
6D SLAM—3D Mapping

Outdoor Environments

Andreas Nüchter,

Kai Lingemann, and Joachim Hertzberg

Institute of Computer Science
University of Osnabrück
D-49069 Osnabrück, Germany
e-mail: �nuechter�lingemann�hertzberg�

@informatik.uni-osnabrueck.de

Hartmut Surmann

Fraunhofer Institute IAIS
Schloss Birlinghoven
D-53754 Sankt Augustin, Germany
e-mail: hartmut.surmann@iais.fraunhofer.de

Received 21 December 2006; accepted 3 July 2007

6D SLAM �simultaneous localization and mapping� or 6D concurrent localization and
mapping of mobile robots considers six dimensions for the robot pose, namely, the x, y,
and z coordinates and the roll, yaw, and pitch angles. Robot motion and localization on
natural surfaces, e.g., driving outdoor with a mobile robot, must regard these degrees of
freedom. This paper presents a robotic mapping method based on locally consistent 3D
laser range scans. Iterative Closest Point scan matching, combined with a heuristic for
closed loop detection and a global relaxation method, results in a highly precise mapping
system. A new strategy for fast data association, cached kd-tree search, leads to feasible
computing times. With no ground-truth data available for outdoor environments, point
relations in maps are compared to numerical relations in uncalibrated aerial images in
order to assess the metric validity of the resulting 3D maps. © 2007 Wiley Periodicals, Inc.

1. INTRODUCTION

Automatic environment sensing and modeling is a

fundamental scientific issue in robotics, since the

availability of maps is essential for many robot tasks.

Manual mapping of environments is a hard and te-

dious job: Thrun reports a time of about one week of

hard work for creating a map of the museum in Bonn

for the robot RHINO �Thrun, 1998�. In particular, mo-

bile systems with 3D laser scanners that automati-

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Journal of Field Robotics 24(8/9), 699–722 (2007) © 2007 Wiley Periodicals, Inc.
Published online in Wiley InterScience (www.interscience.wiley.com). • DOI: 10.1002/rob.20209



cally perform multiple steps such as scanning, gag-
ing, and autonomous driving have the potential to
greatly improve mapping.

Reliable 3D robotic mapping has an evident im-
pact on safety, security, and rescue robotics. It enables
rescue robots to build maps, which can be used by
rescue workers to recover victims and precisely locate
potential threats. As another example application, we
showed in an earlier work the mapping of abandoned
underground mines. Serious threats emanate from
abandoned mines, such as structural shifts, which can
cause the surface above to collapse, and ground water
contamination �Nüchter, Surmann, Lingemann,
Hertzberg & Thrun, 2004�. Other applications also
benefit from automatic and precise 3D environment
modeling, e.g., industrial automation, architecture,
agriculture, the construction or maintenance of tun-
nels, and factory design, facility management, urban
and regional planning.

The robotic mapping problem is that of acquiring
a spatial model of a robot’s environment. If the robot
poses were known, the local sensor inputs of the ro-
bot, i.e., local maps, could be registered into a com-
mon coordinate system to create a map. Unfortu-
nately, any mobile robot’s self-localization suffers
from imprecision. Therefore, the structure of the local
maps, e.g., of single scans, needs to be used to create
a precise global map. Finally, robot poses in natural
outdoor environments involve yaw, pitch, roll angles,
and elevation, turning pose estimation as well as scan
registration into a problem in six mathematical di-
mensions.

This paper proposes algorithms that allow us to
digitize large environments and solve the 6D SLAM

problem. In previous works we already presented
our core 6D SLAM algorithm with global relaxation
�Surmann, Nüchter & Hertzberg 2003; Surmann,
Nüchter, Lingermann & Hertzberg, 2004� and loop
closing �Surmann et al., 2004�. This paper’s contribu-
tion is threefold: First, we present an octree-based
matching heuristic that allows us to match scans with
rudimentary starting guesses and detect closed loops.
Second, we present a novel search procedure, namely
cached kd-trees, exploiting iterative behavior of the
ICP algorithm. It results in a significant speed-up. Fi-
nally, the paper summarizes our previous work on
3D mapping and gives a complete view of our algo-
rithms.

The paper is organized as follows: Section 2 de-
scribes related work. Then we introduce our solution
to the 6D SLAM problem. Section 4 describes our
strategies to render the algorithms computationally
feasible. Section 5 presents a brief description of the
used hardware, experiment, and results. Finally, Sec-
tion 6 concludes.

2. RELATED WORK

One way to categorize mapping algorithms is by the
map type. In general, the map can either be topologi-
cal or metrical. Metrical maps represent explicit dis-
tances of the environment. These maps can either be
2D, usually an upright projection, or 3D, i.e., a volu-
metric environment map. Furthermore, SLAM ap-
proaches can be classified by the number of degrees
of freedom of the robot pose. A 3D pose estimate con-
tains the �x ,y�-coordinate and a rotation �, whereas a

Table I. Overview of the dimensionality of SLAM approaches. Bold: 2D maps. Not bold: 3D maps.

Sensor
data

Dimensionality of pose representation

3D 6D

Planar 2D mapping Slice-wise 6D SLAM
2D 2D mapping of planar sonar and

laser scans. See �Thrun 2002� for
an overview

3D mapping using a precise localiza-
tion, considering the x ,y ,z-position
and the roll yaw and pitch angle.

Planar 3D mapping Full 6D SLAM
3D 3D mapping using a planar localiza-

tion method and, e.g., an upward
looking laser scanner or 3D scanner.

3D mapping using 3D laser scan-
ners or �stereo� cameras with pose

estimates calculated from the sensor
data.

700 • Journal of Field Robotics—2007

Journal of Field Robotics DOI 10.1002/rob



6D pose estimate considers all degrees of freedom
a rigid mobile robot can have, i.e., the
�x ,y ,z�-coordinate and the roll, yaw, and pitch angles.

Three-dimensional maps can be generated by
three different techniques: First, a planar localization
method combined with a 3D sensor; second, a precise
6D pose estimate combined with a 2D sensor; and
third, a 3D sensor with a 6D localization method.
Table I summarizes these mapping techniques in
comparison with planar 2D mapping. In this paper
we focus on 3D data and 6D localization, hence, on
6D SLAM.

2.1. Planar 2D Mapping

The state of the art for planar metric maps are proba-
bilistic methods, where the robot has probabilistic
motion models and uncertain perception models. By
integrating these two distributions with, e.g., a Kal-
man or particle filter, it is possible to localize the
robot �Smith, Self & Cheesemen, 1986; Leonard &
Durrant-Whyte, 1991�. Mapping is often an exten-
sion to this estimation problem. Beside the robot
pose, positions or landmarks are estimated. Closed
loops, i.e., a second encounter of a previously visited
area of the environment, play a special role here.
Once detected, they enable the algorithms to bound
the error by deforming the already mapped area
such that a topologically consistent model is created.
However, there is no guarantee for a correct model.
Several strategies exist for solving SLAM. Thrun re-
views �Thrun, 2002� existing techniques, i.e., maxi-
mum likelihood estimation �Frese & Hirzinger, 2001;
Folkesson & Christensen, 2003�, expectation maximi-
zation �Thrun, Burgard & Fox, 1997�, extended Kal-
man filter �Dissanayake, Newman, Clark, Currant-
Whyte & Csorba, 2001� or �sparse extended�
information filter �Thrun et al., 2004�. In addition to
these methods, FastSLAM �Thrun, Fox & Burgard,
2000�, that approximates the posterior probabilities,
i.e., robot poses, by particles, and the method of Lu/
Milios on the basis of IDC scan matching �Lu & Mil-
ios, 1997�, play an important role in 2D.

In principle, the probabilistic methods from pla-
nar 2D mapping are extendable to 3D mapping with
6D pose estimates �Weingarten & Siegwart, 2005�.
However, to our knowledge no reliable feature ex-
traction nor a strategy for reducing the computa-
tional costs of multi-hypothesis tracking, e.g.,
FastSLAM, that grows exponentially with the de-

grees of freedom, has been published. The qualita-
tive shift in the complexity is due to the necessity to
draw samples in each dimension.

