64-bit Floating-Point FPGA Matrix Multiplication

Yong Dou S. Vassiliadis

National Laboratory for
Parallel and Distributed
Processing
Changsha, P.R.China, 410073

yongdou@163.net

ABSTRACT

We introduce a 64-bit ANSI/IEEE Std 754-1985 floating
point design of a hardware matrix multiplier optimized for
FPGA implementations. A general block matrix multipli-
cation algorithm, applicable for an arbitrary matrix size is
proposed. The algorithm potentially enables optimum per-
formance by exploiting the data locality and reusability in-
curred by the general matrix multiplication scheme and con-
sidering the limitations of the I/O bandwidth and the local
storage volume. We implement a scalable linear array of pro-
cessing elements (PE) supporting the proposed algorithm in
the Xilinx Virtex II Pro technology. Synthesis results con-
firm a superior performance-area ratio compared to related
recent works. Assuming the same FPGA chip, the same
amount of local memory, and the same I/O bandwidth, our
design outperforms related proposals by at least 1.7X and up
to 18X consuming the least reconfigurable resources. A to-
tal of 39 PEs can be integrated into the xc2vp125-7 FPGA,
reaching performance of, e.g., 15.6 GFLOPS with 1600 KB
local memory and 400 MB/s external memory bandwidth.

Categoriesand Subject Descriptors

B.2.4 [Arithmetic and Logic Structures]: High-Speed
Arithmetic; C.1.3 [Other Architecture Style|: Adaptable
architectures; F.2.1 [Numerical Algorithms and Prob-
lems]: Computations on matrices

General Terms

Algorithms, Design, Performance

Keywords

Matrix multiplication, Floating-point, FPGA

1. INTRODUCTION

A broad range of complex scientific applications strongly
depend on the performance of the floating-point matrix mul-

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

FPGA 05, February 2022, 2005, Monterey, California, USA.

Copyright 2005 ACM 1-59593-029-9/05/0002 ...$5.00.

G. K. Kuzmanov

Computer Engineering,
EEMCS, TU Delft,

G. N. Gaydadjiev

P.O. Box 5031, 2600 GA Delft, The Netherlands
http://ce.et.tudelft.nl
{S.Vassiliadis,G.Kuzmanov,G.N.Gaydadjiev}QEWI.TUDelft.NL

tiplication kernel. The LINPACK Benchmark has been used
for over 20 years to evaluate high performance computers
designed to run such complex applications. LINPACK in-
cludes Basic Linear Algebra Subprograms [3] (BLAS) which
are high quality ”building block” routines performing basic
vector and matrix operations. The so-called Level 3 BLAS
target matrix-matrix operations of order O(n?). It has been
shown that high-performance Level-3 BLAS could be made
portable by representing these operations by matrix multi-
plications.

Various methods for implementing the matrix multiplica-
tion algorithm, exploiting the specific features of different
computer systems, e.g., distributed memory or hierarchical
shared memories, have been considered [2,5,7,20]. In this
paper, our primary goal is to propose a general hardware so-
lution of the floating-point matrix multiplication problem.
More specifically, the contributions of our work are:

e We propose a general block matrix multiplication al-
gorithm, applicable for arbitrary matrix sizes. The
matrices are scheduled in streams and the results are
generated in blocks so that the data are reused and
localized. The algorithm considers practical hardware
limitations in terms of local storage, 1/O bandwidth,
and computational logic.

e We introduce a scalable linear array of processing el-
ements implementing the proposed multiplication al-
gorithm and map this organization into Xilinx Virtex
II Pro FPGAs. The design is pipelined and the num-
ber of the pipeline stages is minimized after a careful
analysis of the design trade-offs in the context of the
considered FPGA technology. Synthesis results indi-
cate that a linear array implementation requires less
local storage than recent related proposals. Further-
more, assuming the same amount of local memory and
the same I/O bandwidth, our design outperforms the
related art considered by at least 1.7X and up to 18X.

e Synthesis results suggest that a single processing ele-
ment requires an area of 1401 Virtex II Pro slices and
can run at 200MHz. A total of 39 PEs can be in-
tegrated into the xc2vp125-7 FPGA, which can reach
performance of, e.g., 15.6 GFLOPS with 1600 KB local
memory and 400 MB/s external memory bandwidth.

The remainder of this paper is organized as follows. In
Section 2, some brief background on floating point matrix
multiplication is presented. The design, proposed in this

paper, is extensively described and analyzed in Section 3.
Section 4 introduces an FPGA implementation of our pro-
posal, including some synthesis and performance data. Our
FPGA prototype implementation is compared to other re-
lated works in Section 5 and the discussion is finally con-
cluded in Section 6.

2. BACKGROUND

In general, the standard matrix multiplication* C = Ax B
is defined as follows:

2

-1
Ai,k X Bk,],(0§l< M7O§] < R)7
0

Where A, B, and C are M x N, N X R, and M x R
matrices, respectively. The computations from the above
definition can be described by a straightforward algorithm
with the following pseudocode:

for (i=0;s < M;i=1i+1)
for (j =05 < R;j =3+ 1){
Cli, j] = 0;
for (k=0;k < N;k=k+1)

Cli,j] = C[i, j] + Ali, k] = B[k, j];}
The positions of the three nested loops in the algorithm
can be exchanged. With respect to the position of loop k,
the matrix multiplication is referred to as internal product,
middle product and external product. The computational
complexity? of the above algorithm is 2 x M x R x N, i.e.,
O(n?), and requires M x N+ R x N +2 x M x R memory
accesses, i.e., O(n?). As a rule, parallel processing reduces
the computational complexity but increases the demands
to the data memory bandwidth. The result is that data
communication complexity increases dramatically at a given
limited bandwidth. Another practical limitation to the ef-
ficient multiplication of matrices is the limited amount of
local memory utilized for storing intermediate results. The
last issue is becoming extremely severe for large matrices.
An efficient general approach to overcome both the memory
communication bottleneck (due to the limited bandwidth)
and the local storage limitation (both for sequential and
parallel machines) is to exploit data reusability. This can
be done, for instance, by partitioning the matrix data into
smaller sub-matrices and processing each of these partitions.
Such an approach, where the matrix data in the resulting
matrix is generated into portions of dense rectangular sub-
blocks, is referred to as block matrix multiplication. The
pseudocode in Figure 1 describes a sequential algorithm for
block matrix multiplication. This algorithm assumes that
the resulting M x R matrix data are obtained sequentially
in consecutive S; x S; sub-blocks.

