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Abstract

With the advent of real-time dense scene reconstruction from handheld cameras, one

key aspect to enable robust operation is the ability to relocalise in a previously mapped

environment or after loss of measurement. Tasks such as operating on a workspace,

where moving objects and occlusions are likely, require a recovery competence in or-

der to be useful. For RGBD cameras, this must also include the ability to relocalise in

areas with reduced visual texture. This paper describes a method for relocalisation of

a freely moving RGBD camera in small workspaces. The approach combines both 2D

image and 3D depth information to estimate the full 6D camera pose. The method uses

a general regression over a set of synthetic views distributed throughout an informed es-

timate of possible camera viewpoints. The resulting relocalisation is accurate and works

faster than framerate and the system’s performance is demonstrated through a compari-

son against visual and geometric feature matching relocalisation techniques on sequences

with moving objects and minimal texture.

1 Introduction

The ability to build 3D maps of a small environment is useful for a number of tasks beyond

visualisation, e.g. mobile computing, robotic planning and cognitive assistance. These types

of located maps can represent a workspace where some action or observation needs to occur.

For a robot explorer, a small area of operation can be as simple as a neighbourhood around a

door that needs to be opened; for an augmented reality system, the map provides a reference

for anchoring annotations; and, for a cognitive assistant operating in, for example, a kitchen

environment, it can help to prime regions to locate objects to guide the completion of a task.

Maps of this kind can nowadays be built in real-time with commodity hardware using

single cameras [11, 15] or RGBD sensors [9, 14]. This real-time aspect brings further possi-

bilities and constraints to the way in which these maps can be used.

While most of the work in this area has been concerned with the estimation of structure,

one key aspect to enable useful operation is the ability to relocalise from the moment the

system shows up in the environment or after loss of measurement. Furthermore, realistic

environments such as a workspace where moving objects and occlusions are likely, require

a recovery competence able to tolerate these changes.
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In the case of a system using 2D images as input, local image descriptors have been used

for real-time relocalisation, e.g. [3, 19]. However, these methods rely on the scene having

enough well-textured regions, which limits the areas of operation. RGBD cameras allow

operation in non-textured areas and under other challenging conditions as more information

per image location is available, as well as the output being less prone to be affected by

shadows, uniformly coloured areas or motion blur due to the faster sampling rate on the

depth channel.

This paper considers the evaluation of methods for relocalisation specifically for RGBD

cameras and tested in small workspace scenes that have moving objects and/or minimal tex-

ture. Two existing local feature-based methods are considered and a new method proposed

that uses synthetically generated views within a regression framework and that is capable of

estimating 6D camera pose at framerate. We also show some results of novelty detection

of objects that were not in the original map and some results towards the goal of constant

relocalisation as an alternative to conventional camera tracking.

The remainder of the paper takes the following layout. Section 2 introduces the relocali-

sation problem and the related work in this area. Section 3 introduces the datasets that we use

for evaluating the relocalisation methods. Section 4 describes the new relocalisation method

and its practical implementation details. Section 5 contains the comparison of the method

against existing approaches and additional motivating examples. We conclude in Section 6

with a summary of the work.

2 Relocalisation Problem

In the context of RGBD cameras, relocalisation is the problem of determining the 6D pose

of the camera with respect to an existing model of the environment, without any prior in-

formation about the pose in recent frames. This type of situation occurs when, for example,

the camera loses measurements, perhaps due to a prolonged period of occlusion or erratic

motion, or because it has exited and subsequently reappeared in the mapped region of the

environment.

There are several key characteristics of relocalisation methods to consider: (i) speed to

enable relocalisation during normal motion; (ii) accuracy to enable tracking to converge and

resume successfully, or alternatively, to allow the use of constant relocalisation in place of

conventional tracking; (iii) scalability to be able to handle a suitable size of map and range

of viewpoints; and (iv) robustness to changes in the map, such as occlusion and dynamic

objects, and to challenging environments, such as areas with limited texture or repeated

geometric structure.

State of the art mapping methods are now able to construct dense textured models of

environments. Some representations for these models include overlapping keyframes [15],

surfel clouds [9], volumetric signed distance functions [14], and textured occupancy grids

[12]. These representations are all capable of generating 3D RGB point clouds, or synthesis-

ing novel RGBD views over a wide range of viewpoints by projecting the underlying model

into a virtual camera. This opens the possibility of using existing relocalisation and pose

estimation algorithms from the point cloud and monocular camera literature.