2.2. 3D Mapping

Planar 3D Mapping. Instead of using 3D scanners,
which yield consistent 3D scans in the first place,
some groups have attempted to build 3D volumetric
representations of environments with 2D laser range
finders. Thrun et al. �2000�, Früh & Zakhor �2001�
and Zhao & Shibasaki �2001� use two 2D laser scan-
ners for acquiring 3D data. One scanner is mounted
horizontally, the other vertically. The latter one grabs
a vertical scan line which is transformed into 3D
points based on the current 3D robot pose. Since the
vertical scanner is not able to scan sides of objects,
Zhao & Shibasaki �2001� use two additional, verti-
cally mounted 2D scanners, shifted by 45° to reduce
occlusions. The horizontal scanner is used to com-
pute the 3D robot pose. The precision of 3D data
points depends, besides on the precision of the scan-
ner, critically on that pose estimation.

Recently, different groups employ rotating SICK
scanners for acquiring 3D data �Kohlhepp, Walther
& Steinhaus, 2003; Wulf, Arros, Christensen & Wag-
ner, 2004�. Wulf et al. �2004� let the scanner rotate
around the vertical axis. They acquire 3D data while
moving, thus the quality of the resulting map cru-
cially depends on the pose estimate that is given by
inertial sensors, i.e., gyros. In addition, their SLAM
algorithms do not consider all six degrees of free-
dom.
Slice-wise 6D SLAM. Local 3D maps built by 2D laser
scanners and 6D pose estimates are often used for
mobile robot navigation. A well-known example is
the grand challenge, where the Stanford racing team
used this technique for high speed terrain classifica-
tion �Thrun, Montemerlo & Aron, 2006�.

Similar to the planar 3D mapping case, the accu-
racy of the resulting 3D map depends on the robot’s
pose estimate. This cannot be accomplished with in-
expensive sensors.
Full 6D SLAM. A few other groups use highly accu-
rate, expensive 3D laser scanners �Allen, Stamos,
Gueorguiev, Gold & Blaer, 2001; Georgiev & Allen,
2004; Sequeira, Ng, Wolfart, Goncalves & Hogg,
1999�. The RESOLV project aimed at modeling inte-
riors for virtual reality and tele-presence �Sequeira et
al., 1999�. They used a RIEGL laser range finder on
robots and the ICP algorithm for scan matching �Besl

Nüchter et al.: 6D SLAM—3D Mapping Outdoor Environments • 701

Journal of Field Robotics DOI 10.1002/rob



& McKay, 1992�. The AVENUE project develops a
robot for modeling urban environments �Allen et al.,
2001�, using a CYRAX scanner and a feature-based
scan matching approach for registering the 3D scans.
However, in their recent work they do not use data
of the laser scanner in the robot control architecture
for localization �Georgiev & Allen, 2004�. Hebert’s
group has reconstructed environments using the
Zoller+Fröhlich laser scanner and aims to build 3D
models without initial position estimates, i.e., with-
out odometry information �Hebert, Deans, Huber,
Nabbe & Vandapel, 2001�. Recently, Magnusson and
Duckett proposed a 3D scan alignment method that,
in contrast to the previously mentioned research
groups, does not use the ICP algorithm, but the nor-
mal distribution transform instead �Magnusson &
Ducket, 2005�.
Other Approaches. Other approaches use information
from CCD-cameras that provide a view of the ro-
bot’s environment �Biber, Andreasson, Duckett &
Schilling, 2004; Se, Lowe & Little, 2001�. Neverthe-
less, cameras are difficult to use in natural environ-
ments with changing light conditions. Camera-based
approaches to 3D robot vision, e.g., stereo cameras
and structure from motion, have difficulties provid-
ing reliable navigation and mapping information for
a mobile robot in real-time. Thus, some groups try to
solve 3D modeling by using planar scanner based
SLAM methods and cameras, e.g., in Biber et al.
�2004�.

3. RANGE IMAGE REGISTRATION AND ROBOT
RELOCALIZATION

Multiple 3D scans taken from different poses are nec-
essary to digitalize environments without occlusions.
To create a correct and consistent model, the scans
have to be registered in one common coordinate sys-
tem. If the robot carrying the 3D scanner were pre-
cisely localized, the registration could be done based
directly on the robot pose. However, due to the im-

precise robot sensors, self-localization is erroneous,
so the geometric structure of overlapping 3D scans
has to be considered for registration. As a by-product,
successful registration of 3D scans relocalizes the ro-
bot in 6D by providing the transformation to be ap-
plied to the robot pose estimation at the recent scan
point. In this manner, localization and scan registra-
tion, i.e., mapping, are intertwined.

Our solution to the 6D SLAM problem is based
on scan registration. We consider a mobile robot re-
cording its odometry and scanning the environment
in a stop-scan-go fashion. The alignment of two scans
is done by the ICP algorithm �Besl & McKay, 1992�.
However, ICP alone is not sufficient for solving the
6D SLAM problem. The following extensions with re-
gards to flexibility and speed have been made to this
end:

1. Extrapolate the odometry to all six degrees of
freedom.

2. Calculate heuristic initial estimations for ICP
scan matching based on this extrapolation.

3. Register the 3D scans into a common coordi-
nate system using ICP.

4. If applicable, close the loop and distribute the
error.

5. After all scans are taken, refine the model by
global relaxation.

These extensions will be handled in the following
subsections. Our algorithm maintains a single 6D ro-
bot pose estimate. The extensions provide the basis
for reliable mapping, as shown in the result section.
Combining 3D ICP scan matching and 6D poses in a
multi-hypotheses approach is not computationally
feasible. The approach presented in this paper con-
centrates on single loops.

In our SLAM framework robot poses are repre-
sented in different contexts in one of three different
ways; namely, first; by an OPENGL-style 4�4 matrix,
with the robot position t= �x ,y ,z� and its orientations
given as the orthonormal matrix R�R

3

702 • Journal of Field Robotics—2007

Journal of Field Robotics DOI 10.1002/rob



or, second, the corresponding six-vector, consisting of
the position and of the Euler angles,

P = �x,y,z,�x,�y,�z� ,

or, third, as position and quaternion �see Section 3.4
for details�,

P = �t,q� with q = �q0,qx,qy,qz� .

Note the bold-italic �P, vectors� and bold �P, matrices�
notation. The conversion between the representa-
tions, i.e., Euler angles, matrix representations, and
quaternions, is done by standard algorithms �Matrix
FAQ, 1997�.

The reason for using different theoretically
equivalent representations, is that they have different
numerical problems, such as gimbal locks, in differ-

ent situations. In the context of odometry processing
we use Euler angles, for scan alignment, rendering is-
sues orthonormal matrices, and interpolation tasks
quaternions. Converting the representation is more
efficient than coping with the problems in one single
representation.

3.1. Odometry Extrapolation

Since nearly all mobile robots have an odometer to
measure traveled distances, our algorithm uses these
measurements to calculate a first pose estimation.
The odometry is extrapolated to six degrees of free-
dom using previous registration matrices. We are us-
ing a left-handed coordinate system, i.e., the y coor-
dinate represents elevation. Then the change of the
robot pose �P given the odometry information
�xn

odo ,zn
odo ,�y,n

odo�, �xn+1
odo ,zn+1

odo ,�y,n+1
odo �, and the registra-

tion matrix R��x,n ,�y,n ,�z,n�, is calculated by solving

Therefore, calculating �P
= ��xn+1 ,�yn+1 ,�zn+1 ,��x,n+1 ,��y,n+1 ,��z,n+1� re-
quires a matrix inversion. If n=1, R��x,n ,�y,n ,�z,n� is
set to the identity matrix. Finally, the 6D pose Pn+1 is
calculated by

Pn+1 = �P · Pn �1�

using the poses’ matrix representations. Thus, the
planar odometry is extrapolated in 6D to the
�x ,z�-plane defined by the last robot pose. Note that
the values for yn+1, �x,n+1, and �z,n+1 are usually not
equal 0, due to the matrix inversion.