In our work, we consider floating-point matrix multiplica-
tion, more specifically the ANSI/TEEE Std 754-1985 floating-
point standard. This standard specifies formats for 32-bit
and 64-bit representations. More specifically, we consider
the design issues of 64-bit floating-point numbers, which are
more time-consuming and area-demanding than that of 32-
bit floating-point numbers. The standard defines 4 types of

Cij:

b

ES
Il

'Depending on the operands, we refer to the x operator
either as to a matrix multiplication, or as to a scalar multi-
plication.

2Here, by complexity we mean time complexity.

Figure 1: Sequential block matrix multiplication.
for (1 =0;i < M/S;;i =i+ 1)
for (j =054 < R/S;:j = j+ D{
for (L; =0;L; < Si;L; = L; + 1)
for (Lj = O;Lj < Sj;Lj = Lj + 1)
C[ZSZ-FL’L,.]S]-FLJ] :0;
for (k =0k < N;k=Fk+1){
for (Li=0;L; < S;;L; =L; +1)
for (L; =0;L; < Sj;L; =L +1)
Cli-Si+ Li,j-S; + L] =
=Cli-S; + Li,j - S; + L]+
+Afi - Si + Li, k] x Bk, j - S; + Lj];}}

numbers: normal, infinity, NaN (not a number), and denor-
mal. In our design, we do not support denormal numbers.

3. THE PROPOSED DESIGN

In this section, we introduce a parallel block-scheduling
computational scheme, the supporting parallel algorithm,
and present a linear array architecture to implement the
matrix multiplication.

3.1 Parallel Block-Scheduling

We begin by noting that the proposed algorithms to follow
can be applied to any matrix size and sub-block dimensions.
For simplicity of discussion and without loss of generality,
to describe the approach, we consider square matrix mul-
tiplications and the matrices dimensions to be multiples of
the sub-block dimensions.

The parallel block (PB) algorithm: We separate the
sequential block algorithm (see Figure 1) into two parallel
algorithms, called Master and Slave as illustrated in Figure
2. The Master algorithm is executed on a single processor,
and the Slave - on multiple processors. In the discussion
to follow, we refer to the Slave processors as to Processing
Elements (PE). The Master sends the data from matrices
A and B within messages and loads the results into matrix
C ordered as S; by S; blocks, according to the scheduling
algorithm. The data in the messages are correctly ordered
by the Master and are delivered in a preserved order to the
PE chain. The algorithms in Figure 2 are described in a Sin-
gle Program Multiple Data (SPMD) computational model,
augmented with synchronous interprocess message passing
primitives and parallel tasking primitives. The primitive
Fork, spawns parallel tasks to be executed in the designated
processor. It is defined as:

Fork (F, P)- spawn a process in processor P to execute the
program or function F.

Synchronous message passing primitives Send and Receive
are defined as:

Send (P, Q, X)- send value of X to message Q in PE P;
Rev (P, Q, X)- receive a message from message Q in PE P
and place in the data variable X.

Memory access primitives Store and Load are defined as:
Store (Y, X)- write values of X to the address Y;

Load (Y, X)- read values of X from the address Y.

TA and TB are local variables for the Slave program. The
variable TC is a two dimensional array of S;/P rows and
S; columns. TC can be accessed by the Master program
through the Store or Load primitives.

Figure 2: Proposed parallel block matrix multiplication.

Master algorithm:
Master (Mpid=0){

for (i=0;i < N/Si;i=1i+1)
for (j =055 < N/Sj;j =7+ 1)1
Store(TC[0: S; — 1,0 : S; — 1],0);
for (k=0;k < N;k=k+1){

for (Lj =0;L; < Sj;L; = L;j +1)

}

Slave algorithm:

Slave(pid){
Rev (pid,FIFOA,A[0 : S; — 1]);
Send (pid+1,FIFOA,A[0 : S; — 1]);
TA[0 : S;/P — 1]=A[(pid-1)*S;:pid«S; — 1];
for (L =0;L; < Sj; L = Lj + 1){
Rev (pid,FIFOB,TB);
Send (pid+1,FIFOB,TB);
for (L=0;L < S;/P;L=L+1)
TC[L;, L)=TC|L;, L]+ TA[L*TB;

for (pid=1; pid< P; pid=pid+1) Fork (Slave(pid),pid);

Send (Mpid+1,FIFOA,Afi : i+ S — 1, k]);
Send (Mpid+1,FIFOB,Blk, j * S; + L;]);

}
Load (Cli*S; :i%S; +Si —1,j%S;: j%S; +5; —1],TC[0:S; —1,0: S; —1]);

In each PE, the scheduling algorithm is performed in the
following steps:
Step 1: The Master processor sends S; elements of one col-
umn of array A so that each PE receives Si/P elements.
Step 2: The Master processor sends S; elements of one row
of array B to all PEs. The elements of array A and B are
multiplied in each PE and added to the corresponding tem-
porary elements of array C. Results are accumulated into
the local PE memory.
Step 3: Repeat N times steps 1 and 2. Finally, the PE local
memories will contain S; x S; elements of C.
Step 4: The Master processor transfers the S; x S; block
of C from the PE local memories to the main memory. If
there are unprocessed blocks, go to step 1.