Local feature methods rely on distinctive geometric [16] or visual [2, 6, 19] features

extracted from the map, which can be repeatably matched to features extracted from the

current camera view of the world. Typically, RANSAC [8] pose estimation is then used to

robustly handle outliers and noise and compute an optimised pose. However, detection and
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(a) (b) (c) (d)

Figure 1: The four different maps in the dataset: (a) copier; (b) desktop; (c) basins; (d)

bottles. Red arrows indicate the sampled poses of synthetic views used for relocalisation.

The number of samples is m = 1000.

extraction of features can often be a relatively slow process. There can also be additional

problems in practice, due to the difficulties of matching geometric features extracted from a

3D map to those from a 2.5D point cloud offered by the sensor, and also due to the sensitivity

to viewpoint changes of visual features extracted on non-planar surfaces, though this can be

mitigated to some extent by using synthetic views [10].

In contrast, view-based methods construct descriptors for different views of the map and

match these to the current camera view. One simple but effective approach uses NCC match-

ing of small, blurry 2D keyframe images and chooses the nearest neighbour to the current

view as the estimated pose [11]. Another related approach uses color and orientation data to

interpolate pose between densely sampled views [7]. Similarly, view-dependent geometric

descriptors, such as VFH [17], can be generated from real and synthetic depth images and

used in the same way. Yet another approach is particle filter estimation of pose using online

synthesis of views from the map [12]. Typically, the comparison of views is relatively fast

in these methods, but online view synthesis can be slow, particularly if graphics hardware

is unavailable or if the underlying map representation is complex. This can pose difficulties

when deciding which views to store or synthesise. Additionally, estimated pose accuracy is

strongly related to the density and coverage of views, and occlusions and moving objects can

make matching much more challenging.

We begin by introducing the textured occupancy grid datasets that we use to evaluate

the relocalisation methods. Then, in the following sections, we present a new view-based

method that estimates camera pose from a set of synthetic views. In contrast to related

methods, such as [7, 11, 12], this method uses synthetic RGBD images to estimate full 6D

pose at framerate using a regression framework.

3 Datasets

An RGBD SLAM system [5] was used to generate datasets for testing. The SLAM method

is an extension of the quadrifocal visual odometry system proposed by Comport et al. [4],

which minimises intensity and depth information to perform dense spatial matching between

pairs of RGBD images. A textured occupancy grid representation of the scene at a resolu-

tion of 1cm is then generated by fusing depth and intensity images from multiple frames.

However, the choice of SLAM system is not critical and other methods capable of rendering

synthetic views, such as KinectFusion [14], could be used instead.

We created separate maps and test sequences in four different environments, which we

describe as copier, desktop, basins and bottles. An Asus Xtion Pro Live RGBD camera
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was used as our sensor and the constructed maps are shown in Fig. 1. Each environment

was chosen for its challenging conditions: the copier sequence includes dynamic elements,

such as the opening of a paper tray, coarse geometric structure and low visual texture; the

desktop sequence includes novel viewpoints that were not visited during the mapping phase,

such as full rotation around the optic axis; the basins sequence contains occlusions during

hand washing, repetitive geometric structure and low visual texture; and the bottles sequence

involves the introduction of new objects and occlusions during a labelling and packing task.

Ground truth for the datasets was generated by running the RGBD SLAM system on

the test sequences in tracking mode, i.e. without updating the existing map. This provided

an estimated camera trajectory which can be compared against the poses estimated by the

relocalisation methods. Frames where tracking failed were removed from the ground truth

set. Relocalised position error is defined as the Euclidean distance between the ground truth

and relocalised camera position, and relocalised orientation error as the minimum rotation

angle between the ground truth and relocalised camera orientation quaternions.

The datasets also contain keyframes along the trajectory of the camera, captured during

the mapping process, with a minimum distance criterion of 10◦ and 5.0cm to control their

spacing. The poses of these keyframes are used to assist the sampling of the synthetic views

used by our view-based relocalisation method. Additionally, the image content of these

keyframes was used to extract the visual features used by the feature-based relocalisation

method described in Section 5.