3.2. Calculating Heuristic Initial Estimations for

ICP Scan Matching

We use the following heuristic to compute an initial

estimation for the following ICP scan matching. It

allows us to match scans with rudimentary starting

guesses, as given by odometry. The heuristic com-

putes octree representations from the last acquired

scan D �data set� and the previously acquired scans

M �model set� and aligns them. More precisely, the

following steps are executed:

1. Generate an octree DM for the nth 3D scan

�model set M�.

Nüchter et al.: 6D SLAM—3D Mapping Outdoor Environments • 703

Journal of Field Robotics DOI 10.1002/rob



2. Generate an octree DD for the �n+1�th 3D
scan �data set D�.

3. For each search depth d
� �o�sStart� , . . . ,o�sEnd�� in the octrees, based on
a function o�x� returning the depth within the
octree that corresponds to a given cube size x,
estimate a transformation �Pbest= �t ,R� as
follows, using the 0-vector as initial value of
�Pbest:

�a� Calculate a maximal displacement and
rotation �Pmax, depending on the search
depth d and currently best transforma-
tion �Pbest:

�Pmax = �dmax − d + 1�c + �Pbest,

for some constant displacement vector c.
�b� For all discrete 6-tuples �Pi

� �−�Pmax ,�Pmax� in the domain �P
= �x ,y ,z ,�x ,�y ,�z�, displace the octree DD

by �Pi ·�P ·Pn. Evaluate the matching of
the two octrees by counting the number
of overlapping cubes and save the best
transformation as �Pbest.

Note: Step 3�b� requires six nested loops, but the
computational requirements are bounded by the
coarse-to-fine strategy inherited from the octree pro-
cessing. The size of the octree cubes decreases expo-
nentially with increasing d. We start the algorithm
with a cube size of 75 cm3 and stop when the cube
size falls below 10 cm3. Using these values, d
� �1, . . . ,3� in our experiments. Figure 1 shows two
3D scans and the corresponding octrees. Further-
more, note that the heuristic works best outdoors.
Due to the diversity of the environment, the match
of octree cubes will show a significant maximum,

while indoor environments with their many geom-
etry symmetries and similarities, e.g., in a corridor,
are in danger of producing many plausible matches.

To summarize, we used the following constants:
sStart=75 cm, sEnd=10 cm, and c= �10,10,10,5 ,10,5�
for quantifying the search windows, such that �Pmax

decreases from iteration to iteration in each dimen-
sion by the corresponding entry of c. Finally, dmax is
the maximal depth of the tree. Informally spoken,
the algorithm generates cube representations of each
3D scan �cf., Fig. 1�. Then it searches for the optimal
displacement that results in the maximum overlap of
these cubes. In the next iteration the cube size is re-
duced, i.e., cube representations given by a deeper
level of the octree are utilized. Additionally, the size
of the search interval is reduced with ongoing search
depth/iteration.

After an initial starting guess is found, the range
image registration, as described in the following sec-
tion, proceeds with the robot pose estimation given
as

�2�

3.3. Scan Registration

The following method registers point sets into a
common coordinate system. It is called ICP algo-
rithm �Besl & McKay, 1992�. Given two indepen-

dently acquired sets of 3D points, M̂ and D̂, which
correspond to a single shape, we aim to find the
transformation consisting of a rotation R and a
translation t which minimizes the following cost
function:

Figure 1. Left: two 3D point clouds. Middle: octree corresponding to the black/front point cloud. Right: octree based on
the gray/back points.

704 • Journal of Field Robotics—2007

Journal of Field Robotics DOI 10.1002/rob



E�R,t� = �
i=1

�M̂�

�
j=1

�D̂�

wi,j	m̂i − �Rd̂j + t�	2. �3�

The weights wi,j are assigned 1 if the ith point of M
describes the same point in space as the jth point of
D. Otherwise, wi,j is 0. Two things have to be calcu-
lated: First, the corresponding points and, second,
the transformation �R ,t� that minimizes E�R ,t� on
the base of the corresponding points.

The ICP algorithm calculates iteratively the
point correspondences. In each iteration step, the al-
gorithm selects the closest points as correspondences
and calculates the transformation �R ,t� for minimiz-
ing Eq. �3�. In the last iteration step, the point corre-
spondences are assumed to be correct. Figure 11

shows three frames of the alignment process. Besl &
McKay �1992� prove that the method terminates in a
minimum. However, this theorem does not hold in
our case since we use a maximum tolerable distance
dmax for associating the scan data. Such a threshold is
required though, given that 3D scans overlap only
partially. Since the correct overlap is not known, us-
ing a threshold dmax resembles an estimation. Thus,
the number of matched points in the iterations is not
constant and Eq. �3� does not decrease monotoni-
cally.

In every iteration, the optimal transformation
�R ,t� has to be computed. Equation �3� is reduced to

E�R,t� �
1

N
�
i=1

N

	mi − �Rdf�mi�
+ t�	2, �4�

with N= �D�=�i=1
�M��j=1

�D� wi,j and D�D̂, M�M̂ such that
mi corresponds to df�mi�

. The correspondences are
stored in a vector v= ��mi ,df�mi�

��i containing the
point pairs, using a search function f�mi� that returns
the index to a point in D with minimal distance to
mi.

Four direct methods are known to minimize Eq.
�4� �Lorusso, Eggert & Fisher, 1995�. In earlier work
�Surmann et al., 2003� we used a quaternion based
method �Besl & McKay, 1992�, but the following one,
based on singular value decomposition �SVD�, is ro-
bust and easy to implement, thus we give a brief
overview of the SVD-based algorithm. It was first
published by Arun, Huang, & Blostein �1987�. The
difficulty of this minimization problem is to enforce
the orthonormality of the matrix R. The first step of
the computation is to decouple the calculation of the

rotation R from the translation t using the centroids
of the points belonging to the matching, i.e.,

cm =
1

N
�
i=1

N

mi, cd =
1

N
�
i=1

N

dj �5�

and

M� = �mi� = mi − cm�1,. . .,N, �6�

D� = �di� = di − cd�1,. . .,N.

After substituting �5� and �6� into the error function,
Eq. �4� becomes

E�R,t� � �
i=1

N

	mi� − Rdi�	
2 with t = cm − Rcd. �7�

The registration calculates the optimal rotation by
R=VUT. Hereby, the matrices V and U are derived by
the singular value decomposition H=U�VT of a cor-
relation matrix H. This 3�3 matrix H is given by

H = �
i=1

N

di�mi�
T = 


Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz
� , �8�

with Sxx=�i=1
N mix� dix� , Sxy=�i=1

N mix� diy� , . . . �Arun et al.,
1987�.

We proposed and evaluated algorithms to accel-
erate ICP, namely, point reduction and approximate
kd-trees �Nüchter et al., 2004; Surmann et al., 2003;
Surmann et al., 2004�, which are used here, too. They
will be addressed in detail in Section 4.

3.4. Loop Closing

After registration, the scene has to be correct and
globally consistent. The method just described for
aligning several 3D scans is called pairwise matching,
i.e., the new scan is registered against a previous
one. Alternatively, an incremental matching method is
used, where the new scan is registered against a so-
called metascan, which is the union of the previously
acquired and registered scans. Each scan matching
has a limited precision. Both methods accumulate
the registration errors such that the registration of a

Nüchter et al.: 6D SLAM—3D Mapping Outdoor Environments • 705

Journal of Field Robotics DOI 10.1002/rob



large number of 3D scans leads to inconsistent
scenes and to problems with the robot localization.
Closing loop detection and error diffusing avoid
these problems and compute consistent scenes. They
are described next.

A loop is closed in SLAM if the robot returns to
a pose close to one where a previous scan was taken.
If the 3D scans where perfect and pairwise or incre-
mental, matching would produce no errors. There
would then be no need for matching the last against
the first scan of a loop. In practice, matching errors
accumulate leading to inconsistent maps.

Our algorithm automatically detects a to-be-

closed loop by registering the last acquired 3D scan
with earlier acquired scans. Hereby we first create a
hypothesis based on the maximum laser range and
on the robot pose, so that the algorithm does not
need to process all previous scans. Then we use the
octree based method presented in Section 3.2 to re-
vise the hypothesis. Finally, a loop is detected if reg-
istration is possible, i.e., the number of closest points
exceeds a certain threshold. The computed registra-
tion error, i.e., the transformation �R ,t�, is distrib-
uted over all 3D scans in between. The respective
part is weighted by the distance covered between
the scans, i.e.,

ci =
length of the path from start of the loop to scan pose i

overall length of the loop
.