Computational scheme example: In the following, we
explain through an example, how the computational scheme
of the PB algorithm operates. The left-hand-side of Figure
3 illustrates the general block matrix multiplication (recall
the algorithm from Figure 1). The upper-left S; x.S; block of
C is a product of the upper S; rows of A and the left-most
S; columns of B. An illustrative example of how the pro-
posed parallel block matrix multiplication works is depicted
in the right-hand-side of Figure 3. The example assumes
4 x 4 matrices (N = 4), result matrix partitioning into 2 x 2
sub-blocks (S; = S; = 2), and 2 processing elements. To
generate a 2 x 2 block of C, the data from two entire rows of
A and two entire columns of B are required. The bottom-
right scheme illustrates the computations for one sub-block
(the upper-left block) of matrix C. The sub-block is initial-

ized with data 0, first. Then the first (or last)® pair of
data from matrix A (al4, a24) and the first (respectively
last) pair of the two B columns (b41, b42) are loaded into
PEO and PE1 and added to the contents of ¢2,. This is es-
sentially a MAC operation, which produces an intermediate
result, denoted as the ¢k, sub-matrix in Figure 3. Similarly,
the remaining data of the two A rows and the two B columns
are streamed to the two processing elements in pairs, pro-
ducing a series of intermediate results (c2, and c3,). Thus,
after N=4 steps, the correct final result for the c11, c12, c21,
c22 is calculated by the PEs and is ready to be loaded by
the master processor. PEO and PE1 continue computing the
next 2 X 2 blocks until the entire matrix C is calculated.

3.2 ThelLinear Array Organization

We propose a linear array of PEs to implement the PB
matrix multiplication algorithm. If the bandwidth is large
enough, multiple linear arrays can work in parallel to com-
pute different blocks of the matrix. In most cases, however,
the bandwidth is a limiting factor, therefore, we focus on
these cases with bandwidth limitations.

Topology and operation: Generally speaking, the lin-
ear array is a computing engine controlled by a host proces-
sor. The interface between the host and the array can be
implemented by a bus or by a Direct Memory Access (DMA)
controller, as illustrated in Figure 4. The array has a very
simple interconnect topology. Within the bus interface or
the DMA, there are 3 FIFOs to interface with the first PE
of the array. Strictly identical interface interconnects all

3The order data are loaded into the PE may vary.

)

B
bll | b12 | b13 | b14
Example b21 | b22 | b23 | b24
> b31 | b32 | b33 | b34
N=4; MAC | |ba1|b42| ba3 | baa
Si=Sj=2; A c

allal2ai3ala | [ellciz | ci3cia |

a2l a22 a23 a24 lc21c22 | c23c24 |

a3la32a33a34 | |c31c32 | c33c34 |

a4l ad2 a43 ad4 i_c41 ca2 | ca3cas |

A—s x «— B epc
C Computational mi
Scheme 21 bz:
0011 0012 31 L b32
o 1o 41| | b4
C[C2 I
+
PEO: /alla1l2a13 l“\ 0111 Cl12 + >C211 C212 + >‘:311 C312 + ¥ C1|Cpp
PE1: Na21Xa22/q23)2 E y C2,, [C%), y C,(C3,, y C,, |Cyy
| »
>

Figure 3: The PB computational scheme - an example for N =4 and S; = 5; = 2.

Host Procawor)— Main
Memory

Host Processor 1 Main
Memory

(b) DMA interface.

(a) Bus controller interface.

Figure 4: PE array interface and general topology.

PEs in the array, as well. In Figure 4(a), the host pro-
cessor alone performs the data transfers between the array
and the main memory through a standard bus. In Figure
4(b), a DMA controller connects the array with the main
memory. The DMA controls the execution of multiple level
loops, generates the data matrix addresses, and performs
the data transfers while the host only monitors these opera-
tions. The host sends matrix A and B into dedicated FIFOs
(according to the aforeproposed scheduling algorithms), ini-
tializes, and loads the local PE memories through dedicated
memory channels. Whenever there are data in the FIFOs,
the array processes them and stores the results in the lo-
cal memories. The results of the matrix multiplication are
loaded from the PE local memories to the host, while the
following computations are running in a pipeline manner.
PE organization: Each PE is designed as a pipeline and
comprises two sets of data registers, two FIFOs, one MAC
unit, S words of local storage, and control logic, as depicted
in Figure 5(a). The first stage of the pipeline is built of two

.-JL..-.-.i.-.
3
E]
il
o
®

(a) PE organization

(b) MAC organization

Figure 5: The structure of the PE and the MAC.

data register files (T'Ao, T'A1) which fetch the elements of
one matrix (e.g., A) from the preceding PE. Each element of
A is reused S; times and each of the register files is designed
to store % elements of A. In order to keep the pipeline
busy, the two register files are switched alternatively, i.e., at
any moment one is involved in the computations while the
other is receiving new data. The elements of B are fetched
into a single register and since they are not reused, we do
not need to store them locally after each computation. The
fetched elements of both A and B are also queued in local
FIFOs (FIFOA and FIFOB) to be forwarded to the next
PE. During the second pipeline stage, the fetched elements
of A and B, and one temporary element of C from the local
memory are sent to the MAC unit pipeline (details follow)
to perform a multiply and accumulate operation. Finally,
the results of the MAC operation are stored in the local
memory, which is organized in two banks (T'Cy, T'C}) and
operates similarly to the alternatively switching TA register
files.

