6 Monotonicity and unbiasedness properties of ANOVA and MANOVA tests

- Source link

Somesh Das Gupta
Published on: 01 Jan 1980 - Handbook of Statistics (Elsevier)
Topics: Multivariate statistics and Multivariate analysis of variance

Related papers:

- Monotonicity of the Power Functions of Some Tests in General Manova Models
- On the monotonicity property of the three main tests for multivariate analysis of variance
- A Relationship Between the One-Way MANOVA Test Statistic and the Hotelling Lawley Trace Test Statistic
- Consistency and Unbiasedness of Certain Nonparametric Tests
- Comparison of the Performance of Nonparametric and Parametric MANOVA Test Statistics when Assumptions Are Violated

Monotonicity and Unbiasedness Properties of

ANOVA and MANOVA Tests ${ }^{(1)}$
Somesin Das Gupta*
University of Minnesota

Technical Report No. 318
(1) To be published in "Handbook of Statistics, Vol. 1: Analysis of Variance" by North-Holland Publishing Co.
*Partially supported by a grant from the Mathematics Division, U.S. Army Research Office, Durham, N.C. Grant no. DAAG-29-76-G-0038.

1. Introduction

The multivariate analysis of variance problem for the normal case may be posed as follows: Let $\mathrm{X}: \mathrm{p} \times \mathrm{n}$ be a random matrix such that its column vectors are independently distributed as $n_{p}(\cdot, \Sigma)$, where Σ is an unknown positive-definite matrix; moreover,

$$
\begin{equation*}
\varepsilon\left(\mathrm{X}^{\wedge}\right)=\mathrm{A} \Theta, \tag{1.1}
\end{equation*}
$$

where $A: n \times m$ is a known matrix of rank r and $@: m x p$ is a matrix of unknown parameters. The problem is to test $H_{0}: G^{\wedge} \times 0$ against $H_{1}: G^{\wedge} 0 \neq 0$, where G^{\prime} is a known $s \times m$ matrix of rank s such that $G=A$ ' B for some $B: n \times s$. This problem can easily be reduced to the following canonical form: Let Y_{1}, \ldots, Y_{n} be n independently distributed $\mathrm{p} \times 1$ random vectors such that $Y_{\alpha} \sim n_{p}\left(\mu_{\alpha}, \Sigma\right)$, where $\mu_{r+1}=\ldots=\mu_{n}=0$, and Σ along with μ_{1}, \ldots, μ_{r} are unknown, Σ being positive-definite. The problem is to test
(1.2) $\quad H_{0}: \mu_{1}=\ldots=\mu_{s}=0$
against $H_{1}:$ not H_{0} ", where $s \leq r$. In this set-up $S_{0} \equiv \sum_{\alpha=1}^{s} Y_{\alpha} Y_{\alpha}^{\prime}$ and $S_{e}=\sum_{\alpha=r^{+1}}^{n} Y_{\alpha} Y^{\prime}$ are called the sums of products (s.p.) matrices due to the hypothesis H_{O} and error, respectively; the corresponding degrees of freedom are s and $n_{e} \equiv n-r$.

The following tests (represented by their acceptance regions) are most-often considered in the literature:
(a) Likelihood-ratio test:

$$
\begin{equation*}
\operatorname{det}\left(s_{e}\right) / \operatorname{det}\left(s_{e}+s_{0}\right) \geq k_{1} \quad\left(0<k_{1}<1\right) \tag{1.3}
\end{equation*}
$$

(b) Roy's maximum-root test:
(1.4) $\quad \max \left[\right.$ characteristic root of $\left.\mathrm{S}_{0} \mathrm{~S}^{-1}\right] \leq \mathrm{k}_{2} \quad\left(0<k_{2}\right)$
(c) Lawley-Hotelling's trace test:

$$
\begin{equation*}
\operatorname{tr}\left(s_{0} s_{e}^{-1}\right) \leq k_{3} \tag{1,5}
\end{equation*}
$$

$$
\left(0<k_{3}\right)
$$

(d) Pillai's trace test:

$$
\begin{equation*}
\operatorname{tr}\left[s_{0}\left(S_{0}+s_{e}\right)^{-1}\right] \leq k_{4} \tag{1.6}
\end{equation*}
$$

$$
\left(0<k_{4}<\min (p, s)\right)
$$

Note that the first three tests are defined only when $n_{e} \geq p$ in which case S_{e} is non-singular with probability 1 . The last test is defined when $n_{e}+s>p$. All these four tests are members of a class of invariant tests which is defined as follows.

Let

$$
\begin{gather*}
Y_{(1)}=\left(Y_{1}, \ldots, Y_{s}\right), Y_{(2)}=\left(Y_{s+1}, \ldots, Y_{r}\right), \\
Y_{(3)}=\left(Y_{r+1}, \ldots, Y_{n}\right) . \tag{1.7}
\end{gather*}
$$

A set of sufficient statistics is given by

$$
\begin{equation*}
\left(Y_{(1)}, Y_{(2)}, s_{t} \equiv Y_{(1)^{Y}}^{\prime}(1)+Y(3)^{Y}(3)\right) . \tag{1.8}
\end{equation*}
$$

S_{t} is positive-definite when $n_{e}+s \geq p$. Consider the following transformation:

$$
\begin{equation*}
(I, A, B)\left(Y(1), Y_{(2)}, S_{t}\right)=\left(A Y(1)^{L}, A Y(2)^{\left.+B, A S_{t} A^{\prime}\right)}\right. \tag{1.9}
\end{equation*}
$$

where
$L \in \theta_{s}=$ the class of all $s x s$ orthogonal matrices,
$A \in \mathcal{L}_{p}=$ the class of all $p \times p$ nonsingular matrices,
$B \in M_{p, r-s}=$ the class of all $p x(r-s)$ matrices.
This transformation keeps the above model and the testing problem invariant. The composition of two such transformations is given by

$$
\begin{equation*}
\left(I_{1}, A_{1}, B_{1}\right)\left(I_{2}, A_{2}, B_{2}\right)=\left(I_{2} L_{1}, A_{1} A_{2}, A_{1} B_{2}+B_{1}\right) . \tag{1.10}
\end{equation*}
$$

Then the collection G of (I, A, B) with the above binary operation is a group of transformations acting on $m_{p, s} \times m_{p, r-s} \times S_{p}^{+}$, where

$$
S_{p}^{+}=\text {the collection of all } p \times p \text { positive-definite matrices. }
$$

Let Φ_{G} be the class of all non-randomized tests invariant under G.
Lemma. When $n_{e}+s>p$, a set of maximal invariants under G in the space of sufficient statistics $\left(Y_{(1)}, Y_{(2)}, S_{t}\right)$ is given by the ordered non-zero characteristic roots of $\mathrm{S}_{0} \mathrm{~S}_{\mathrm{t}}^{-1}$, denoted by $\mathrm{d}_{1}<\ldots<\mathrm{d}_{\ell}$ where $\ell=\min (s, p)$. When $n_{e}+s \leq p$ there is no non-trivial invariant test.

Suppose $n_{e} \geq p$ and let $c_{1} \geq \ldots \geq c_{l}$ be the ordered non-zero characteristic roots of $S_{0} f^{-1} e^{-1}$. Then $d_{i}=c_{i} /\left(1+c_{i}\right)$.