1. The translational part is calculated as ti=cit.
2. Of the three possibilities of representing ro-

tations, namely, orthonormal matrices,
quaternions and Euler angles, quaternions
are best suited for our interpolation task. The
problem with matrices is to enforce orthonor-
mality and Euler angles show Gimbal locks
�Matrix FAQ, 1997�. A quaternion as used in
computer graphics is the 4 vector q. Given a
rotation as matrix R, the corresponding
quaternion q is calculated as follows:

q =

q0

qx

qy

qz

� =

1

2
�trace�R�

1

2

r3,3 − r3,2

�trace�R�

1

2

r2,1 − r2,3

�trace�R�

1

2

r1,2 − r1,1

�trace�R�

� ,

with the elements ri,j of R . �9�

If trace �R� �sum of the diagonal terms� is
zero, the above calculation has to be altered:

If r1,1�r2,2 and r1,1�r3,3 then,

q =

1

2

r2,3 − r3,2

�1 + r1,1 − r2,2 − r3,3

1

2
�1 + r1,1 − r2,2 − r3,3

1

2

r1,2 + r2,1

�1 + r1,1 − r2,2 − r3,3

1

2

r3,1 + r1,3

�1 + r1,1 − r2,2 − r3,3

� if r2,2 � r3,3

q =

1

2

r3,1 − r1,3

�1 − r1,1 + r2,2 − r3,3

1

2

r1,2 + r2,1

�1 − r1,1 + r2,2 − r3,3

1

2
�1 − r1,1 + r2,2 − r3,3

1

2

r2,3 + r3,2

�1 − r1,1 + r2,2 − r3,3

� ,

otherwise the quaternion q is calculated as

706 • Journal of Field Robotics—2007

Journal of Field Robotics DOI 10.1002/rob



q =

1

2

r1,2 − r2,1

�1 − r1,1 − r2,2 + r3,3

1

2

r3,1 + r1,3

�1 + r1,1 − r2,2 − r3,3

1

2

r2,3 + r3,2

�1 − r1,1 − r2,2 + r3,3

1

2
�1 − r1,1 − r2,2 + r3,3

� .

The quaternion describes a rotation by an axis
a�R

3 and an angle � that are computed by

a =

qx

�1 − q0
2

qy

�1 − q0
2

qz

�1 − q0
2

� and � = 2 arccos qo.

The angle � is distributed over all scans using

the factor ci and the resulting matrix is derived as

Matrix FAQ �1997�:

Ri = 

cos�ci�� + ax

2�1 − cos�ci��� az sin�ci�� + axay�1 − cos�ci��� − ay sin�ci�� + axaz�1 − cos�ci���

− az sin�ci�� + axay�1 − cos�ci��� cos�ci�� + ay
2�1 − cos�ci��� − ax sin�ci�� + ayaz�1 − cos�ci���

ay sin�ci�� + axaz�1 − cos�ci��� − ax sin�ci�� + ayaz�1 − cos�ci��� cos�ci�� + az
2�1 − cos�ci���

� .

�10�

3.5. Model Refinement

Pulli presents a semi-automatic registration method
that minimizes the global error and avoids inconsis-
tent scenes �Pulli, 1999�. The registration of one scan
is followed by registering all neighboring scans such
that the global error is distributed. Other matching
approaches with global error minimization have
been published, e.g., �Benjemaa & Schmitt, 1997; Eg-
gert, Fitzgibbon & Fisher, 1998�. Benjemaa and
Schmitt establish point-to-point correspondences
first and then use randomized iterative registration
on a set of surfaces. Eggert et al. compute motion
updates, i.e., a transformation �R ,t�, using force-
based optimization, with data sets considered as
connected by groups of springs.

Based on the idea of Pulli, we designed the re-
laxation method simultaneous matching �Surmann et
al., 2003�. The first scan is the master scan S0 and
determines the coordinate system. It is fixed. The fol-
lowing three steps refine the model by minimizing
the global scan matching error, after a queue is ini-
tialized with the first scan of the closed loop �cf. Al-
gorithm 1�:

1. Pop the first 3D scan from the queue as the
current one.

2. A set of neighbors �set of all scans that over-
lap with the current scan� is calculated. This
set of neighbors forms one point set M. The
current scan forms the data point set D and is
aligned with the ICP algorithms if the current
scan is not the master scan S0. One scan over-
laps with another iff more than p correspond-
ing point pairs exist. In our implementation,
p=250.

3. If the current scan changes its location by ap-
plying the transformation �translation or ro-
tation� in step 2, e.g., the displacement is
larger than 5 cm, then each single scan of the
set of neighbors that is not in the queue is
added to the end of the queue. If the queue is
empty, terminate; else continue at step 1.

In contrast to Pulli’s approach, our method is
totally automatic and no interactive pairwise align-
ment has to be done. Furthermore the point pairs are
not fixed �Pulli, 1999�. Our algorithm, the function
align�scans� � �line 11� recomputes the point corre-

Nüchter et al.: 6D SLAM—3D Mapping Outdoor Environments • 707

Journal of Field Robotics DOI 10.1002/rob



spondences, whereas Pullis algorithm uses corre-
spondences established in an initialization step. The
accumulated alignment error is spread over the
whole set of acquired 3D scans. This diffuses the
alignment error equally over the set of 3D scans
�Surmann et al., 2004�.

Algorithm 1 Model refinement

1: scan�queue.push �Sclosed�loop� / * First scan of the

closed loop */

2: while scan�queue� do

3: Scurrent=scan�queue .pop� �
4: meta�scan=�

5: for i=0 to max�number�of�scans do

6: p=number�of�closest�points�Scurrent ,Si�
7: if p�250 then

8: meta�scan.push �Si�
9: end if

10: end for

11: ��P , transformation�=align�scans�Scurrent ,meta�scan�
12: if Scurrent�S0 then

13: apply transformation on Scurrent

14: end if

15: if �P�� then

16: scan�queue=scan�queue�meta�scan
17: end if

18: end while

4. PERFORMANCE ISSUES

The five steps in our SLAM algorithms have different
computational costs. In our experiments, we acquire
usually 3D scans with 20 000 up to 300 000 3D data
points. While the first step �odometry extrapolation�
is computed instantaneously, the octree based heuris-
tic, applied naively, would need up to two seconds
for calculating the two octrees and the rough align-
ment of the scans. Since computing octrees is done in
logarithmic time, the influence of larger data sets is
negligible. The loop closing step �step four� has simi-
lar computational costs, since we use the octree heu-
ristic again.

Most computational time is needed in the scan
matching step �step three� and in the model refine-
ment �step five�. While the model refinement can eas-
ily be done offline, i.e., after the robot has finished the
data acquisition, the scan matching is an essential
part of the mapping procedure. We have a number of
methods available to reduce significantly the compu-

tational costs, namely point reduction, kd-trees, ap-

proximate kd-trees, and cached kd-trees.

4.1. Point Reduction

Scanning is noisy and small errors may occur,
namely, Gaussian noise and salt and pepper noise.
The latter arises, for example, at edges where the
laser beam of the scanner hits two surfaces, resulting
in a mean and erroneous data value. Furthermore,
reflections, e.g., at glass surfaces, lead to suspicious
data. We propose two fast filtering methods to
modify the data in order to enhance the quality of
each scan.

The data reduction, used for reducing Gaussian
noise, works as follows: The scanner emits the laser
beams in a spherical way such that the data points
close to the source are more dense. For point reduc-
tion, multiple data points located close together �Eu-
clidian distance� are replaced by their mean, using a
standard reduction filter. The number of these so-
called reduced points is one order of magnitude
smaller than the original one.

For eliminating salt and pepper noise, a median
filter removes the outliers by replacing a data point
with the median value of the n surrounding points
�here n=7�. The neighbor points are determined ac-
cording to their index within the scan, since the laser
scanner provides the data in each scan slice sorted in
a counter-clockwise direction. The median value is
calculated with regard to the Euclidian distance of
the data points to the point of origin. In order to
remove noisy data but leave the remaining scan
points untouched, the filtering algorithm replaces a
data point with the corresponding median value if
and only if the Euclidian distance between both is
larger than a fixed threshold �e.g., 200 cm�.