4 Regression over Synthetic Views

The relocalisation problem can be formulated as a minimisation problem, where the goal is

to find the set of camera pose parameters x = [t, ln(q)] ∈ SE3, that minimises the distance

measure

x = argmin
x̂
‖I0− I(x̂,M)‖, (1)

where t is a 3D position vector, q is a quaternion representing rotation, I(x̂,M) is the syn-

thetic view generated from the mapM at pose x̂, and I0 is the true RGBD image from the

camera. The j-th RGBD image I j = [u j,v j,ρ j,c j] is composed of n pixels, where [u ji,v ji]
are the image coordinates, ρ ji is the depth value, and c ji is the colour of the i-th pixel. For

our purposes it is sufficient to store grey intensity values in c, since this avoids some prob-

lems caused by colour changes under different lighting and reduces the dimensionality of the

problem without losing too much information about the appearance of the scene.

We treat the estimation of x in Eq. 1 as a general regression problem over a set of m

synthetic views I j and their poses x j, for j = 1 . . .m. Using the Nadaraya-Watson estimator

[13, 18], we can approximate the camera pose x̃ from the set of synthetic views as

x̃ =
∑

m
j=1 x jK(‖I0− I j‖/h)

∑
m
j=1 K(‖I0− I j‖/h)

, (2)

where K is a kernel function centred on each sample with bandwidth h. In this case, we opt

for a Gaussian kernel, such that

x̃ =
∑

m
j=1 x jd j

∑
m
j=1 d j

, (3)
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d j = exp

(

−
1

nα

n

∑
i=1

(

(c0i− c ji)
2

σ2
ci

+
(ρ0i−ρ ji)

2

σ2
ρi

))

, (4)

where σc and σρ are vectors of standard deviations in the intensity and depth computed per

pixel over all of the sample views I j, for j = 1 . . .m, and α is a scaling factor that controls the

smoothness of the regression. The estimate x̃ is therefore a normalised weighted sum, where

the contribution of each sample view is determined by the normalised Euclidean distance

between the sample view and the current camera view.

4.1 Synthetic View Sampling

One of the key differences between our work and previous relocalisation systems is that,

enabled by the recovered 3D map, we can generate novel synthetic views that have not been

visited by the system during mapping and that are considered likely poses where relocal-

isation will be needed. This enhances the power of the sampling used by the regression

framework but introduces the issue of knowing which views should be generated and how.

Synthetic views are generated by raycasting from a virtual camera into the textured oc-

cupancy grid map. The raycasting method finds the depth for each pixel by searching for the

maximum occupancy probability value along the ray. Linear interpolation along the ray di-

rection provides sub-voxel accuracy. Intensity values are read directly from the voxel and are

not interpolated. However, every synthetic view image is normalised for intensity according

to

c ji←
c ji− c̄ j

σc j

, (5)

where c̄ j is the mean intensity and σc j
is the standard deviation of intensities in the j-th

image. Generation of synthetic views can be relatively slow, taking ∼ 30ms per view on a

2.66GHz Intel Core2 CPU. But, importantly for our case, the synthetic views can be gen-

erated in advance and offline or even, though not done here, generated on a GPU. Except

where specifically noted, we have used a resolution of 80×60 pixels in this paper.

The selection of sample poses for the synthetic views is an important part of the relo-

calisation algorithm and could be optimised according to the expected camera motion and

required accuracy. The computational and memory costs increase linearly with the number

of sampled views, so the correct balance needs to be found between densely sampling every

possible pose around the map and selectively choosing poses in the most likely areas.

Here we have adopted the approach of randomly sampling poses around the keyframe

poses captured along the mapping trajectory (c.f. Section 3), but it would be equally simple

to apply the same approach to any other appropriate trajectory. For each of the m sampled

synthetic views, a keyframe pose is randomly selected and a random Gaussian perturbation

with 10◦ and 5.0cm standard deviation is applied. Synthetic views are resampled if fewer

than 50% of the pixels intersect with the map. During the sampling process, the statistics for

σc and σρ , required by the regression algorithm, are also calculated and stored.

The discussion of sampling strategy underlines the importance of covering enough of

the operational environment, but also implicitly questions the use of a more invariant than

needed approach, such as using generic local feature descriptors. Note that it is possible for

relocalisation to initialize a tracker to explore new areas and, if needed, it is trivial to extend

the set of synthetic views used for regression at run time.
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Figure 2: Effect of smoothing factor α and number of samples on relocalised pose error. An

α value of ‘N’ indicates nearest neighbour matching of the current view to the synthetic view

samples. Whiskers represent 5th and 95th percentile. Results are from the copier dataset.