Next we shall consider two important special cases.
(I) $s=I, n_{e} \geq p$. The acceptance regions of all the above four tests reduce to
(1.11) $\quad c_{1}=Y_{1}^{\prime}\left(Y_{(3)^{\prime}}^{(3)}\right)^{-1} Y_{1} \leq k$.

This is the UMP invariant test for its size.
(II) $\mathrm{p}=1, \mathrm{n}_{\mathrm{e}} \geq 1$. The acceptance regions of all the above four tests reduce to

$$
\begin{equation*}
\sum_{\alpha=1}^{s} Y_{\alpha}^{2} / \int_{\alpha=\mathrm{r}+1}^{\mathrm{n}} \mathrm{Y}_{\alpha}^{2} \leq k . \tag{1.12}
\end{equation*}
$$

This is also the UMP invariant test for its size.
Except for these two special cases UMP invariant test does not exist. All the above four tests are known to be admissible. Instead of comparing the power functions of different tests we shall be concerned in this paper with the behavior of the power function of a given test
with respect to the non-centrality parameters involved; in particular we shall study whether the unbiasedness property is satisfied by a given test.

Let $\tau_{1}^{2}, \ldots, \tau_{\ell}^{2}$ be the possible non-zero characteristic roots of $\Sigma^{-1} M_{M}$, where $M=\left(\mu_{1}, \ldots, \mu_{s}\right)$. Then the power function of any test in Φ_{G} involves M and Σ only through $\tau_{1}^{2}, \ldots, \tau_{l}^{2}$. We shall study conditions under which the power function of an invariant test increases monotonically in each τ_{i}^{2}. Under some additional conditions we shall get a more refined property of this monotonicity.
2. Monotonicity of the power functions of the UMP invariant tests in the two special cases.

The monotonicity property in the above two special cases can be easily proved using the following elementary result. Theorem 2.1: Let Z be a random variable distributed as $N(0,1)$. Then (2.1) $\quad \pi(\tau) \equiv P\{|Z+\tau| \leq k\}$
for $k>0$ is a symmetric function of τ and decreases monotonically as τ^{2} increases.

The theorem is proved easily by studying the first derivative of π with respect to τ. Later we shall show that this result also holds when the density of Z is symmetric about the origin and unimodal (with the mode at the origin). It will also be extended to the multivariate case.

Corollary 2.1. Let z_{1} and z_{2} be independently distributed according to the non-central chi-square $\chi_{I_{1}}^{2}\left(\tau^{2}\right)$ and the central chi-square $x_{n_{2}}^{2}$ distributions, respectively; n_{1} and n_{2} are positive integers and r^{2} is the non-centrality parameter of z_{1}. Then
(2.2) $\operatorname{Pr}\left[\mathrm{Z}_{1} / \mathrm{z}_{2} \leq \mathrm{k}\right] \quad(0<k)$
is a monotonically decreasing function of τ^{2}.
Proof. Write

$$
z_{1}=z_{11}^{2}+\ldots+z_{1 n_{1}}^{2}
$$

where $Z_{1 i}$'s are independently distributed as $N(\cdot, 1)$ with $\varepsilon Z_{11}=\tau$ and $\varepsilon z_{1_{\alpha}}=0$ for $\alpha>1$; moreover $Z_{1 i}$'s are distributed independently of Z_{2}. Such a decomposition of Z_{1} is clearly possible. Now apply Theorem 2.1 for Z_{11} holding Z_{2} and $Z_{1_{\alpha}}$'s for $\alpha>1$ fixed.

The above corollary is true also for non-integral positive n_{1} and n_{2}. One may use the monotone likelihood-ratio property of the non-central F-distribution.

Let us now consider the two special cases given by $s=1$ and $p=1$.
Case I. $s=1, n_{e} \geq p$. The critical region of the Hotelling's T^{2}-test can be expressed as

$$
\text { (2.3) } \quad Y_{1}^{\prime}\left(Y_{(3)^{Y}}{ }^{\hat{1}}(3)^{-1} Y_{(1)}>\left\{p /\left(n_{e}-p+1\right)\right\} F_{p, n_{e}-p+1}^{\alpha}\right.
$$

where $F_{a, b}^{\alpha}$ is the upper α-fractile of the F-distribution with a and b degrees of freedom. The power of this test is

$$
\text { (2.4) } \quad \operatorname{Pr}\left[\mathrm{F}_{\mathrm{p}, \mathrm{n}_{\mathrm{e}}-\mathrm{p}+1}\left(\tau^{2}\right)>\mathrm{F}_{\mathrm{p}, \mathrm{n}_{\mathrm{e}}-\mathrm{p}+1}^{\alpha}\right] \text {, }
$$

where $\tau^{2}=\mu_{1} \Sigma^{-1} \mu_{1}$. It follows from Corollary 2.1 that the power of this test increases monotonically with τ^{2}.

Case II. $p=1, n_{e} \geq 1$. The critical region of the ANOVA F-test can be expressed as
(2.5) $\quad \sum_{\alpha=1}^{s} Y_{\alpha}^{2} / \sum_{\alpha=r+1}^{n} Y_{\alpha}^{2}>\left\{s / n_{e}\right\} F_{s, n_{e}}^{\alpha} \cdot$

The power of this test is

$$
\begin{equation*}
\operatorname{Pr}\left[F_{s, n_{e}}\left(\tau^{2}\right)>F_{s, n_{e}}^{\alpha}\right], \tag{2.6}
\end{equation*}
$$

where $\tau^{2}=\sum_{i=1}^{s} \mu_{i}^{2} / \Sigma$. Again, Corollary 2.1 shows that the power of this test increases monotonically with τ^{2}.

3. Mathematical preliminaries.

The key to all the results in this paper is the following wellknown inequality due to Brunn-Minkowski.

Theorem 3.1. Let A_{1} and A_{2} be two nonempty convex sets in R^{n}. Then

$$
\begin{equation*}
\nabla_{n}^{1 / n}\left(A_{1}+A_{2}\right) \geq \nabla_{n}^{1 / n}\left(A_{1}\right)+v_{n}^{1 / n}\left(A_{2}\right), \tag{3.1}
\end{equation*}
$$

where V_{n} stands for the n-dimensional volume, and

$$
A_{1}+A_{2}=\left\{x_{1}+x_{2}: x_{1} \in A_{1}, x_{2} \in A_{2}\right\}
$$

This inequality was first proved by Brunn [5] in 1887 and the conditions for equality to hold were derived by Minkowski [26] in 1910. Later in 1935 Lusternik [25] generalized this result for nonempty arbitrary measurable sets A_{1} and A_{2} and derived conditions for equality to hold.

This inequality led Anderson [1] to generalize Theorem 2.1 to the multivariate case. We shall present here a minor extension of Anderson's result. Following Anderson we shall call a non-negative function f on R^{n} unimodal, if
(3.2) $\quad K_{f, u} \equiv\left\{x \in R^{n}: f(x) \geq u\right\}$
is convex for all $u, 0 \leq u<\infty$. We shall call a (real-valued) function f on R^{n} centrally symmetric if $f(x)=f(-x)$ for all $x \in R^{n}$.