Data reduction for the ICP algorithm is done us-
ing the proposed filters. Without filtering, a few out-
liers may lead to multiple wrong point pairs during
the 3D matching phase and results in an incorrect 3D
scan alignment. Reduction and filtering are done in
every single 2D scan slice while scanning, they are
implemented as online algorithms and run in paral-
lel to the 3D scan acquisition. In the end, the data for
the scan matching is collected from every third scan
slice. This fast vertical reduction yields a good sur-
face description �cf. Fig. 2�.

708 • Journal of Field Robotics—2007

Journal of Field Robotics DOI 10.1002/rob



4.2. kd-trees

kd-trees are a generalization of binary search trees.
Every node represents a partition of a point set to
the two successor nodes. The root represents the
whole point cloud and the leaves provide a com-
plete disjunct partition of the points. These leaves
are called buckets �cf. Fig. 3�. Furthermore, every
node contains the limits of the represented point set.

4.2.1. Searching kd-trees

A kd-tree is searched recursively for a closest point
of a given query 3D point. The 3D point needs to be
compared with the separating plane in order to de-
cide on which side the search must continue. This
procedure is executed until the leaves are reached.

There, the algorithm has to evaluate all bucket
points. However, the closest point may be in a dif-
ferent bucket, iff the distance to the limits is smaller
than the one to the closest point in the bucket. In this
case, backtracking has to be performed. Figure 3
shows a backtracking case, where the algorithm has
to go back to the root. The test is known as ball-
within-bounds test �Bentley, 1975; Friedman, Bentley
& Finkel, 1977; Greenspan & Yurick, 2003�.

4.2.2. The Optimized kd-tree

The objective of optimizing kd-trees is to reduce the
expected number of visited leaves. Three parameters
are adjustable, namely, the direction and position of
the split axis as well as the maximal number of
points in the buckets. Splitting the point set at the

Figure 2. Left: a view of a 3D scene �66785 3D data points�. Right: subsampled version �points have been enlarged, 6700
data points�. To visualize the scanned 3D data, a viewer program has been implemented. The task of this program is to
project a 3D scene to the image plane, i.e., the monitor, such that the data can be drawn and inspected from every
perspective.

Figure 3. Left: recursive construction of a kd-tree. If the query consists of point pq, kd-tree search has to backtrack to the
tree root to find the closest point. Right: partitioning of a point cloud. Using the cut �b� rather than �a� results in a more
compact partition and a smaller probability of backtracking �Friedman et al., 1977�.

Nüchter et al.: 6D SLAM—3D Mapping Outdoor Environments • 709

Journal of Field Robotics DOI 10.1002/rob



median ensures that every kd-tree entry has the same
probability. The median can be found in linear time,
thus computing the mean does not account for the
time complexity of constructing the tree. Further-
more, the split axis should be oriented perpendicular
to the longest axis to minimize the amount of back-
tracking �see Figure 3�. Besides these results on com-
plexity, Friedman and colleagues prove that a bucket
size of 1 is optimal �Friedman et al., 1977�. Neverthe-
less, in practice it turned out that a slightly larger
bucket size is faster.

4.3. Approximate kd-tree Search

Arya & D. Mount �1993� introduce the following no-
tion for approximating the nearest neighbor in

kd-trees: Given an ��0, then the point p�D is the
�1+��-approximate nearest neighbor of the point pq,
if

	p − q	 � �1 + ��	p* − q	 ,

where p* denotes the true nearest neighbor, i.e., p
has a maximal distance of � to the true nearest
neighbor �cf. Figure 4�. Using this notation, in every
step the algorithm records the closest point p. The
search terminates if the distance to the unanalyzed
leaves is larger than

	pq − p	/�1 + �� .

In the extreme case, the kd-tree does not implement
any backtracking. To evaluate the quality of the scan
matching, we acquired two 3D scans and measured
the pose shift by a reference system, i.e., a meter
rule. Figure 5 shows the starting poses from which a
correct scan matching is possible. We conclude that
the approximation does not influence the scan
matching significantly, due to the large number of
points used and the iterative nature of the algorithm.
The running time of ICP scan matching decreases to
roughly 75% in case of approximate kd-tree search.
For a detailed evaluation see Nüchter, Lingemann,
Hertzberg & Surmann, �2005�. However, the next
method outperforms the approximate kd-tree search
without the need of any approximation.

4.4. Cached kd-trees

4.4.1. The Cached kd-tree Search

kd-trees with caching contain, in addition to the lim-
its of the represented point set and to the two child

Figure 4. The �1+��-approximate nearest neighbor. The
solid circle denotes the � environment of pq. The search
algorithm need not analyze the gray cell, since p satisfies
the approximation criterion. �Figure adapted from �Arya &
Mount, 1993��.

Figure 5. The poses �x ,z ,�y� from which a correct alignment of two 3D scans is possible. Similar results for “matchable”
poses have been obtained for different values of � �Nüchter et al., 2005�.

710 • Journal of Field Robotics—2007

Journal of Field Robotics DOI 10.1002/rob



node pointers, one pointer to the predecessor node.

The root node contains a null pointer. During the

recursive construction of the tree, this information is

available and no extra computations are required.

For the ICP algorithm, we distinguish between

the first and the following iterations: In the first it-

eration, a normal kd-tree search is used to compute

the closest points. However, the return function of

the tree is altered such that, in addition to the closest

point, the pointer to the leaf containing the closest

point is returned and stored in the vector of point

pairs. This supplementary information forms the

cache for future look-ups.

In the following iterations, these stored pointers

are used to start the search. If the query point is

located in the bucket, the bucket is searched and the

ball-within-bounds test �cf. Section 4.2.1� applied.

Backtracking is started, if the ball lies not completely

within the bucket. If the query point is not located

within the bucket, then backtracking is also started.

Since the search is started in the leaf node, explicit

backtracking through the tree has to be implemented

using the pointers to the predecessing nodes �see

Fig. 6�. Algorithm 2 summarizes the ICP with cached

kd-tree search.

Algorithm 2 ICP with cached kd-tree search

1: for i=0 to maxIterations do

2: if i=0 then

3: for all d j �D do

4: search kd-tree of set M top down for point d j

5: vi= �d j ,m f�d j�
,ptr� to�bucket�m f�d j�

��
6: end for

7: else

8: for all d j �D do

9: search kd-tree of set M, bottom up, for point d j using

ptr�to�bucket �m f�d j�
�

10: vi= �d j ,m f�d j�
,ptr� to�bucket m f�d j�

�
11: end for

12: end if

13 calculate transformation �R , t� that minimizes the error

function Eq. �4�
14: apply transformation on data set D
15: end for

4.4.2. Performance of Cached kd-tree Search

The proposed ICP variant uses exact closest point

search. In contrast to the previously discussed ap-

proximate kd-tree search for ICP algorithms

�Greenspan and Yurick, 2003; Nüchter et al., 2005�,
registration inaccuracies or errors due to approxima-

tion cannot occur.

Friedman et al. �1977� prove that searching for

closest points using kd-trees needs logarithmic time,

i.e., the amount of backtracking is independent of

the number of stored points in the tree. Since the ICP

algorithm iterates the closest point search, the per-

formance derives to O�I�D�log�M��, with I the num-

ber of iterations. Note: Brute-force ICP algorithms

have a performance of O�I�D��M��.
The proposed cached kd-tree search needs O��I

+ �M���D�� time in the best case. This performance is

reached if constant time is needed for backtracking,

resulting in �D�log�M� time for constructing the tree,

and I · �D� for searching in case no backtracking is

necessary. Obviously the backtracking time depends

on the computed ICP transformation �R ,t�. For

small transformations the time is nearly constant.

Cached kd-tree search needs O��D�� extra

memory for the vector v, i.e., for storing the pointers

to the tree leaves. Furthermore, additional O��M��
memory is needed for storing the backwards point-

ers in the kd-tree.

