-ly33Y;3 

80 = ~1<1s + Y;1<Y33y;3)-ly31)-~l' 

In the conditional situations Se and s
0 

are independently di~fributed 

as the Wishart distributions U,v(n-r-p-tq, t
22

•
3
) and u,v(s,t22 •

3
;a), 

respectively, where t is the covariance matrix of the second set 
22•3 

{of v) components given the third set of (p-q) components, and 
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(5.9) 

As in the MA.NOVA one might consider those tests which depend only 

on the characteristic roots of s
0
s;1

• In particular, the acceptance 

region of the likelihood-ratio test is given by Jsel /Js
0 

+ Sef ~ k • 

The column vectors of (Y
31 

Y
33

) are independently distributed as 

Np_
4
(o,t

33
) • It is clear that the distribution of Y31(Y

33
Yi

3
)-ly

31 

does not depend on t
33 

and we shall assume it to be I • Also for 
p-q 

-1 
considering the distribution of the roots of s

0
se we might take 

-½ t
22

•
3 

= Iv and replace M
21 

by ~
22

•
3
M

21 
• As in the MA.NOVA case, 

1 

we can replace t;:.
3
~ 1 by a matrix ~= v x s such that 

(5. lO) t:,. = [ diag( Tl, • • • ~ T 1,) I : ] 
where 

(5.11) 

1=min(v,s) and /. (T. > 0) are the characteristic roots of 
l. l. 

Arguing as in Anderson and Das Gupta [3] we see that the characteristic 

roots of F: increase if any Ti is increased. Thus all the results in 

the MA.NOVA case can be applied now. 

6. Bibliographical Notes. 

On Section 1. For a general discussion of ?i\.NOVA see Anderson [2], 

Roy [33], and Lehmann [23]. 

On Section 2. See Roy [33]. 

On Section 3. A proof of Theorem 3.1 is given in Bonneson and Fenchel [4]. 

For Lusternik's generalization of Theorem 3.l see Hadwiger and Ohman (19] or 

Henstock and Macbeath (20]. 
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Theorem 3.2 was proved by Anderson [l] when G is 

the group of sign transformations. Essentially the same proof also 

holds for any G defined in Theorem 3.2; the general statement is due 

to Mudholkar [28]. For further generalizations of this theorem see 

Das Gupta [11]. 

Theorem 3.3.was proved by Prekopa [31] and Leindler [24] (for n = 1); 

however, their proofs are quite obscure and somehwat incomplete. The 

present proof uses essentially the ideas given by Henstock and 118.cbeath 

[20} see Das Gupta [13] for more general results. Theorem 3.4 was proved 

by Ibragimov [21] and Schoenberg [35] when n = l; the general case was 

proved by Davidovic, Korenbljum and Hacet [14]. For a discussion of these 

results see Das Gupta [13]. 

On Section 4. Theorem 4.1 is due to Das Gupta, Anderson and Mudholkar [6] 

where the monotonicity property of the power functions of tests (a), (b), 

and (c) are established. Roy and Mikhail (34] also proved the monotonicity 

property of the maximum root test. i:srivastava [37] ~ derived the result 

for tests (a)-(c) although his proofs are ;n~~lete. Theorem 4.2 and 

its present proof are due to Das Gupta [12]; an alternative proof using 

Theorem 3.2 is given by Eaton and Perlman [15]. 

On Section 5. See Fujikoshi [1~] and !Jiatri (22]. 
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