Theorem 3.2. Let G be a group of linear Lebesgue measure preserving transformations of R^{n} onto R^{n}. Let f be a nonnegative (Boremeasurable) function on $R^{\text {n }}$ such that f is unimodal, integrable with respect to the Lebesgue measure μ_{n} on R^{n}, and $f(x)=f(g x)$ for all $g \in G$, $x \in R^{n}$. Let E be a convex set in R^{n} such that $E=g E$ for all g in G. Then for any fixed $\tau \in R^{n}$ and any τ^{*} in the convex-hull of the G-orbit of τ defined by $G(\tau) \equiv\{g \tau: g \in G\}$

$$
\text { (3.3) } \int_{E+T^{*}} f(x) d x \geq \int_{E+T} f(x) d x \text {. }
$$

Proof. First note that
(3.4) $\quad \int_{E+\tau} f(x) d x=\int_{0}^{\infty} \mu_{n}\left[K_{f, u} \cap(E+\tau)\right] d u$,
where $K_{f, u}$ is defined in (3.2). Then for $g \in G, K_{f, u}=g K_{f, u}$, and
(3.5) $\quad \mu_{n}\left[K_{f, u} \cap(E+\tau)\right]=\mu_{n}\left[g K_{f, u} \cap g(E+\tau)\right]$

$$
=\mu_{n}\left[K_{f, u} \cap(E+g \tau)\right]
$$

Note that $K_{f, u} \cap(E+\tau)$ and $K_{f, u} \cap(E+g \tau)$ are both either empty or non-empty. Let g_{1}, \ldots, g_{m} be in G and $\tau^{*}=\sum_{i=1}^{m} \lambda_{i} g_{i} \tau$, where $0 \leq \lambda_{i} \leq 1, \sum_{i=1}^{m} \lambda_{i}=1$. Then

$$
\begin{equation*}
K_{f, u} \cap\left(E+\tau^{*}\right) \supset \sum_{i=1}^{m} \lambda_{i}\left[K_{f, u} \cap(E+g \tau)\right] \tag{3.6}
\end{equation*}
$$

whenever $K_{f, u} \cap(E+\tau)$ is nonempty. Theorem 3.1 now yields

$$
\begin{align*}
\mu_{n}\left[K_{f, u} \cap\left(E+\tau^{*}\right)\right] & \geq\left[\sum_{i=1}^{m} \lambda_{i} \mu_{n}^{1 / n}\left\{K_{f, u} \cap(E+g \tau)\right\}\right]^{n} \tag{3.7}\\
& =\mu_{n}\left[K_{f, u} \cap(E+\tau)\right] .
\end{align*}
$$

Integrating with respect to u yields the theorem.

We shall improve Theorem 3.2 by using a condition on f which is stronger than unimodality. Following Las Gupta [11] we shall call a non-negative function f on R^{n} O-unimodal (or, strongly unimodal) if for any x_{0}, x_{1} in R^{n} and any $0<\theta<1$

$$
\begin{equation*}
f\left[(1-\theta) x_{0} \div \theta x_{1}\right] \geq f^{1-\theta}\left(x_{0}\right) f^{\theta}\left(x_{1}\right) \tag{3.8}
\end{equation*}
$$

(Borel-measurable)
Theorem 3.3. Let $£$ be a non-negative O-unimodal function on R^{n} such that f is integrable with respect to μ_{n}. Then for any two Borel-measurable nonempty sets E_{0} and E_{1}

$$
\begin{equation*}
\int_{(1-\theta) E_{0}+\theta E_{1}} f(x) d x \geqslant\left[\int_{E_{0}} f(x) d x\right]^{1-\theta}\left[\int_{E_{1}} f(x) d x\right]^{\theta} . \tag{3.9}
\end{equation*}
$$

Proof. For $u \in R^{I}$ define

$$
\begin{equation*}
C=\left\{(x, u) \in R^{n} \times R^{1}: f(x) \geq \exp (-u)\right\} \tag{3.10}
\end{equation*}
$$

Let C_{u} be the u-section of C. Then for any measurable set $E \subset R^{n}$ (3.11) $\int_{E} f(x) d x=\int_{-\infty}^{\infty} \mu_{n}\left[C_{u} \cap E\right] \exp (-u) d u$.

We assume that the integrals in the left-hand side of (3.9) are positive (excluding the trival cases). Define

$$
\begin{equation*}
h_{\theta}(u)=\mu_{n}\left[C_{u} \cap\left\{(1-\theta) E_{0}+\theta E_{I}\right\}\right] . \tag{3.12}
\end{equation*}
$$

Let s_{i} be the support of $h_{i}(i=0,1)$. Then for $u_{0} \in S_{0}$, $u_{1} \in S_{1}, u=(I-\theta) u_{0}+\theta u_{1}$

$$
\begin{equation*}
h_{\theta}(u) \geq\left[h_{0}\left(u_{0}\right)\right]^{1-\theta}\left[h_{1}\left(u_{1}\right)\right]^{\theta} . \tag{3.13}
\end{equation*}
$$

To see this, note that

$$
\begin{equation*}
c_{u} \cap\left\{(1-\theta) E_{0}+\theta E_{1}\right\} \supset(1-\theta)\left(c_{u_{0}} \cap E_{0}\right)+\theta\left(c_{u_{1}} \cap E_{1}\right) \tag{3.14}
\end{equation*}
$$

From Brunn-Minkowski-Lusternik inequality we get

$$
\begin{equation*}
\mu_{n}^{1 / n}\left[c_{u} \cap\left\{(1-\theta) E_{0}+\theta E_{1}\right\}\right] \geq(1-\theta)_{\mu_{n}}^{1 / n}\left(c_{u_{0}} \cap E_{0}\right)+\theta \mu_{n}^{1 / n}\left(c_{u_{1}} \cap E_{1}\right) \tag{3.15}
\end{equation*}
$$

Applying the arithmetic-mean geometric-mean inequality we finally get
(3.16) $\quad \mu_{n}\left[c_{u} \cap\left\{(1-\theta) E_{0}+\theta E_{I}\right\}\right] \geq\left[\mu_{n}\left(c_{u_{0}} \cap E_{0}\right)\right]^{1-\theta}\left[\mu_{n}\left(c_{u_{1}} \cap E_{1}\right)\right]^{\theta}$.

Minltiplying both the sides by
(3.17) $\exp (-u)=\exp \left[(1-\theta) \mathrm{u}_{0}\right] \exp \left[\theta \mathrm{u}_{1}\right]$
we get (3.13). The following lemma will now yield the theorem.
Lemma 3.3.1. Let g_{0} and g_{1} be non-negative (Borel-measurable) integrable functions on R^{1} with non-empty supports given by S_{0} and S_{1}, respectively. Let g be a non-negative Borel-measurable integrable function on R^{1} such that for $0<\theta<1 \quad x=(1-\theta) x_{0}+\theta x_{1}, x_{i} \in s_{i}$
(3.18) $g(x) \geq g_{0}^{1-\theta}\left(x_{0}\right) g_{1}^{\theta}\left(x_{1}\right)$.