Mantissas Exponents
MA VB EA EB
(C__ADD)
Sl /918x18 MULT AEEE?
----_ + Glue logic f
S2 |
11 Partial Products |
Generate C address) |
S3 [Localaddressof C] :
S4 | AdderTree J LT
,,,,, , S e —
S5 | 2C (_Difference v
\ MAXMB | [M] I——J EAB or EC
s6 (shif Shift I
[smAB] [SMMCY)]
,,,,,,,,,,,,,,,,,,,,,)
s7 ADD
S(MAXMB)+S(MC)
ss Recodin
MAXMB+MC

S9

|
,,,,,,,,,,,,,,,,,,,,,, "| CountLZ
S10 @

s11
[SMAXMB*MO) |

C Substract
E(AxB+C)

M(AXB+C)

S12

i
\ 4

- operation;

v

- pipeline register.

Note: Only key pipeline registers are displayed.

Figure 6: The MAC unit pipeline.

Local storage requirements: As stated in the descrip-
tions of the PB algorithm and of the PE organization, 2 x S;
memory elements are required for storing the A columns,
and 2 x S; x S; - for intermediate results of an S; x .S; block
of C. Therefore, the minimal requirements to the local stor-
age are for 2 x S; x S; + 2 x S; data elements.

MAC unit organization: We propose a MAC unit
structure that couples the multiplication and the accumu-
lation closely, sketched in Figure 5(b). The multiplier re-
ceives the elements of A and B in a data-driven manner.
That means whenever both of the data are available, they
will enter the pipeline. During the multiplication phase,
a load address is generated to prefetch the proper C ele-
ment from the local storage. Before the partial result of the
A x B multiplication is ready, the C element is available
and some pre-processing computations have been done (to
be explained later). The results from the addition phase are
stored (accumulated) in the local memory. Figure 6 illus-
trates the MAC unit pipeline stage partitioning. In more
details, the stages are:

S(1,2): Mantissas: Decompose each of the two 53-bit man-
tissas (MA and MB), so that both 51 LS (Least Significant)
bit partitions are sent to nine 18 x 18 multipliers and the
rest 2 MS (Most Significant) bits of each mantissa generate
4 partial products trough a glue logic (or LUT). For a better
pipeline balance and throughput, we assume double staged
multipliers. As a result, 11 partial products are propagated
to the next pipeline stage.

Ezponents: The two exponents (EA and EB) are added in
S1 and the result (EAB) is propagated trough S2.

S(.?.,4,5):4 Mantissas: The 11 partial products are summed
through a three-level adder tree, assuming three pipeline
stages. In S3, a local memory address is generated and the
corresponding C element is available in S4. In S5, the man-
tissa of C (MC) is coded into two’s complement code (M C").
Ezponents: EAB is propagated trough S3 and S4. In S5, the
difference between EA and the exponent of C (EC) is calcu-
lated. Based on the difference result, the greater of EAB or
EC is propagated further through the pipeline.

S6: Mantissas: The mantissa with the minor exponent is
shifted with respect to the exponent difference from S5, re-
sulting in S(MAxMB) or S(MC").

Ezponents: Propagated.

S7: Mantissas: The shifted mantissas from S6 (S(MAxMB)
and S(MC")) are summed in two’s complement notation.
Ezponents: Propagated.

S8: Mantissas: Recoded from two’s complement notation
to sign-magnitude.

Ezponents: Propagated.

S(9,10): Mantissas: Propagated. Counting leading zeros in
the 53 mantissa bits takes two stages. In S9, the 53 mantissa
bits are decomposed into 4 groups to obtain 4 numbers of
zeros. In S10, the 4 numbers are added to generate the total
number of leading zeros.

Ezponents: Propagated.

S11: Mantissas: Shifted to the left according to the number
of the leading zeros (result denoted as S(MAxMB+MC)).

“In an ASIC design, these three stages may be reduced to
two, but for an FPGA design three stages are optimal due
to the specific adder tree implementation.

Ezponents: The new exponent of C (E(AxB+C)) is calcu-
lated by subtracting the number of leading zeros from the
exponent of the previous stage, and is propagated to the fi-
nal stage S12.

S12: Mantissas: Rounded to the nearest even. The new
mantissa of C (M(AxB+C)) is available.

Ezponents: Propagated to the output.

3.3 Performance Analysis

To analyze the performance potentials of the proposed
design, assume square matrices and the following notations:
N - dimensions of the square matrices; BW - bandwidth
between the main memory and the linear array [words]/[s];
PEAK - overall performance of the array [FLOPS].

Considering limited memory bandwidth and large matri-
ces, the overall processing time of our pipelined design is
determined by the data transfers between the main memory
and the array. The amount of data that must be moved to
and from the main memory to compute one S; x S; block of
Cis (S; x N+ S; x N+2xS; xS;), comprising: S; x N
elements of A; S; X N elements of B; and 2x.S; x S; elements
of C. For the entire matrix C, the amount of data in number
of [words] transferred is:

N_ N N° N°
5. %5, =5 TS

(Six N+S; x N+2x.5; x.55) +2x N2,
1;—3+1§—?+2><N2

The time for transferring these data is: —4—Fm——o, [s].
Recall that the computational complexity of the matrix mul-
tiplication is 2 x M X R x N (see Section 2). Considering
square matrices, 2 x N floating point (FP) operations are
required to multiply two N x N matrices. Therefore, re-
garding the overall performance, we consider the following
equation:

#F P _operations 2 x BW x N3

PERF = = =
processing_time Jg_: + 1;_: +2x N2

- XV rLopsl. ()
5; + 55 + ~

Maximum performance: We note, that (1) is general and
may support the performance estimation of other pipelined
matrix multipliers. Therefore, we introduce some additional
notations, to meet the specific organization of our proposal,
namely: L - local memory size in (64-bit) [words|; P - num-
ber of PEs in the linear array; and F - clock frequency of
the array in [Hz]. The following theorem holds:

THEOREM 1. Consider the multiplication of two N x N
matrices employing the PB matriz multiplication algorithm
and the proposed design. Further consider that the result is
produced in portions of Si X Sj blocks by a linear array of
P processors with a limited main memory bandwidth. Given
the fized size of the local memory is L [words], the condition
for the array to achieve the mazimal performance is:

L L
=——= and S;=4/=.
2+2L ! 2
PROOF. According to (1), the performance is a function
of the variables S; and S;. Consider the following function:
f(5i,85) =

1 1 2
4=

N iy] . 2
ST TN Si, S5 €N (2)

Assuming the proposed design and a fixed local memory size
of L [words] (L& N), the following equations hold:

L:QXSiXSj+2><S~; =

L—2><Si

Thus, function f(S;,S;) is equivalent to the following func-
tion F'(S;):
2x 5% 1 1
F(Si)*iL_QXSi-FE—FN, L,S;eN. (4)

The condition for the maximal performance is the same as
that of the minimal f(S;,S;). Therefore, we equalize the
derivative of F(S;) to zero:

(2x L—4)xS7 +4x LxS;—L?

’ _ —
F(8) = (—2x 824 L x S;)? =00
Given F'(S;) = 0, the following holds:
(2XL—4) xS +4xLxS8—L*=0 (©)
—2><S2+L><S £0

Solving (6) for L,S; € N, gives a single value of S; for the
maximum performance and according to (3), the value of S;
is calculated. The derived equations are:

L L
= and S: —_-.
2+ 2L !

Indeed, the theorem statement holds. [

[\

Consider the maximum performance conditions from Theo-
rem 1 and substitute in (1), then:

BW
1 2 1]
rtyitw
In practice, the fixed local memory size is in the order of kilo-

bytes and the matrices are large, i.e., L >>1and N >> L.
Considering these boundary conditions, we can conclude:

PERFyax = le\irm Ll — &

PERFyax = [FLOPS). (7)

PERF} ax = BW x M% , [FLOPS]. (8)

Peak performance bandwidth: Equation (8) gives the
maximum performance for a limited bandwidth BW, fixed
memory size L, and large matrices. In the realistic case of
limited number of processing elements, however, too large
bandwidth will not contribute to any performance improve-
ment. The saturation point, beyond which the bandwidth
does not affect the performance, we denote as the point of
peak performance, which is:

PERFprak =2 X P x F, [FLOPS]. (9)
Equation (9) is quite intuitive assuming P processing ele-
ments, working at frequency F', each of them performing
two FP operations per cycle. Equalizing (8) and (9), we
derive the peak main memory bandwidth required for the

Table 1: Synthesis Data for a Single PE.
Xilinx V2P125 -6/-7 [MUL | ADD | Control || Total |

Operand Width 64 64 64 64
Pipeline Stages 5 8 1 13
Area in Slices 585 738 96 1419
Area in % of design 41.2 52 6.8 100
Flip-Flops 1003 687 225 1915
LUT 665 1321 198 2184
Embed. multipliers 9 0 0 9
Clock rate -6 [MHz] 178 177 N.A. 177
Clock rate -7 [MHz] 203 200 N.A. 200

mazimum performance of P processing elements, operating
at frequency F, with o fixred amount of local memory L:
2x PxF

BWppax = ————
L
2

[words]/[s]. (10)

Peak performance local memory size: From (10) we
can easily derive the amount of local memory required for
the best array performance at a given limited bandwidth
BW and P processing elements operating at frequency F:

P x F 2
BW))
Data hazards condition: Since the floating point MAC
is pipelined, it is possible that data hazards arise during
the computations. According to the proposed algorithm, P
processing elements calculate an S; x .S; block of C. Each
PE calculates (S; x S;)/P matrix elements. Data hazards
occur when data, required for a MAC operation, are delayed
in the addition pipeline, which is 8 stages deep. Therefore,
the condition to avoid data hazards is:

Lppak =8 % ([words]. (11)

SiXSj>
P

4. FPGA IMPLEMENTATION

We consider reconfigurable technology to implement the
proposed matrix multiplier. Initially, we employed a ”top-
down” methodology to design the unit and then tuned this
design through a ”bottom-up” performance optimization fol-
lowing a ”iterative refinement” approach. For our prototype
designs, we consider the Xilinx Virtex II Pro FPGA and
the Xilinx ISE6.0 design environment. Table 1 presents de-
tailed synthesis data on the implementation of a single PE.
As indicated in line 4, the MAC unit (comprising MUL and
ADD) occupies nearly 94% of the entire area required by
the processing element. Regarding the operating frequency,
the MAC and ADD units are well balanced as clock rates
are virtually the same. The control logic is only 6.8% of the
entire PE, including two 64-bit registers for storing A and
B elements and an interface for loading C. We focus on two
key parts of the FPGA-specific design: the implementation
of the critical MAC computations and the implementation
of the operation control.

Critical MAC computations: In Table 2, the FPGA
resources utilization and performance figures (synthesis data)
are reported for the key computationally critical units of the
MAC pipeline. In the last column of the table, the frequen-
cies for speed grade -6 and -7 of the considered V2P125
FPGA chip are reported, respectively.

8 (12)

Table 2: Critical MAC Computations-Performance.

Computation Area Clock

(Xilinx V2P125 -6/-7) [LUT] [MHz]

Registered multiplier MUL18X18S 0 280/332
89-bit addition, 49th carry-out select | 169 | 184/210
Code 55 bits into 2’s complement 56 192/219
Shift 56 bits up to 53 positions 310 177/200
Count the leading zeros for 15 bits 19 377/421

Multiplication: The Virtex IT Pro FPGA supports two types
of 18 bit two’s complement multipliers, depending on the
operating frequency. The lower frequency multipliers are
single staged and operate at 165/186 MHz (for V2P125 -6/-
7). We utilize the double staged high frequency multipliers
MUL18X18S (Table 2), to achieve better pipeline balance
and improved throughput. Since the pipeline registers are
implemented in the hardwired multiplier itself, no additional
resources are required.