Figure 6. Schematic description of the proposed search
method: Instead of closest point searching from the root of
the tree to the leaves that contain the data points, a pointer
to the leaves is cached. In the second and following ICP
iteration, the tree is searched backwards. The vector of
point pairs memorizes the starting point of the search and,
therefore, serves as a cache.

Nüchter et al.: 6D SLAM—3D Mapping Outdoor Environments • 711

Journal of Field Robotics DOI 10.1002/rob



Figure 7 shows the following results of a de-

tailed evaluation of the proposed cached kd-tree

search algorithm:

1. The performance of the cached kd-tree search

depending on a change of the bucket size was

tested: For small bucket sizes, the speed-up is

larger �Figure 7, top left�. This behavior origi-

nates from the increasing time needed to

search larger buckets.

2. The search time per iteration was recorded

during the experiments �Figure 7, top right�.
For the first iteration the search times are

equal, since cached kd-tree search uses con-

ventional kd-tree search to create the cache.

In the following iterations, the search time

drops significantly and remains nearly con-

stant. The conventional kd-tree search in-

creases in speed, too. Here, the amount of

backtracking is reduced due to the fact that

the calculated transformations �R ,t� are get-

ting smaller.

3. The number of points to register influences

the search time. With increasing number of

points, the positive effect of caching algo-

rithms becomes more and more significant

�Figure 7, bottom left�.
4. The overall performance of the ICP algorithm

depends both on the search time and on the

construction time of the tree. However, the

construction time of the trees seems to be

negligible. In addition, a comparison with a

reference implementation shows the effective

implementation. As reference implementa-

tion the software from the papers �Arya and

Mount, 1993; Arya, Mount, Netanyahu, Sil-

verman & Wu, 1998� was used �Figure 7, bot-

tom right�.

Figure 7. Top left: achieved speedups of cached kd-tree search compared to traditional kd-tree search for an ICP based
registration of two point sets. Top right: search time per iteration for bucket sizes 10 and 25. Bottom left: time consumption
per ICP iteration. Bottom right: overall comparison of the algorithms and a reference kd-tree implementation �Arya and
Mount, 1993�.

712 • Journal of Field Robotics—2007

Journal of Field Robotics DOI 10.1002/rob



5. EXPERIMENTS AND RESULTS

5.1. Hardware Used in our Experiments

The 3D laser range finder is built on the basis of a
SICK 2D range finder by extension with a mount
and a small servomotor �Figure 8� �Surmann et al.,
2003�. The 2D laser range finder is attached at the
center of rotation to the mount for achieving a con-
trolled pitch motion with a standard servo.

The area of up to 180° �h��120° �v� is scanned
with different horizontal �181, 361, 721� and vertical
�128, 225, 420, 500� resolutions. A plane with 181
data points is scanned in 13 ms by the 2D laser
range finder �rotating mirror device�. Planes with
more data points, e.g., 361, 721, duplicate, or qua-
druplicate this time. Thus a scan with 181�256 data
points needs 3.4 s. Scanning the environment with a
mobile robot is done in a stop-scan-go fashion.

The mobile robot Kurt3D in its outdoor version
�Figure 8� is a mobile robot with a size of 45 cm
�length��33 cm �width��29 cm �height� and a
weight of 22.6 kg. Two 90 W motors are used to
power the six skid-steered wheels, whereas the front
and rear wheels have no tread pattern to enhance
rotating. The core of the robot is a Pentium-
Centrino-1400 with 768 MB RAM and Linux. An em-
bedded 16-bit CMOS microcontroller is used to con-
trol the motor.

5.2. Full 6D SLAM in a planar environment

We applied the algorithms to a data set acquired at
Schloss Dagstuhl. It contains 84 3D scans, each with

81225 �361�225�, 3D data points, in a large, i.e.,
�240 m, closed loop. The average distance between
consecutive 3D scans was 2.5 m. Figure 9 shows the
built 3D map.

We have also tested the algorithms on a 2D data
set, computed from horizontal scan slices. This al-
lows us to compare full 6D SLAM with planar 2D
mapping �cf. Tab. I�. Figure 10 shows the map. There
are noticeable errors in the 2D alignment. The 2D
scans do not provide enough structure for correct
alignment. Many approaches bypass this problem by
scanning the environment more often. However, the
3D data is much richer in information, therefore, 3D
scan taken at sparse discrete locations are matched
correctly �cf. Figure 9�.

5.3. Full 6D SLAM in an Indoor/Outdoor

Environment

The proposed algorithms have been applied to a
data set acquired at the robotic lab in Birlinghoven.
Thirty-two 3D scans, each containing 302 820 �721
�420� range data points, were taken. The robot had
to cope with a height difference between two build-
ings of 1.05 meter, covered, on the one hand, by a
sloped driveway in open outdoor terrain and, on the
other hand, by a ramp of 12° inside the building. The
3D model was computed after acquiring all 3D
scans.

Figures 11–13 show rendered 3D scans. The lat-
ter figure presents the final model with the closed
loop. Please refer to the website http://
kos.informatik.uni-osnabrueck.de/download/
6Dpre/ for a computed animation and video
through the scanned 3D scene.

Figure 8. Kurt3D in a natural environment. Left to right: lawn, forest track, pavement.

Nüchter et al.: 6D SLAM—3D Mapping Outdoor Environments • 713

Journal of Field Robotics DOI 10.1002/rob



In this data set, we analyzed the performance of
the ICP scan matching. Details about this analysis
can be found in �Surmann et al., 2004� and �Nüchter,
2006�. For ICP registration, the error tolerance for the
initial estimation, i.e., the robot’s self localization, is
about one meter in �x ,y ,z� position and about 15° in
the orientation. These conditions can be easily met
using a cheap odometer and the presented heuristic
for initial estimates for the ICP algorithm.

5.4. Full 6D SLAM in an Outdoor Environment

The following experiment has been made at the
campus of Schloss Birlinghoven with Kurt3D. Figure
14 �left� shows the scan point model of the first scans
in top view, based on odometry only. The first part
of the robot’s run, i.e., driving on asphalt, contains a
systematic drift error, but driving on lawn shows
more stochastic characteristics. The right part shows
the first 62 scans, covering a path length of about

240 m. The heuristic described in Section 3.2 has
been applied and the scans have been matched. The
open loop is marked with a red rectangle.

At that point, the loop is detected and closed.
More 3D scans have then been acquired and added
to the map. Figure 15 �left and right� shows the
model with and without global relaxation to visual-
ize its effects. The relaxation is able to align the scans
correctly even without explicitly closing the loop.
The best visible difference is marked by a rectangle.
The final map in Figure 15 contains 77 3D scans,
each consisting of approx. 100 000 data points �361
�275�. Figure 16 shows two detailed views, before
and after loop closing. The bottom part of Figure 15
displays an aerial view as ground truth for compari-
son. Table II compares distances measured in the
photo and in the 3D scene, at corresponding points
�taking roof overhangs into account�. The lines in the
photo have been measured in pixels, whereas real
distances, i.e., the �x ,z�-values of the points, have

Figure 9. 3D digitalization of the International Conference and Research Center Schloss Dagstuhl. Left: 3D point cloud
�top view�. Right: 3D view.

Figure 10. Two-dimensional digitalization of the environment with alignment problems at the wall on the right. Right:
for comparison, the same closeup area of a horizontal slice from the generated 3D map �Figure 9�.

714 • Journal of Field Robotics—2007

Journal of Field Robotics DOI 10.1002/rob



been used in the point model. Considering that pixel
distances in mid-resolution noncalibrated aerial im-
age induce some error in ground truth, the corre-
spondence show that the point model at least ap-
proximates reality quite well.

Mapping would fail without first calculating the
heuristic initial estimations for ICP scan matching,
since ICP would likely converge to an incorrect
minimum. The resulting 3D map would be some
mixture of Figure 14 �left� and Figure 15 �right�.

Figure 17 shows three views of the final model.
These model views correspond to the locations of

Kurt3D in Figure 8. An updated robot trajectory has
been plotted into the scene. Thereby, we assign every
3D scan that part of the trajectory which leads from
the previous scan pose to the current one. Since scan
matching did align the scans, the trajectory initially
has gaps after the alignment �see Figure 18�.