Then
(3.19) $\int g(x) d x \geq\left[\int g_{0}(x) d x\right]^{1-\theta}\left[\int g_{1}(x) d x\right]^{\theta}$.

$$
(1-\theta) s_{0}+\theta s_{1} \quad s_{0} \quad s_{1}
$$

Proof. First we shall assume that g_{i} 's are bounded. Let c_{i} be the supremum of $g_{i}, C_{i}{ }^{\prime}$'s are assumed to be positive (excluding the trival case). Define
(3.20) $\quad A_{i}=\left\{x^{*}=(x, z) \in R^{2}: g_{i}(x)>c_{i} z, z>0, x \in S_{i}\right\}$,
$i=0,1$, and
(3.2I) $A=\left\{x^{*}=(x, z) \in R^{2}: g(x)>z c_{0}^{1-\theta} c_{I}^{\theta}, z>0, x \in(I-\theta) S_{0}+\theta S_{I}\right\}$.

Let $A_{i}(z)$ and $A(z)$ be the $z-s e c t i o n s$ of A_{i} and $A_{\text {, respectively. }}$
For $0<z<1$ both $A_{0}(z)$ and $A_{1}(z)$ are non-empty, and
(3.22) $A(z) \supset(I-\theta) A_{0}(z)+\theta A_{I}(z)$.

Moreover,
(3.23) $\int_{-\infty}^{\infty} g_{i}(x) d x=c_{i} \int_{0}^{1} \mu_{1}\left(A_{i}(z)\right) d z$

We may assume that the integrals in the left-hand side of (3.19) are positive, the result is trivial otherwise.
(3.24)

$$
\begin{aligned}
& \int g(x) d x \geq c_{0}^{1-\theta_{c}} c_{1} \int_{0}^{1} \mu_{1}(A(z)) d z \\
& (1-\theta) S_{0}+\theta S_{1}
\end{aligned}
$$

By the one-dimensional Brunn-Minkowski-Lusternik inequality
(3.25) $\mu_{1}(A(z)) \geq(1-\theta)_{\mu_{1}}\left(A_{0}(z)\right)+\theta \mu_{1}\left(A_{1}(z)\right)$,
for $0<z<1$. Now it follows that
(3.26)

$$
\begin{aligned}
\int_{(1-\theta) s_{0}+\theta S_{1}} g(x) d x & \geq c_{0}^{1-\theta} c_{1}^{\theta}\left[(1-\theta) c_{0}^{-1} \int_{-\infty}^{\infty} g_{0}(x) d x+\theta c_{1}^{-1} \int_{-\infty}^{\infty} g_{1}(x) d x\right] \\
& \geq\left[\int_{-\infty}^{\infty} g_{0}(x) d x\right]^{1-\theta}\left[\int_{:-\infty}^{\infty} g_{1}(x) d x\right]^{\theta} .
\end{aligned}
$$

In the general case, define
(3.27) $\quad g_{i k}(x)=\left\{\begin{aligned} g_{i}(x), & \text { if } g_{i}(x) \leq k \\ k, & \text { if } g_{i}(x)>k\end{aligned} \quad\right.$.

Then $g_{i k}(x) \nmid g_{i}(x)$ as $k \rightarrow \infty$. Now apply the above result to $g_{i k}$'s and appeal to the monotone convergence theorem.

Theorem 3.4. Let f be a function on R^{n} satisfying the ∞ editions in Theorem 3.3. Let E be a convex set in R^{n}, and for $T \in R^{n}$ define
(3.28)

$$
h(T)=\int_{E+T} f(x) d x
$$

Then h is a O-unimodal function on R^{n}, i.e.
(3.29) $\quad h\left[(1-\theta) \tau_{0}+\theta \tau_{1}\right] \geq h^{1-\theta}\left(\tau_{0}\right) h^{\theta}\left(\tau_{1}\right)$
for $0<\theta<1, T_{i} \in R^{n}$.
Proof. Apply theorem 3.3 with $\cdot E_{0}=E+T_{O}, E_{I}=E+T_{1}$, and note that $(1-\theta) E_{0}+\theta E_{1}=E+\left[(1-\theta) \tau_{0}+\theta \tau_{1}\right]$.

Corollary 3.4.1. Define h as in Theorem 3.4. Suppose

$$
\begin{equation*}
h\left(\tau_{1}\right)=\ldots=h\left(\tau_{m}\right)=h(\tau) \tag{3.30}
\end{equation*}
$$

for τ_{i} 's and τ in R^{n}. Then
(3.31) $h\left(\sum_{i=1}^{m} \lambda_{i} \tau_{i}\right) \geq h(T)$
for $0 \leq \lambda_{i} \leq 1, \sum_{i=1}^{m} \lambda_{i}=1$.
4. Study on monotonicity in the general case.

For studying tests in $\bar{\Phi}_{G}$ we shall reduce the problem further. Recall that $\tau_{1}^{2}, \ldots, \tau_{l}^{2}$ are the ℓ largest characteristic roots of $\Sigma^{-1} M M^{+}$. It is possible to write
(4.1) $\quad \Sigma^{-\frac{1}{2}} \mathrm{M}=Q \Delta(\tau) L^{*}$,
where $Q: P \times p$ and $L: s \times s$ are orthogonal matrices, and
(4.2) $\Delta(\tau)=\left[\begin{array}{c|c}\Delta^{*}(\tau) & 0 \\ \hline 0 & 0\end{array}\right], \quad \Delta *(\tau)=\operatorname{diag}\left(\tau_{1}, \ldots, \tau_{\ell}\right)$,

$$
\tau=\left(\tau_{1}, \ldots, \tau_{\ell}\right)
$$

Define
(4.3) $\quad A=Q^{\top} \Sigma^{-\frac{1}{2}}, U=A Y(1)^{L, V=A Y}(3)$.

Then the columns of U and V are independently distributed as $n_{p}\left(\cdot, I_{p}\right)$, and $\varepsilon U=\Delta(\tau), \varepsilon V=0$. Note that the nonzero characteristic roots of $\left(U U^{\wedge}\right)\left(U U^{\wedge}+V^{\wedge}\right)^{-1}$ are the same as those of $S_{0} S_{t}^{-1}$. This shows that the power function of any test in Φ_{G} depends on Σ, M only through T. We shall now write $S_{0}=U^{\prime}, S_{e}=V^{\prime}, S_{t}=S_{0}+S_{e}$. For a non-randomized test φ, let A_{φ} be its acceptance region. We shall first consider acceptance regions in the space of U and ∇.

The power function of a test φ is
(4.4) $\quad \varepsilon_{M, \Sigma^{\varphi}}(\mathrm{U}, \mathrm{V})=\mathrm{P}_{\left.\mathrm{M}, \Sigma^{[(U, V)} \ddagger \mathrm{A}_{\varphi}\right] .}$

For $\varphi \in \Phi_{G}$ the power function of φ will be denoted by $\pi(\tau ; \varphi)$. Given τ_{i}^{2} / s and the structure of Δ in (4.2) the diagonal elements of Δ in (4.2) are not uniquely defined. In particular, by choosing Q and L appropriately it is possible to write in (4.2) $\Delta=\Delta\left(D_{e} \tau\right)$, as well as, $\Delta=\Delta(\Gamma \tau)$, where D_{e} is an $\ell \times \ell$ diagonal matrix with diagonal elements as ± 1, and Γ is an $\ell x \ell$ orthogonal permutation matrix, ice. $\Gamma \tau=\left(\tau_{i_{1}}, \ldots, \tau_{i}\right)^{\prime}$ for some permutation (i_{1}, \ldots, i_{ℓ}) of ($1, \ldots, \ell$). Hence for $\varphi \in \Phi_{G}$
(4.5) $\quad \pi(\tau ; \varphi)=\pi\left(D_{\mathrm{e}} \cdot \tau ; \varphi\right)=\pi(\Gamma \tau ; \varphi)$
for any such matrices D_{e} and Γ and for all $\tau \in R^{\ell}$.
Let U_{i} be the $i^{\text {th }}$ column vector of U and $\widetilde{U}^{(i)}$ be the matrix U with U_{i} deleted. For a region A in (U, V) space, let $A\left(\bar{U}^{(i)}, V\right)$ be the section of A in the U_{i}-space, i.e.
(4.6) $\quad A\left(u^{(i)}, v\right)=\left\{u_{i} \in R^{p}:(u, v) \in A\right\}$.