Addition: The result of multiplying two 53-bit mantissas is
106 bits wide, but it essentially requires only 89-bit actual
additions as the LS 17 bits are added to zero. Yet, this
operation requires the widest operands in the MAC design.
With the Virtex IT Pro fast carry chain, an addition per-
forms well in serial mode but the total delay is proportional
to the length of the carry chain. An 89-bit serial addition
operates at 161/184 MHz for -6/-7 speed grades, respec-
tively. To reduce the delays, we employed an 89-bit carry
select addition. We have implemented two 40-bit adders to
calculate the 40 MS bits of the result in parallel as the first
adder is implemented with a carry in bit of ”1”, while the
other has no carry in. The 40 MS bits of the final result are
determined based on the carry-out bit of the addition of the
49 LS bits by selecting the appropriate of the two results
calculated. This method yields approximately 14% increase
in the clock rate at the low price of an extra 40-bit adder
(see Table 2).

Shifting: The shift operations include shift right, shift left,
and two’s complement arithmetic shift. They present the
most critical computations in the MAC unit both in terms
of time and hardware costs. The implemented shifting struc-
ture is not area efficient and its performance depends on the
data width and shift amount. As indicated in Table 2, a
53-bit positions shifter requires 310 LUTs and its clock rate
is 177/200MHz for FPGA speed grades -6/-7, respectively.
In [4], Xilinx propose a barrel shifter reference design based
on embedded multipliers. Their solution, however, suffers
from some key shortcomings, we point next. First, the de-
sign contains three stages: encoding the shift amount to
”one-hot” format, fine shifting by embedded multipliers, and
bulk shifting by multiplexors. This multilevel logic incurs
more time delays than a single level logic. Second, the fast
registered multiplier comprises 2 stages of pipeline, there-
fore the shift operation has to be divided into 2 stages at
least. Third, the embedded multipliers turn to be a limited
resource, especially for floating-point computations. E.g.,
a single 53-bit shifter requires seven 18-bit embedded mul-
tipliers. Fourth, shifting through multipliers saves design
real estate, but some placement flexibility is lost due to the
locking of the barrel shifters to specific multiplier locations.
Therefore, we can safely conclude that both shifting imple-
mentations (i.e., the traditional and the multipliers based

structures) are not quite efficient in the considered FPGA
technology and a 200 MHz floating-point unit is hard to be
implemented within a reasonable area budget. We believe,
however, that this technological shortcoming can be solved
in some of the future FPGA products.
Counting leading zeros: The complexity of a single stage
counting logic prevents the design from fast clock rate and
incurs large area consumption. The area of a single 54-bit
leading zero counter is over two times larger than the area of
four 15-bit counters. Therefore, we distribute the counting
into two stages employing some techniques from [15]. In the
first stage, the 54-bit data is decomposed into four groups,
which are processed separately. The generated four numbers
are summed in the second stage.

Operation control: The proposed matrix multiplier has
a modular structure composed of a liner array of intercon-
nected processing elements. There are unified communica-
tion channels between the adjacent PEs with a FIFO-based
interface to tolerate the varying delay of the incoming data.
The store and load operations from the host to the PEs are
pipelined so that there is no central broadcast of data along
the array. Within a PE, the MAC operates in a data driven
manner. Each operand entering the MAC has an associated
validation bit and only when both operands are available,
the MAC unit produces valid results. A data number is com-
pared with the internal processor identifier (pid) to select a
particular operand TA from the incoming data of matrix A.
Three counters control the matrix A and matrix C accesses.
One counter is used to calculate the operating number of
matrix A, used in the multiplication. After S; multiplica-
tions, the operand from matrix A will be changed by a new
one, which requires a read operation from FIFOA to regis-
ter TA (see Figure 5(a)). The second and the third counter
are employed to calculate the local load and store addresses
of C. Thus, besides the MAC unit, the structure of the PE
only employs several counters and a comparator, and can
be fully parameterized for an arbitrary matrix size by a few
numbers: pid, S;, S; and P.

5. COMPARISONSTO RELATED WORK

We compare our proposal to several recent and closely
related works reported in the literature. The performance
evaluations are based on synthesis for Xilinx Virtex II Pro
FPGAs with speed grades -6 and -7.

Closest works: Regarding 64-bit floating point FPGA
matrix multiplication, there are few closely related works
reported. In [19], authors investigate the achievable 64-bit
floating-point performance by a single FPGA chip. Their
research targets applications in scientific computing, more
precisely some Basic Linear Algebra Subroutines (BLAS),
e.g., dot production, vector matrix multiplication, and ma-
trix multiplication. The paper discusses the relationship
between the memory bandwidth and the sustained compu-
tation performance in details. For matrix multiplication, an
S x S block algorithm is adopted. The memory require-
ments are for 6 x S? 64-bit words of local storage. In con-
trast, our improved block algorithm has the least memory
requirements of 2 x S +2 x S and no central broadcasting.
In [22], an algorithm has been proposed employing (N?/S)
PE with storage size of S words per PE. A tradeoff between
the storage size and the number of PEs has been provided.
To achieve optimal performance of the design in [22], the
block size has to be equal to the number of PEs. If the

Table 3: Related Work Comparisons - Single PE.
Xilinx FPGA xc2vp100 -6
Ours | [19] | [14]
Operand Width 64 64 41
Pipeline stages 13 34 25
Area in Slices 1419 | 2875 | 1641
Clock [MHz| 177 140 | 171
#PEs on a chip 31 24 26

Table 4: Performance Comparisons.