We calculate the transformation �R ,t� that maps
the last pose of such a trajectory patch to the starting
pose of the next patch. This transformation is then
used to correct the trajectory patch by distributing
the transformation as described in Section 3.4. In this
way the algorithm computes a continuous trajectory.

Figure 11. Scan matching of the IAIS robotic lab. Left: initial pose of two 3D scans. Middle: pose after five ICP iterations.
Right: final alignment.

Figure 12. Left: initial poses of 3D scans when closing the loop. Middle: poses after detecting the loop and equally
sharing the resulting error. Right: final alignment after error diffusion with correct alignment of the edge structure at the
ceiling.

Nüchter et al.: 6D SLAM—3D Mapping Outdoor Environments • 715

Journal of Field Robotics DOI 10.1002/rob



An animation of the scanned area is available at
http://kos.informatik.uni-osnabrueck.de/
download/6Doutdoor/. The video shows the scene
along the trajectory as viewed from about 1 m above
Kurt3D’s actual position.

The 3D scans were acquired within one hour by
tele-operation of Kurt3D. Scan registration and
closed loop detection took only about ten minutes
on a Pentium-IV-2800 MHz, while we did run the
global relaxation for two hours. However, comput-
ing the flight-thru-animation took about three hours,
rendering 9882 frames with OpenGL on consumer
hardware.

5.5. Stress Tests—RoboCup Rescue

Our 3D mapping algorithms have been tested in
various experiments. We participate in RoboCup
Rescue competitions on a regular basis. RoboCup is
an international joint project to promote AI, robotics,

Figure 13. The closed loop with a top viewing position
and orthogonal projection. The distance d measured in the
point cloud model is 2096 cm, measured by meter rule
2080 cm. The right part demonstrates the change in eleva-
tion. Top right: a ramp connecting two buildings is cor-
rectly modeled �height difference 1.05 m�. The ramp con-
nects the basement of the left building with the right
building. Bottom right: outdoor environment modeling of
the downhill part.

Figure 14. Three-dimensional model of an experiment to digitize part of the campus of Schloss Birlinghoven campus
�top view�. Left: registration based on odometry only. Right: model based on incremental matching right before closing
the loop, containing 62 scans each with approx. 100 000 3D points. The grid at the bottom denotes an area of 20
�20 m2 for scale comparison. The 3D scan poses are marked by gray points.

716 • Journal of Field Robotics—2007

Journal of Field Robotics DOI 10.1002/rob



and related fields. It is an attempt to foster AI and
intelligent robotics research by providing standard
problems where a wide range of technologies can be
integrated and examined. Besides the well-known
RoboCup soccer leagues, the Rescue league is get-
ting increasing attention. Its real-life background is
the idea of developing mobile robots that are able to
operate in earthquake, fire, explosive and chemical
disaster areas, helping human rescue workers to do

their jobs. A fundamental task for rescue robots is to
find and report injured persons. To this end, they
need to explore and map the disaster site and in-
spect potential victims and suspicious objects. The
RoboCup Rescue Contest aims at evaluating rescue
robot technology to speed up the development of
working rescue and exploration systems �NIST,
2007�.

These kinds of competitions allow us to measure

Figure 15. Top left: model with loop closing, but without global relaxation. Differences to Figure 14 right and to the right
image are marked. Top right: final model of 77 scans with loop closing and global relaxation. Bottom: aerial view of the
scene. The points A–D are used as reference points in the comparison in Table II.

Nüchter et al.: 6D SLAM—3D Mapping Outdoor Environments • 717

Journal of Field Robotics DOI 10.1002/rob



the level of system integration and the engineering
skills of the teams to be evaluated. It makes high
demands on the reliability of the algorithms, since
one cannot redo the experiments. A total of 21 robot
runs were performed by Kurt3D in the World Cham-

pionships over the last three years. One major sub-
goal of such a rescue mission is to create a map of
the unstructured environment during the mission
time. The test field is a square with six meter-long
sides. Detailed maps of the environment have been

Figure 16. Closeup view of the 3D model of Figure 15. Left: model before loop closing. Right: after loop closing, global
relaxation and adding further 3D scans. Top: top view. Bottom: front view.

718 • Journal of Field Robotics—2007

Journal of Field Robotics DOI 10.1002/rob



presented to the referees. Figure 19 shows one such
map. With the superimposed grid in Figure 19 the
referees evaluated the maps facilely.

In addition to the RoboCup Rescue competi-
tions, the proposed algorithms have also been tested
at the European Land Robotics Trial, ELROB
�FGAN, 2007�. Please refer to http://
kos.informatik.uni-osnabrueck.de/download/
Lisbon�RR/ and http://kos.informatik.uni-
osnabrueck.de/download/elrob2006/ for some
results.

5.6. Benchmarking Mapping Results

Bechmarking experiments are used for measuring
the objective performance of a dedicated algorithm.
In the past, many researchers published their results
in the Radish �The Robotics Data Set Repository� re-
pository �Howard and Roy, 2006�. These data sets
are accompanied by maps depicted as figures. Most

researchers aimed at creating consistent maps. Re-
cently, on the theoretical side of SLAM, Bailey, Nieto,
Guivant, Stevens & Nebot, �2006a� proves that EKF-
SLAM fails in large environments and FastSLAM is
inconsistent as a statistical filter: It always underes-
timates its own error in the medium to long-term
�Bailey, Nieto & Nebot, 2006b�. Besides focusing on
these consistency issues, little effort at correctness
has been made in the SLAM community.

Testing algorithms and heuristics for objective
correctness includes providing ground truth data. In
computer vision research, it is a common technique
to provide hand-labeled ground truth images and
algorithms that calculate performance metrics. Up to
now, such a performance metric is missing for
SLAM algorithms. In this paper, we choose a sketchy
comparison with uncalibrated aerial images. In on-
going work, we provide a novel method for evalu-
ating SLAM algorithms applied to large-scale prob-
lems based on given ground truth maps and a
Monte Carlo localization in these maps �Wulf,
Nüchter, Hertzberg & Wagner, 2007�. A valuable
source for state of the art performance are competi-
tions �cf., Section 5.5� that, however, aim to evaluate
whole systems under operational conditions and are
not well suited for measuring the performance of
one single algorithm.

6. CONCLUSIONS AND FUTURE WORK

This paper has presented a new solution to the simul-
taneous localization and mapping �SLAM� problem

Table II. Length ratio comparison of measured distances
in the aerial photographs with distances in the point
model as shown in Figure 15.

1st line 2nd line
Ratio in

aerial views
Ratio in

point model Deviation

AB BC 0.683 0.662 3.1%

AB BD 0.645 0.670 3.8%

AC CD 1.131 1.141 0.9%

CD BD 1.088 1.082 0.5%

Figure 17. Detailed views of the resulting 3D model, corresponding to the robot locations of Figure 8.

Nüchter et al.: 6D SLAM—3D Mapping Outdoor Environments • 719

Journal of Field Robotics DOI 10.1002/rob



with six degrees of freedom. The method is based on
ICP scan matching, with odometry extrapolation, ini-
tial pose estimation using a coarse-to-fine strategy
with an octree representation, and closing loop detec-
tion. Furthermore, the paper investigates approxi-
mate data association using kd-trees and a novel ex-
act data association called cached kd-tree search.

We see a number of basically independent ideas
work together in our 6D SLAM approach. ICP is now

among the standard algorithms for scan registration;
our contribution with respect to using it is to make it
efficient for 6D registration of 3D scans by using oc-
tree representation, point reduction and kd-trees, in-
cluding approximation and caching.

Next, having ICP available in an on-line on-board
version for 6D registration of 3D scans allows 6D scan
registration to be used as a means for posterior pose
correction, based on the rich amount of pose differ-
ence information that 3D scans yield. As a conse-
quence, we can afford to use just one pose rather than
a distribution of poses as in probabilistic approaches:
our pose tracking, aided by 6D scan registration �i.e.,
the prior pose estimation as modified by the posterior
correction gained from registration�, is typically suf-
ficiently accurate.

Third, loop closing is another common topic in
SLAM; here we profit again from the relatively accu-
rate and robust posterior 6D pose estimation.