For any test $\varphi \in \Phi_{G}$ and all $u^{(i)}$ and v

$$
\begin{equation*}
A_{\varphi}\left(u^{(i)}, v\right)=-A_{\varphi}\left(u^{(i)}, v\right) \tag{4.7}
\end{equation*}
$$

and for all v

$$
\begin{equation*}
A_{\bar{\varphi}}(v)=-A_{\varphi}(v), \tag{4.8}
\end{equation*}
$$

where $A_{\varphi}(v)$ is the section of A_{φ} in the u-space.
Later we shall require ${ }^{A} \varphi$ to be a region in the space of ($U, V V^{\wedge}$), or in the space of $\left(U, U U^{\wedge}+W V^{\wedge}\right)$. For that purpose we denote the acceptance region of φ as $\widetilde{\mathrm{A}}_{\varphi}$ to mean that it is a region in $m_{p, s} \times s_{p}^{+}$.

Next we shall introduce four subclasses of Φ_{G} as follows: (I) $\Phi_{G}^{(1)}$ is the set of all $\varphi \in \Phi_{G}$ such that the acceptance region A_{φ} (in the space of U and V) is convex in the space of each column vector of U for each set of fixed values of V and of the other column vectors of U, i.e. for every i and $a l l \mathcal{u}^{(i)}$ and v the set $A_{\dot{\varphi}}\left(\tilde{u}^{(i)}, v\right)$ is convex.
(2) $\Phi_{G}^{(2)}$ is the set of all $\varphi \in \Phi_{G}$ such that the acceptance region A_{φ} is convex in the space of U for each set of fixed value of V. (3) $\Phi_{G}^{(3)}$ is the set of all $\varphi \in \Phi_{G}$ such that the acceptance region \tilde{A}_{φ} (in the space of $\left(U, W V^{\prime}\right)$) is convex in U and W°. (4) $\Phi_{G}^{(4)}$ is the set of all $\varphi \in \Phi_{G}$ such that the acceptance region \tilde{A}_{ψ} (in the space of $\left(U, S_{t}=U U^{\curvearrowright}+V^{\prime}\right)$) is convex in U and S_{t}. Note that $\Phi_{G}^{(1)} \supset \Phi_{G}^{(2)} \supset \Phi_{G}^{(3)}$.

Theorem 4.1. For $\varphi \in \Phi_{G}^{(1)}$ the power function of φ given by $\pi(\tau, \varphi)$ is a symmetric function in each τ_{i} and monotonically increases as each $\left|\tau_{i}\right|$ increases separately.

Proof. The first part of the theorem follows from (4.5). For $i=1, \ldots, \ell$

$$
\begin{equation*}
\varepsilon_{\tau}\left[1-\varphi(U, V) \mid U^{(i)}=u^{(i)}, V=v\right]=\int_{A_{\varphi}(u(i), V)+\tau_{i} e_{0}} f\left(u_{i}\right) d u_{i}, \tag{4.9}
\end{equation*}
$$

where f is the p.d.f. corresponding the $n_{p}\left(0, I_{p}\right)$ and ${\underset{\sim}{i}}$ is the vector in R^{P} with 1 at the $i^{\text {th }}$ position and the other components being 0 .

Now we shall use Theorem 3.2. Note that the density function \mathbf{f} is unimodal and centrally symmetric. $A_{\varphi}\left(u^{(i)}, v\right)$ is convex and centrally symmetric. Specialize G in Theorem 3.2 to be the group of sign transformations on R^{p}. Note that the distribution of $U^{(i)}$ and V is free from τ_{i}. Hence

$$
P\left[U_{i} \in A_{\varphi}\left(\tilde{u}^{(i)}, v\right)+\lambda_{i} \tau_{i} e_{i} \mid \bar{v}(i)=\tilde{u}^{(i)}, v=\tilde{v}\right]
$$

$$
\begin{align*}
& =P\left[U_{i} \in A_{\varphi}\left(\tilde{u}^{(i)}, v\right)+\left(1+\lambda_{i}\right) \tau_{i} e_{i} / 2-\left(1-\lambda_{i}\right) \tau_{i} e_{i} / 2 \mid \tilde{U}_{i}=\tilde{u}_{i}, \quad v=v\right] \tag{4.10}\\
& \geq P\left[U_{i} \in A \varphi\left(\tilde{u}^{(i)}, v\right)+\tau_{i} e_{i} \mid \widetilde{U}_{i}=\tilde{u}_{i}, v=v\right],
\end{align*}
$$

where $-1 \leq \lambda_{i} \leq 1$ and the conditional p.d.f. of U_{i} is taken as f. Taking expectation with respect to \widetilde{U}_{i} and V we find that $\pi(\tau ; \varphi)$ increases if τ_{i} is replaced by $\lambda_{i} \tau_{i}$, where $-1 \leq \lambda_{i} \leq 1$, holding the other components of τ fixed.

Since f is also 0-unimodal the result would also follow from Corollary 3.4.1.

In the above theorem we need only $n_{e}+s>p$.
Corollary 4.1.1. If $\varphi \in \Phi_{G}^{(2)}$ the power function of φ is a symmetric function in each τ_{i} and increases monotonically in each $\left|\tau_{i}\right|$.
Proof. Simply note that $\Phi_{G}^{(2)} \subset \Phi_{G}^{(1)}$.
Let H be the group of transformations acting on R^{ℓ} defined as follows. For $\tau \in R^{\ell}, h \in H$

$$
\begin{equation*}
h \tau=\left(e_{1} \tau_{i_{1}}, \ldots, e_{l} \tau_{i_{l}}\right) \tag{4.11}
\end{equation*}
$$

where $e_{i}= \pm 1$ and $\left(i_{1}, \ldots, i_{\ell}\right)$ is a permutation of ($1, \ldots, \ell$).

Theorem 4.2. If $\varphi \in \Phi_{G}^{(3)}$, and $\tau \in R^{\ell}$
(4.12) $\pi\left(\tau^{*} ; \varphi\right) \leq \pi(\tau ; \varphi)$,
where τ^{*} is any point in the convex-hull of the H-orbit of T, provided $n_{e} \geq p+1$.
Proof. The joint density P_{0} of U and $S_{e}=V V^{\text {d }}$ under H_{0} is O-unimodal when $n_{e} \geq p+1$. For $h \in H, \tau \in R^{\ell}$
(4.13) $\quad \pi(h \tau ; \varphi)=\pi(\tau ; \varphi)$.