Bwidth | local mem | Performance [GFLOPS]
[MB/s] [KB] Ours | [19] [[14]
100 256 1.60 0.92 N.A.
200 256 3.20 1.85 N.A.
200 512 4.52 2.61 N.A.
400 512 9.05 5.23 N.A.
400 1024 | 12.80 7.39 N.A.
400 1600 | 15.60 9.18 N.A.
800 256 | 12.80 7.39 N.A.
800 512 | 18.10 | 10.45 N.A.
800 1024 | 25.60 | 14.78 N.A.
2 736 108 | 39.46 | 22.78 2.200

MAC unit we propose is employed, the authors of [22] sug-
gest® that their design can potentially achieve peak perfor-
mance similar to ours for a single FPGA (15.60 GFLOPS).
The algorithm proposed in [22] incurs higher requirements
to the I/O bandwidth than ours. More specifically, we esti-
mated that a bandwidth in the order of at least 3200 MB/s is
required for the 8.30 GFLOPS performance reported in [22]
(448KB local memory). This bandwidth is clearly higher
than the requirements of our design for nearly the same
performance (i.e., 400 MB/s for 9.05 GFLOPS for 512 KB
local memory, suggested in Table 4). The work in [14] con-
siders implementations of floating-point units on Xilinx Vir-
tex II FPGAs for 41-bit multiplication and addition. The
proposed FP format is self-defined so that the 32 mantissa
bits conveniently match the multipliers widths. Although
such a format is different than ours, we still compare the
results from [14] to ours, assuming similar conditions. Table
3 assists a detailed comparison between our proposal and
the related works in [14,19]. Our design has the least re-
configurable area and runs at the highest clock frequency
compared to the related works considered. The number of
the pipeline stages is reduced to 13, which additionally saves
area and reduces the pipeline latency. As a result, a larger
number of PEs can be implemented on a chip, thus improv-
ing the computations density.

Regarding performance, its true evaluation should be done
measuring the processing speed in GFLOPS. In Table 4 we
compare the performance of our design to the three consid-
ered related proposals. The considered performance figures
actually represent the potentially maximum performance,
assuming large matrices and local memory sizes in the or-
der of KBytes and more. The potential maximum perfor-
mance (denoted as PERF}; 4x in (8)) is greatly influenced
by the sustained I/O bandwidth (BW) and the embedded
local memory size (L). Authors of [19] calculate their po-

Spersonal communication

tential maximum performance to be BW x y/L/6, which is

definitely lower than ours, which is BW x /L/2, recall (8).
Therefore, our design outperforms [19] in the entire range
of bandwidths and local memory sizes, considered in Table
4, by a factor of 1.7 X. The authors of [14] do not give an
explicit formula for the potential maximum performance of
their designs. Therefore, we use the performance data they
report for certain BW and L to calculate the performance
of our design and of [19]. Clearly, our proposal outperforms
the designs from [14] with a factor of 18X (see the last row
of Table 4).

Other related works: The scheduling methods for FPGA
matrix multiplication proposed in [8,9, 16] still suffer from
small block matrices and do not consider the factor of lim-
ited bandwidth. Unlike other works on 64-bit FP units,
e.g., [6,18], our work gives detail performance evaluation and
discusses the trade-offs in building long word FPU pipelines.
In [14], the authors propose a ” Propagate-Kill Chain” for en-
coding the position of the leading ”1” using embedded mul-
tipliers for the shift operation. Their method still needs one
stage for leading zero counting and two stages for the embed-
ded multipliers. Their performance is similar to ours, but
at the expense of additional embedded multipliers. We also
give credit to other related works regarding FPGA based
FP matrix multiplications, which have been beneficial for
our proposal. Works in [13] discussed the implementation
of an FP unit in the earlier versions of the FPGA chips,
which did not support block multipliers and embedded lit-
tle on-chip memory. Authors in [11,12] presented works on
building FP units of word width shorter than 64 bits, opti-
mized for FPGAs. The authors of [1,17] propose customiz-
able designs of floating-point units used in the development
of automatic design tools. In [10], a memory organization
for efficient access of rectangular data blocks is proposed.
This memory organization can be considered in our design
for performance efficient implementations. We also envision
that the proposed design can be implemented as a recon-
figurable extension into tightly coupled custom computing
machines like the processor reported in [21].

6. CONCLUSIONS

In this paper, we introduced a floating point design of a
hardware matrix multiplier optimized for FPGA implemen-
tations. The core of the proposal is a general block ma-
trix multiplication algorithm, applicable for arbitrary ma-
trix sizes. The algorithm exploits data locality and reusabil-
ity and considers the limitations of the I/O bandwidth and
the local storage volume. We introduced a scalable linear
array of processing elements supporting the proposed algo-
rithm, where each processing element is finely pipelined. We
employed several methods to improve the throughput of the
pipeline, including carry-select addition, distributed leading
zero counters, pre-computation of local elements, and fu-
sion of multiplication with addition, while keeping the num-
ber of pipeline stages minimal. The 64-bit ANSI/TEEE Std
754-1985 floating point standard was considered for a prac-
tical Xilinx Virtex IT Pro implementation. Synthesis results
confirmed a superior performance-area ratio compared to
related recent works. Assuming the same FPGA chip, the
same amount of local memory, and the same I/O bandwidth,
our design outperformed the related proposals by at least
1.7X and up to 18X consuming the least reconfigurable re-

sources. For instance, a single processing element requires
an area of 1401 Virtex II Pro slices and can run at 200MHz.
A total of 39 PEs can be integrated into the xc2vpl25-7
FPGA, reaching performance of, e.g., 15.6 GFLOPS with
1600 KB local memory and 400 MB/s external memory
bandwidth.

Acknowledgments

Yong Dou’s work is supported by the National Science Foun-
dation of China under contract # 90307001. This research
has been also supported by PROGRESS, the embedded sys-
tems research program of the Dutch organization for Scien-
tific Research NWO, the Dutch Ministry of Economic Af-
fairs, and the Technology Foundation STW (project refer-
ence code AES.5021). We would also like to acknowledge
Ling Zhuo and Keith D. Underwood for the design discus-
sions with them.