Figure 1 shows example sampled poses with a sample count of m = 1000. Our approach

of sampling around keyframes provides efficient coverage of the most likely viewpoints. For

example, the bottles dataset was captured with a wearable camera and both the mapping and

test sequence trajectories have minimal translational motion characteristic of a real assembly

task on a workbench. This results in a tight distribution of sample poses on this map.

4.2 Parameter Selection

Smoothing Factor and Sample Size An advantage of the regression method is that only

the smoothing factor α needs tuning. Figure 2 shows relocalisation error results for different

values of α and numbers of samples m on a subset of the copier dataset. Increasing the den-

sity of samples improves accuracy (∼ 20−30% improvement in median accuracy for 1000

samples versus 10 samples), and increasing smoothing is more effective when the number of

samples is low and regression can bridge the gaps in the sampling space (∼ 10% improve-

ment in median accuracy versus nearest neighbour for α = 0.5 at m = 10 samples). We have

chosen to use α = 0.1 and m = 1000 samples for the rest of this paper.

Resolution and Computational Cost Figure 3 (top row) shows the effect of resolution

on relocalisation error. Although we use a resolution of 80× 60 for our other results, there

appears to be considerable scope to reduce resolution without significantly affecting accu-

racy. At a resolution of 80×60, each distance measurement between the current view and a

sampled synthetic view takes ∼ 60µs, enabling regression over 1000 samples in 60ms on a

2.66GHz Intel Core2 CPU. Reducing the resolution to 20×15 reduces these timings an or-

der of magnitude to ∼ 4µs and 4ms respectively, and also reduces the memory footprint for

their storage substantially by about 94%. This potentially enables more samples to be stored

and tested or the algorithm to be run on mobile platforms with lower computing power.

Effect of Fusion We have also tested the efficacy of the fusion of depth and intensity infor-

mation in the distance measure defined in Eq. 4. Figure 3 (bottom row) shows relocalisation

error results for the system using depth-only, intensity-only and fused distance measures.

The fused distance measure provides a small improvement in median pose accuracy but sig-

nificantly reduces the spread in the position error results. Note that the intensity-only results

are also good enough to suggest that the synthetic views with regression could be used for

relocalisation of monocular cameras observing the same map.
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Figure 3: Effect of (top row) resolution and (bottom row) depth and intensity fusion on

relocalised pose error. Whiskers represent 5th and 95th percentile. Results are from the

copier dataset.

5 Experiments and Results

5.1 Comparison with Feature-based Methods

The performance of the proposed relocalisation method has been evaluated by comparison

against visual and geometric feature-based relocalisation methods on the datasets described

in Section 3. We selected SURF [1] and FPFH [16] as descriptors because their publicly

available implementations and performance make them good choices for a relocalisation

system. We also compare against a naive use of the synthetic views, using the nearest neigh-

bour to the input image.

The SURF relocalisation method uses the OpenCV 2.3.1 library implementation to find

matches between the features extracted from the stored keyframes (c.f. Section 3) and the

current view. Since the RGBD images provide depth information for both the stored keyframes

and the current view, the RANSAC PnP algorithm can be used to estimate the relocalised 3D

pose. We use a Fast Hessian threshold of 600 and run 100 RANSAC iterations with a max-

imum correspondence distance of 8 pixels. We extract features from images at a resolution

of 640×480 pixels, obtaining up to 500 features per image, and use a k-d tree for approxi-

mate nearest neighbour feature matching. Visual descriptors like SURF are likely to struggle

in minimal texture environments, but 2D descriptors are often used for relocalisation in 6D

visual SLAM and thus worth including in our comparison.

A perhaps more suitable feature for RGBD cameras are 3D geometric feature descriptors.

The FPFH relocalisation method uses the PCL 1.5 library implementation and SAC-IA [16]

pose estimation (without ICP refinement). The FPFH features are extracted from point cloud

models of the maps (generated from the textured occupancy grids by aligning synthetically

generated views of the map and downsampling on a 0.05m voxel grid). These can then be

matched to the FPFH features extracted from the current RGBD image point cloud (which

is downsampled to the same voxel grid resolution). We use a normal radius of 0.15m and

an FPFH radius of 0.3m and run 100 SAC-IA iterations with a minimum sample distance of
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Figure 4: Ground truth error comparisons. ‘Nearest’ denotes nearest neighbour matching of

current view to synthetic view samples. ‘Regression + Opt.’ denotes results after optimisa-

tion from regression pose estimate. Whiskers represent 5th and 95th percentile.