For $h_{i} \in H$ and $0 \leq \lambda_{i} \leq 1, \sum_{1}^{m} \lambda_{i}=1$
(4.14) $\quad \sum_{i=1}^{m} \lambda_{i} \Delta\left(h_{i} \tau\right)=\Delta\left(\sum_{i=1}^{m} \lambda_{i} h_{i} \tau\right)$.

Moreover

$$
P_{\tau}\left[\left(U, S_{e}\right) \in \widetilde{A}_{\varphi} \mid H_{1}\right]
$$

(4.15)

$$
=P\left[\left(U+\Delta(\tau), S_{e}\right) \in \widetilde{A}_{\varphi} \mid H_{0}\right] .
$$

The theorem now follows from Corollary 3.4.1.
Theorem 3.4 also yields the following.
Corollary 4.2.1. If $\varphi \in \Phi_{\mathrm{G}}^{(3)}$ the power function of φ given by $\pi(\tau ; \varphi)$ is a 0 -unimodal function of τ, provided $n_{e} \geq p+1$.

Theorem 4.3. If $\varphi \in \Phi_{G}^{(4)}$ the result in Theorem 4.2 holds provided $n_{e} \geq p+1$.
Proof. The joint density of U and S_{t} under H_{0} is given by

$$
\begin{align*}
q\left(u, s_{t}\right) & =C \exp \left(-\frac{1}{2} \operatorname{tr}\left(s_{t}\right)\right)\left[\operatorname{det}\left(s_{t}-u u^{\prime}\right)\right]{ }^{2}, \text { if } s_{t}-u u \prime \in s_{p}^{+} \tag{4.16}\\
& =0 \text { otherwise . }
\end{align*}
$$

The following facts show that q is a 0-unimodal function when $n_{e} \geq p+1$
(i) If A_{0} and A_{1} are $p \times p$ positive-definite matrices (4.17) $\operatorname{det}\left((1-\theta) A_{0}+\theta A_{1}\right) \geq\left(\operatorname{det} A_{0}\right)^{1-\theta}\left(\operatorname{det} A_{1}\right)^{\theta}$,
for $0<\theta<1$.
(ii) Let $U^{(0)}, U^{(1)}$ be elements in $m_{p, s}$ and $U \ddot{=}(1-\theta) U^{(0)}+\theta U^{(1)}$ for $0<\theta<1$. Then

$$
(1-\theta) U(0)_{U}(0)+\theta_{U}^{(1)_{U}(1)}
$$

$$
\begin{equation*}
=U U^{\wedge}+(1-\theta) \theta\left(U^{(0)}-U^{(1)}\right)\left(U^{(0)}-U^{(1)}\right)^{\wedge} . \tag{4.18}
\end{equation*}
$$

(iii) If A_{0} and A_{1} are non-negative definite $p \times p$ matrices

$$
\begin{equation*}
\operatorname{det}\left(A_{0}+A_{1}\right) \geq \operatorname{det}\left(A_{0}\right)+\operatorname{det}\left(A_{1}\right) \tag{4.19}
\end{equation*}
$$

The rest of the proof is the same as that of Theorem 4.2. Corollary 4.3.1. If $\varphi \in \Phi_{\mathrm{G}}^{(4)}$ the power function of φ given by $\pi(\tau ; \varphi)$ is a O-unimodal function of τ, provided $n_{e} \geq p+1$.

Next we shall study the four standard invariant tests given in Section 1.

Theorem 4.4
(a) The likelihood-ratio test is in $\Phi_{G}^{(1)}$.
(b) Roy's maximum root test is in $\Phi_{G}^{(3)}$.
(c) Lawley-Hotelling's trace test is in ${ }_{\Phi}^{(3)}$.
(d) Pillai's trace test is in $\Phi_{G}^{(4)}$.
(e) Pillai's trace test is in $\Phi_{G}^{(1)}$ if and only if the cut-off point $R_{4} \leq \max \left(I, p-n_{\ell}\right)$.
Proof. (a) Let $W_{i}=\left(\tilde{U}^{(i)}, V\right)$ then the acceptance region of the likelihood-ratio test can easily be expressed as

$$
\begin{equation*}
I+U_{i}^{\prime}\left(W_{i} W_{i}^{\prime}\right)^{-1} U_{i} \leq\left(\operatorname{det} V^{\rho}\right) / k \operatorname{det}\left(W_{i} W_{i}^{*}\right) \tag{4.20}
\end{equation*}
$$

which is clearly convex in U_{i} for fixed W_{i}.
(b) Note that

$$
\max \operatorname{ch}\left[\left(U^{\wedge}\right) s_{e}^{-1}\right] \leq k_{2}
$$

(4.21)

$$
=\bigcap_{a \in R^{P}}\left[\left(U, S_{e}\right): a^{\wedge} U U^{\wedge} a \leq k_{2} a^{\wedge} S_{e} a\right] .
$$

It follows from (4.18) that the region $a^{\prime} U U^{\prime} a \leq k_{2} a^{\prime} S_{e} a$ is convex in ($\mathrm{U}, \mathrm{S}_{\mathrm{e}}$).
(c) For a matrix $B \in m_{p, s}$

$$
\begin{align*}
\operatorname{tr}\left(S_{e}^{\frac{1}{2}}\right)^{\prime}\left(S_{e}^{-\frac{1}{2}} U\right) & \leq\left[\operatorname{tr}\left(B^{\prime} S_{e} B\right) \operatorname{tr}\left(U^{\prime} S_{e}^{-1} U\right)\right]^{\frac{1}{2}} \\
& \leq\left(\frac{1}{2}\right) \operatorname{tr}\left(B^{\prime} S_{e} B+U^{\prime} S_{e}^{-1} U\right) . \tag{4.22}
\end{align*}
$$

Hence

$$
\begin{equation*}
\operatorname{tr}\left(B^{*} U\right)-\frac{1}{2} \operatorname{tr}\left(B^{*} S_{e} \cdot B\right) \leq \frac{1}{2} \operatorname{tr}^{*} S_{e}^{-1} U, \tag{4.23}
\end{equation*}
$$

the equality is attained when $B=S_{e}^{-1} U$. Hence the region in (U, S_{e}) given by $\operatorname{tr}\left(U^{\circ}\right) s_{e}^{-1} \leq k_{3}$ is the intersection of the regions
(4.24) $\quad \operatorname{tr}\left(B^{\circ} U\right)-\frac{1}{2} \operatorname{tr}\left(B^{\circ} S_{e} B\right) \leq \frac{1}{2} k_{3}$
for $B \in m_{p, s}$. However, each such region (4. dH) is convex in (U, S_{e}).
(d) The proof is the same as in (c).
(e) The proof of this result is rather involved and we refer to [29]. Note however that tables for k_{4} are partially available and even then they were obtained when $n_{e} \geq p$.

Examples of other tests in $\Phi_{G}^{(i)}(i=1,2,3,4)$ are given in [6], [27], [17], [36], [15]. A step-down test of H_{0} vs. H_{1} is given in [32]; however, this test is not in Φ_{G}. This test can easily be shown to be unbiased since it is given in terms of F tests. Only partial results are known for the monotonicity property of this test; see [7] and [10].