7. REFERENCES

[1] A. Abdul Gaar, W. Luk, P. Y. Cheung, N. Shirazi,
and J. Hwang. Automating Customisation of
Floating-Point Designs. In Proceedings of the 12th
International Workshop on Field Programmable Logic
and Application (FPL 2002), pages 523-533. LNCS
2438, August 2002.

[2] J. Choi. A Fast Scalable Universal Matrix
Multiplication Algorithm on Distributed-Memory
Concurrent Computers. In 11th IEEE International
Parallel Processing Symposium (IPPS ’97) , pages
310-314, April 1997.

[3] J. J. Dongarra, J. D. Croz, S. Hammarling, and I. S.
Duff. A Set of Level 3 Basic Linear Algebra
Subprograms. ACM Transactions on Mathematical
Software, pages 1-17, March 1990.

[4] P. Gigliotti. Implementing Barrel Shifters Using
Multipliers. In Xilinxz Applicatioin Notes,
http://direct.zilinz.com/bvdocs/appnotes/xapp195.pdf.

[5] K. Goto and R. A. van de Geijn. On Reducing TLB
Misses in Matrix Multiplication. In FLAME Working
Notes #9, Technical Report TR-2002-55. The
University of Texas at Austin, Department of
Computer Sciences, November 2002.

[6] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna.
Analysis of High-performance Floating-point
Arithmetic on FPGAs. In Proceedings of the 18th
International Parallel and Distributed Processing
Symposium (IPDPS’04), pages 149-156, April 2004.

[7] J. Gunnels, G. Henry, and R. van de Geijn.
High-Performance Matrix Multiplication Algorithms
for Architectures with Hierarchical Memories . In
FLAME Working Notes #4, Technical Report
TR-2001-22. The University of Texas at Austin,
Department of Computer Sciences, June 2001.

[8] J. Jang, S. Choi, and V. K. Prasanna. Area and Time
Efficient Implementations of Matrix Multiplication on
FPGAs. In Proceedings of the IEEE International
Conference on Field-Programmable Technology (FPT
2002), pages 93-100, December 2002.

[9] J. Jang, S. Choi, and V. K. Prasanna.
Energy-Efficient Matrix Multiplication on FPGAs. In
Proceedings of the 12th International Workshop on

[12]

[13]

[14]

[15]

Field Programmable Logic and Application (FPL
2002), pages 534-544. LNCS 2438, August 2002.

G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis.
Visual data rectangular memory. In Proceedings of the
10th International Euro-Par Conference (Euro-Par
2004), pages 760-767, September 2004.

J. Liang, R. Tessier, and O. Mencer. Floating Point
Unit Generation and Evaluation for FPGAs. In
Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing machines
(FCCM 2003), pages 185-194, April 2003.

G. Lienhart, A. Kugel, and R. Manner. Using
Floating-Point Arithmetic on FPGAs to Accelerate
Scientific N-Body Simulations. In Proceedings of the
IEEE Symposium on Field-Programmable Custom
Computing machines (FCCM 2002), pages 182-191,
April 2002.

W. B. Ligon III, S. McMillan, G. Monn,

K. Schoonover, F. Stivers, and K. D. Underwood. A
Re-evaluation of the Practicality of Floating-Point
Operations on FPGAs. In Proceedings of the IEEE
Sympostum on Field-Programmable Custom
Computing machines (FCCM 1998), pages 206-215,
April 1998.

E. Roesler and B. Nelson. Novel Optimizations for
Hardware Floating-Point Units in a Modern FPGA
Architecture. In Proceedings of the 12th International
Workshop on Field Programmable Logic and
Application (FPL 2002), pages 637-646. LNCS 2438,
August 2002.

M. S. Schmookler and K. J. Nowka. Leading Zero
Anticipation and Detection — A Comparison of
Methods. In Proceedings of the 15th IEEE Symposium
on Computer Arithmetic, pages 7-16, June 2001.

(16]

(17]

(18]

(19]

20]

(21]

(22]

R. Scrofano, S. Choi, and V. K. Prasanna. Energy
Efficiency of FPGAs and Programmable Processors
for Matrix Multiplication. In Proceedings of the IEEE
International Conference on Field-Programmable
Technology (FPT 2002), pages 422—425, December
2002.

N. Shirazi, P. Y. Cheung, A. A. Gaffar, and W. Luk.
Customising Floating- Point Designs. In Proceedings
of the IEEE Symposium on Field-Programmable
Custom Computing machines (FCCM 2002), pages
315-317, April 2002.

K. D. Underwood. FPGA vs. CPUs: Trends in Peak
Floating-Point Performance. In Proceedings of the
ACM International Symposium on Field
Programmable Gate Arrays (FPGA 2004), pages
171-180, February 2004.

K. D. Underwood and K. S. Hemmert. Closing the
gap: CPU and FPGA Trends in sustainable
floating-point BLAS performance. In Proceedings of
the IEEE Symposium on Field-Programmable Custom
Computing machines (FCCM 2004), April 2004.

R. A. van de Geijnv and J. Watts. SUMMA: Scalable
Universal Matrix Multiplication Algorithm. In
LAPACK Working Note 99, technical report,
University of Tennessee , 1995.

S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels,
G. Kuzmanov, and E. M. Panainte. The Molen
Polymorphic Processor. IEEE Transactions on
Computers, 53(11):1363-1375, November 2004.

L. Zhuo and V. K. Prasanna. Scalable and Modular
Algorithms for Floating-Point Matrix Multiplication
on FPGAs. In Proceedings of the 18th International
Parallel and Distributed Processing Symposium
(IPDPS’04), pages 94-103, April 2004.