FPFH SURF Regression (80×60) Regression (20×15)

∼ 620ms ∼ 255ms 60ms 4ms

Table 1: Approximate timings. SURF includes 180ms feature extraction, 15ms matching

and 60ms RANSAC PnP pose estimation. FPFH includes 120ms downsampling and feature

extraction, and 500ms SAC-IA pose estimation. Regression timings are for 1000 synthetic

views without optimisation (10 optimisation iterations take 20ms).

0.35m and maximum correspondence distance of 0.1m. We extract FPFH features for every

point in the downsampled cloud, obtaining up to 500 features per view.

The relocalisation error results of the comparison are presented in Fig. 4. The regression

method performs consistently across the datasets. Initial accuracy is generally less than the

best feature-based method, but running 10 iterations of the RGBD tracking optimisation (c.f.

Section 3, [5]) causes convergence of the pose towards ground-truth and still at a fraction of

the time demanded by SURF. This demonstrates that the synthetic view pose estimates are

sufficiently accurate to resume tracking quickly. Typical timings obtained for the different

methods are shown in Table 1.

Figure 5 shows common success and failure modes. The most common failure mode

of the regression system occurs when the camera moves to a viewpoint outside of the set

of synthetic view samples (e). Occlusion also sometimes causes problems (f). The SURF

method performs worst in the low-texture basins dataset (g), and the FPFH method performs

worst in the low-geometry copier dataset (h). All methods struggle with the structural ambi-

guity in the basins dataset (i). The FPFH and SURF results also exhibit varying performance

due to the inherent randomness of the RANSAC estimation process. Increasing the number

of RANSAC iterations reduces this to some extent, but further increases the computational

requirements.

5.2 Constant Relocalisation for Segmentation

The speed and quality of the pose estimation using the synthetic views relocalisation method

enables the possibility of using constant relocalisation as an alternative to conventional track-

ing of the camera. Wearable cameras often experience occlusions and erratic motion that

cause tracking systems to fail, and a constant relocalisation approach avoids continuous

switching between relocalisation and tracking. This could be particularly beneficial in appli-
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Figure 5: Selected examples: (a)-(d) successful relocalisation; (e)-(i) failure cases. See main

text for details. Images show ground-truth camera view and synthetic views generated from

relocalised poses. Videos of full sequences available from this paper’s entry at www.cs.

bris.ac.uk/Publications.

Figure 6: Segmentation using constant relocalisation pose estimation. Video of segmentation

results available from this paper’s entry at www.cs.bris.ac.uk/Publications.

cations such as workspace assistance, where dense tracking can be used to quickly segment

objects from the background map, enabling efficient object detection and task monitoring.

Figure 6 shows an example of segmentation performed using our relocalisation method

from a wearable camera on the bottles sequence using 20× 15 pixels resolution views and

without any further pose optimisation. The segmentation detects foreground pixels using a

weighted distance measure on each pixel.

di = τ((1−λ )(ci− ĉi)+λ (ρi− ρ̂i), (6)

where τ(r) indicates Tukey’s robust M-estimator function, λ is a weighting parameter,

(ci,ρi) are the intensity and depth of the ith pixel in the current camera image, and (ĉi, ρ̂i)
are the equivalent pixel values in the synthetic view at the relocalised camera pose. Seg-

mentation results are fairly good, though some noise occurs around depth discontinuities.

Challenging cases include small objects, due to image resolution, and planar objects, which

rely purely on intensity difference for segmentation, e.g. the box lid in frame 2400.

www.cs.bris.ac.uk/Publications
www.cs.bris.ac.uk/Publications
www.cs.bris.ac.uk/Publications
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6 Conclusions

The paper presents a system for 6D RGBD relocalisation at framerate using regression over

a set of synthetic views generated from an informed estimate of possible camera viewpoints.

The method is fast and accurate and copes with small changes to the environment and low

texture workspaces. The performance of the system was demonstrated by comparison to

visual and geometric feature matching relocalisation techniques on four test sequences in-

cluding occlusions and moving objects. The speed and accuracy of the method enabled us to

demonstrate it for the task of replacing camera tracking with constant relocalisation and use

the pose for segmenting objects online.
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