For the case $p=1$ the power function of the F-test increases monotonically in n_{e} and decreases in s when the other parameters are held fixed. For $s=1$, the power of the Hotelling's T^{2}-test increases if n_{e} increases, or if p decreases when the other parameters are held fixed. The proofs of these two results are given in [8]. Similar results for the general case are only known in very special situations; see [10], [9].

5. General MANOVA models.

The general MANOVA model introduced by Potthoff and Roy [30] may be described as follows: Let $X: p \times n$ be a random matrix such that its column vectors are independently distributed as $N_{p}(\cdot, \Sigma)$ with an unknown positive-definite matrix Σ; moreover $\varepsilon X^{\prime}=A_{1}{ }^{@ A_{2}}$, where $A_{1}: n \times m$ is a known matrix of rank $r, A_{2}: q \times p$ is a known matrix of rank q, and ©($m \times q$ is a matrix of unknown parameters. The problem is to test $H_{0}: A_{3} \circledast A_{4}=0$ against $H_{1}: A_{3} \Theta A_{4} \neq 0$, where $A_{3} \Theta A_{4}$ is bilinearly estimable, and $A_{3}: s x m$ and $A_{4}: q x v$ are known matrices of ranks s and v, respectively. This problem can be reduced to the following canonical form: Let
(5.1) $Y=\left[\begin{array}{ccc}Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33}\end{array}\right] \mathrm{p}-\mathrm{v}$
be a random matrix such that its column vectors are independently
distributed as $N_{p}(\cdot, \Sigma)$, and
(5.2) $\quad \varepsilon Y=\left[\begin{array}{lll}M_{11} & M_{12} & 0 \\ M_{21} & M_{22} & 0 \\ 0 & 0 & 0\end{array}\right]$.

The problem is to test $H_{0}: M_{21}=0$ against $M_{21} \neq 0$.

Let us partition Σ as in the above.
(5.3) $\quad \Sigma=\left[\begin{array}{lll}\Sigma_{11} & \Sigma_{12} & \Sigma_{13} \\ \Sigma_{21} & \Sigma_{22} & \Sigma_{23} \\ \Sigma_{31} & \Sigma_{32} & \Sigma_{33}\end{array}\right]$

A class of tests invariant under a certain group of transformations which keeps the problem invariant is obtained by Gleser and Olkin [18]. However, this problem is generally viewed in the conditional set-up described below.

The column vectors of
(5.4) $\quad \widetilde{Y}=\left[\begin{array}{lll}Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23}\end{array}\right]$
are conditionally independently distributed as $N_{q}(\cdot, \Sigma)$, given Y_{31}, Y_{32} and $Y_{33} ; \tilde{\Sigma}$ is the covariance matrix of the first q components given the last $p-q$ components derived from Σ. The conditional expectation of $\overline{\mathrm{Y}}$ is
(5.5) $\quad \varepsilon^{*}(\tilde{Y})=\left[\begin{array}{lll}M_{11} & M_{12} & 0 \\ M_{21} & M_{22} & 0\end{array}\right]+\beta\left[\begin{array}{lll}Y_{31} & Y_{32} & Y_{33}\end{array}\right]$,
where β is the matrix of regression coefficients. In this conditional setup the s.p. matrices due to error and the hypothesis H_{0} are respectively defined by (assuming nor $\geq \mathrm{p}-\mathrm{q}$)

$$
\begin{align*}
& S_{e}=Y_{23} Y_{23}^{\prime}-Y_{23} Y_{33}^{\prime}\left(Y_{33} Y_{33}^{\prime}\right)^{-1} Y_{33} Y_{23}^{\prime} \tag{5.6}\\
& S_{0}=\hat{H}_{21}\left(I_{s}+Y_{31}^{\prime}\left(Y_{33} Y_{33}^{*}\right)^{-1} Y_{31}\right)^{-1} \hat{M}_{21}^{\prime} \tag{5.7}
\end{align*}
$$

where

$$
\begin{equation*}
\hat{M}_{21}=Y_{21}-Y_{23} Y_{33}^{*}\left(Y_{33} Y_{33}^{*}\right)^{-1} Y_{31} \tag{5.8}
\end{equation*}
$$

In the conditional situations S_{e} and S_{O} are independently distributed as the Wishart distributions $w_{v}\left(n-r-p+q, \Sigma_{22 \cdot 3}\right)$ and $w_{v}\left(s, \Sigma_{22 \cdot 3} ; \widetilde{\Delta}\right)$, respectively, where $\Sigma_{22 \cdot 3}$ is the covariance matrix of the second set (of v) components given the third set of ($p-q$) components, and

$$
\begin{equation*}
\widetilde{\Delta}=M_{21}\left(I_{s}+Y_{31}^{\prime}\left(Y_{33} Y_{33}^{\prime}\right)^{-1} Y_{31}\right)^{-1} M_{21}^{\prime} . \tag{5.9}
\end{equation*}
$$

As in the MANOVA one might consider those tests which depend only on the characteristic roots of $\mathrm{S}_{0} \mathrm{~S}^{-1}$. In particular, the acceptance region of the likelihood-ratio test is given by $\left|\mathrm{S}_{\mathrm{e}}!/\left|\mathrm{S}_{\mathrm{O}}+\mathrm{S}_{\mathrm{e}}\right| \geq \mathrm{k}\right.$. The column vectors of $\left(Y_{31} Y_{33}\right)$ are independently distributed as $\mathrm{N}_{\mathrm{p}-\mathrm{q}}\left(0, \Sigma_{33}\right)$. It is clear that the distribution of $\mathrm{Y}_{31}^{*}\left(\mathrm{Y}_{33} \mathrm{Y}_{33}^{*}\right)^{-1} \mathrm{Y}_{31}$ does not depend on Σ_{33} and we shall assume it to be I_{p-q}. Also for considering the distribution of the roots of $\mathrm{S}_{\mathrm{O}} \mathrm{S}_{\mathrm{e}}^{-1}$ we might take $\Sigma_{22 \cdot 3}=I_{v}$ and replace M_{21} by $\Sigma_{22 \cdot 3}^{-\frac{1}{2}} M_{21}$. As in the MANOVA case, we can replace $\Sigma_{22 \cdot 3^{-\frac{1}{2}} 21}^{M}$ by a matrix $\Delta: v \times s$ such that

$$
\Delta=\left[\begin{array}{cc|c}
\operatorname{diag}\left(\tau_{1}, \ldots, \tau_{\ell}\right) & 0 \tag{5.10}\\
\hline 0 & 0
\end{array}\right]
$$

where $l=\min (v, s)$ and $\tau_{i}^{2}\left(\tau_{i}>0\right)$ are the characteristic roots of $M_{21}{ }^{\wedge} \Sigma_{22 \cdot 3^{-1}}{ }^{M}$. This discussion leads us to take $\tilde{\Delta}$ as
(5.11) $\quad \widetilde{\Delta}=\Delta\left(I_{s}+Y_{31}^{\prime}\left(Y_{33} Y_{33}^{\prime}\right)^{-1} Y_{31}\right)^{-1} \Delta^{*}$.

Arguing as in Anderson and Das Gupta [3] we see that the characteristic roots of $\bar{\Delta}$ increase if any τ_{i} is increased. Thus all the results in the MANOVA case can be applied now.

6. Bibliographical Notes.

On Section 1. For a general discussion of MANOVA see Anderson [2], Roy [33], and Lehmann [23].

On Section 2. See Roy [33].
On Section 3. A proof of Theorem 3.1 is given in Bonneson and Fenchel [4]. For Lusternik's generalization of Theorem 3.1 see Hadwiger and Ohman [19] or Henstock and Macbeath [20].

Theorem 3.2 was proved by Anderson [1] when G is the group of sign transformations. Essentially the same proof also holds for any G defined in Theorem 3.2; the general statement is due to Mudholkar [28]. For further generalizations of this theorem see Das Gupta [11].

Theorem 3.3.was proved by Prekopa [31] and Leindler [24] (for $n=1$); however, their proofs are quite obscure and somehwat incomplete. The present proof uses essentially the ideas given by Henstock and Macbeath [20]; see Das Gupta [13] for more general results. Theorem 3.4 was proved by Ibragimov [21] and Schoenberg [35] when $n=1$; the general case was proved by Davidovic, Korenbljum and Hacet [14]. For a discussion of these results see Das Gupta [13].

On Section 4. Theorem 4.1 is due to Das Gupta, Anderson and Mudholkar [6] where the monotonicity property of the power functions of tests (a), (b), and (c) are established. Roy and Mikhail [34] also proved the monotonicity property of the maximum root test. Srivastava [37]) derived the result for tests (a)-(c) although his proofs are incomplete. Theorem 4.2 and its present proof are due to Das Gupta [12]; an alternative proof using Theorem 3.2 is given by Eaton and Perlman [15]. On Section 5. See Fujikoshi [16] and Thatri [22].

References

[1] Anderson, T. W. (1955) The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc. 6, 170-176.
[2] Anderson, T. W. (1958) An Introduction to Multivariate Statistical Analysis. Wiley, New York.
[3] Anderson, T. W. and Das Gupta, S. (1964) Monotonicity of the power functions of some tests of independence between two sets of variates. Ann. Math. Statist. 35, 206-208.
[4] Bonneson, T. and Fenchel, W. (1948) Konvexe Körper. Chelsea, New York.
[5] Brunn, H. (1887) Öber Ovale und Eiflachen, Inaugural dissertation, Minchen.
[6] Das Gupta, S., Anderson, T. W., and Mudholkar, G. S. (1964) Monotonicity of the power functions of some tests of the multivaraite linear hypothesis. Ann. Math. Statist. s 35, 200-205.
[7] Das Gupta, S. (1970) Step-down multiple-decision rules. Essays in Probability and Statistics., Univ. of North Carolina Press, Chapel Hill.
[8] Das Gupta, S: (1972) Noncentral matrix-variate beta distribution and Wilks' U-distribution. Sankhyā, Series A, 34, 357-362.
[9] Das Gupta, S. and Per1man, M. D. (1973) On the power of Wilks' U-test for MANOVA. Jour. Multiv. Anal., 3, 220-225.
[10] Das Gupta, S. and Perlman, M. D. (1974) Power of the noncentral F-test: Effect of additional variates on Hotelling's T^{2}-test Jour. Amer. Statist. Assoc., 69, 174-180.
[11] Das Gupta, S. (1976) A generalization of Anderson's theorem on unimodal functions. Proc.Amer. Math. Soc., 60, 85-91.
[12] Das Gupta, S. (1977) s-unimodal functions: related inequalities and statistical. applications. Sankhya, Series B.
[13] Das Gupta, S. (1978) Brunn-Minkowski inequality and its aftermath. Tech. Report \#310, School of Statistics, Univ. of Minnesota.
[14] Davidovic, Ju. S., Korenbljum, B. I. and Hacet, B. I. (1962) A property of logarithmically concave functions. Soviet. Math. DokI., 10, \#2, 477-480.
[15] Eaton, M. and Perlman, M. D. (1974) A monotonicity property of the power functions of some invariant tests. Ann. Statist., 응 1022-1028.
[16] Fujikoshi, Y. (1973) Monotonicity of the power functions of some tests in general MANOVA models. Ann. Statist., $\underline{\underline{1}}$, 388-391.
[17] Ghosh, M. N. (1964) On the admissibility of some tests of MANOVA. Ann. Math. Statist., 35, 789-794.
[18] Gleser, L. and 01kin, I. (1970). Linear model in multivariate analysis. Essays in Probability and Statistics. Univ. of North Carolina Press, Chapel Hill.
[19] Hadwiger, H. and Ohman, D. (1956) Brunn-Minkowskischer Satz und Isoperimetrie. Math. Zeit., 66, 1-8.
[20] Henstock; R. and Macbeath, A. M. (1953) On the measure of sum sets (I). The theorem of Brunn, Minkowski and Lusternik. Proc. Lond. Math. Soc., 3, 182-194.
[21] Ibragimov, I. A. (1956) On the composition of unimodal distributions. Theor. Prob. App1. (Translation) 1, 255-266.
[22] Khatri, C. G. (1966) A note on MANOVA model applied to problems in growth curves. Ann. Inst. Math. Statist., 18, 75-86.
[23] Lehmann, E. L. (1959) Testing Statistical Hypotheses, Wiley, New York.
[24] Leindler, L. (1972) On a certain converse of Holder's inequality II. Acta Scient. Mat., 33, 217-223.
[25] Lusternik, L. (1925) Die Brunn-Minkowskische Ungleischung fur Beliebge Nessabare Mengen. Comptes Rendus (Doklady) de I'Academie des Sciences de I'URSS, VoI. III, (viii) 55-58.
[26] Minkowski, H. (1910) Geometrie der Zahlen, Keipzig and Berlin.
[27] Mudholkar, G. S. (1965) A class of tests with monotone power functions for two problems in multivaraite statistical analysis Ann. Math. Statist., 36, 1794-1801.
[287 Mudholkar, G. S. (1966) The integral of an invariant unimodal function over an invariant convex set-an inequality and applications. Proc. Amer. Math. Soc., 17, 1327-1333.
[29] Perlman, M. D. (1974) Monotonicity of the power function of Pillai's trace test. Jour, Multiv. Anal., 4, 22-30.
[30] Potthoff, R. F. and Roy, S. N. (1964) A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika, 51, 313-326.
[31] Prekopa, A. (1973) On logarithmic concave measures and functions. Acta Scient. Mat., 34, 335-343.
[32] Roy, J. (1958) Step-down procedure in multivatiate analysis. Ann. Math. Statist., 22, 1177-1187.
[33] Roy, S. N. (1957), Some aspects of Multivariate Analysis, Wiley, New York.
[34] Roy, S. N. and Mikhail, W. F. (1961) On the monotonic character of the power functions of two multivariate tests. Ann. Math. Statist., 32, 1145-1151.
[35] Schoenberg, I. J. (1951). On Polya frequency functions I: the totally positive functions and their Laplace transforms.
[36] Schwartz, R. E. (1967) Admissible tests in multivariate analysis of variance, Ann. Math. Statist., 38, 698-710.
[37] Srivastava, J. N. (1964) On the monotonicity property of the three multivariate tests for Multivariate Analysis of Variance. J. Roy. Statist: Ser. B., 26, 77-81.