A rich set of experiments, including competi-
tions, has confirmed our approach. In fact, more ex-
periment data sets than those presented previously,
have been used and are available �see below�.

The algorithms are implemented without using
probabilistic concepts. Keeping track of multi-
hypotheses leads to enormous computational re-
quirements which cannot currently be made available
on a mobile platform. This dependence on one hy-
pothesis has led us to methods that improve incre-

Figure 18. The trajectory after mapping shows gaps,
since the robot poses are corrected at 3D scan poses.

Figure 19. Three-dimensional maps of the yellow RoboCup arena. The 3D scans include spectators that are marked with
a rectangle. Left: mapped area as 3D point cloud. Middle: voxel �volume pixel� representation of the 3D map. Right:
mapped area �top view�. The points on the ground have been colored in light gray. The 3D scan positions are marked with
squares. A 1 m2 grid is superimposed. Following the ICP scan matching procedure, the first 3D scan defines the coordi-
nate system and the grid is rotated.

720 • Journal of Field Robotics—2007

Journal of Field Robotics DOI 10.1002/rob



mentally the 6D pose estimate. However, in future
work, we plan to adapt concepts from probabilistic
robotics, like explicit representations of uncertainties,
i.e., computing covariance matrices from scan match-
ing. Furthermore, we will focus on multi-robot 3D
mapping and on integrating vision sensors in the
mapping system.

To foster research in Quantitative Performance
Evaluation of Robotic and Intelligent Systems we will
continue participating in the NIST evaluation, e.g., at
RoboCup Rescue events. In addition, we plan to start
a public 3D scan repository, to make 3D scans avail-
able to the robotics community, like the Radish �The
Robotics Data Set Repository� repository �Howard
and Roy, 2006�. Material can currently be accessed
under http://kos.informatik.uni-osnabrueck.de/
3Dscans/.

REFERENCES

Allen, P., Stamos, I., Gueorguiev, A., Gold, E., & Blaer, P.
�2001�. AVENUE: Automated Site Modelling in Urban
Environments. In Proceedings of the Third Interna-
tional Conference on 3D Digital Imaging and Model-
ing �3DIM ’01�, Quebec City, Canada.

Arun, K. S., Huang, T. S., & Blostein, S. D. �1987�. Least
square fitting of two 3-d point sets. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 9�5�,
698–700.

Arya, S. & Mount, D. M. �1993�. Approximate nearest
neighbor queries in fixed dimensions. In Proceedings
of the 4th ACM-SIAM Symposium on Discrete Algo-
rithms, pages 271–280.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., &
Wu, A. Y. �1998�. An Optimal Algorithms for Approxi-
mate Nearest Neighbor Searching in Fixed Dimen-
sions. Journal of the ACM, 45, 891–923.

Bailey, T., Nieto, J., Guivant, J., Stevens, M., & Nebot, E.
�2006a�. Consistency of the EKF-SLAM Algorithm. In
Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems �IROS ’06�, Bejing,
China.

Bailey, T., Nieto, J., & Nebot, E. �2006b�. Consistency of the
FastSLAM Algorithm. In IEEE International Confer-
ence on Robotics and Automation �ICRA ’06�, Or-
lando, Florida, U.S.A..

Benjemaa, R. & Schmitt, F. �1997�. Fast Global Registration
of 3D Sampled Surfaces Using a Multi-Z-Buffer Tech-
nique. In Proceedings IEEE International Conference
on Recent Advances in 3D Digital Imaging and Mod-
eling �3DIM ’97�, Ottawa, Canada.

Bentley, J. L. �1975�. Multidimensional binary search trees
used for associative searching. Communications of
the ACM, 18�9�, 509–517.

Besl, P. & McKay, N. �1992�. A method for Registration of

3-D Shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 14�2�, 239–256.

Biber, P., Andreasson, H., Duckett, T., & Schilling, A.
�2004�. 3D Modeling of Indoor Environments by a
Mobile Robot with a Laser Scanner and Panoramic
Camera. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems �IROS
’04�, Sendai, Japan.

Dissanayake, M. W. M. G., Newman, P., Clark, S., Durrant-
Whyte, H. F., & Csorba, M. �2001�. A Solution to the
Simultaneous Localization and Map Building �SLAM�
Problem. IEEE Transactions on Robotics and Automa-
tion, 17�3�, 229–241.

Eggert, D., Fitzgibbon, A., & Fisher, R. �1998�. Simulta-
neous Registration of Multiple Range Views Satisfy-
ing Global Consistency Constraints for Use In Reverse
Engineering. Computer Vision and Image Under-
standing, 69, 253–272.

FGAN �2007�. http://www.elrob2006.org/.
Folkesson, J. & Christensen, H. �2003�. Outdoor Explora-

tion and SLAM using a Compressed Filter. In Pro-
ceedings of the IEEE International Conference on Ro-
botics and Automation �ICRA ’03�, pages 419–426,
Taipei, Taiwan.

Frese, U. & Hirzinger, G. �2001�. Simultaneous Localiza-
tion and Mapping—A Discussion. In Proceedings of
the IJCAI Workshop on Reasoning with Uncertainty
in Robotics, pages 17–26, Seattle, USA.

Friedman, J. H., Bentley, J. L., & Finkel, R. A. �1977�. An
algorithm for finding best matches in logarithmic ex-
pected time.. ACM Transaction on Mathematical Soft-
ware, 3�3�, 209–226.

Früh, C. & Zakhor, A. �2001�. 3D Model Generation for
Cities Using Aerial Photographs and Ground Level
Laser Scans. In Proceedings of the Computer Vision
and Pattern Recognition Conference �CVPR ’01�,
Kauai, Hawaii, USA.

Georgiev, A. & Allen, P. K. �2004�. Localization Methods
for a Mobile Robot in Urban Environments. IEEE
Transaction on Robotics and Automation �TRO�, 20�5�,
851–864.

Greenspan, M. & Yurick, M. �2003�. Approximate K-D Tree
Search for Efficient ICP. In Proceedings of the 4th
IEEE International Conference on Recent Advances in
3D Digital Imaging and Modeling �3DIM ’03�, pages
442–448, Banff, Canada.

Hebert, M., Deans, M., Huber, D., Nabbe, B., & Vandapel,
N. �2001�. Progress in 3-D Mapping and Localization.
In Proceedings of the 9th International Symposium on
Intelligent Robotic Systems, �SIRS ’01�, Toulouse,
France.

Howard, A. & Roy, N. �2003–2006�. Radish: The Robotics
Data Set Repository, Standard data sets for the robot-
ics community. http://radish.sourceforge.net/

Kohlhepp, P., Walther, M., & Steinhaus, P. �2003�. Schrit-
thaltende 3D-Kartierung und Lokalisierung für mo-
bile Inspektionsroboter. In Dillmann, R., Wörn, H., &
Gockel, T., editors, Proceedings of the Autonome Mo-
bile Systeme 2003, 18. Fachgesprche.

Leonard, J. J. & Durrant-Whyte, H. F. �1991�. Mobile robot
localization by tracking geometric beacons. IEEE

Nüchter et al.: 6D SLAM—3D Mapping Outdoor Environments • 721

Journal of Field Robotics DOI 10.1002/rob



Transactions Robotics and Automation �TRA�, 7�3�,
376–382.

Lorusso, A., Eggert, D., & Fisher, R. �1995�. A Comparison
of Four Algorithms for Estimating 3-D Rigid Transfor-
mations. In Proceedings of the 4th British Machine
Vision Conference �BMVC ’95�, pages 237–246, Bir-
mingham, England.

Lu, F. & Milios, E. �1997�. Globally Consistent Range Scan
Alignment for Environment Mapping. Autonomous
Robots, 4�4�, 333–349.

Magnusson, M. & Ducket, T. �2005�. A Comparison of 3D
Registration Algorithms for Autonomous Under-
ground Mining Vehicles. In Proceedings of the Second
European Conference on Mobile Robotics �ECMR ’05�,
pages 86–91, Ancona, Italy.

Matrix FAQ �1997�. Version 2, http://
vamos.sourceforge.net/matrixfaq.htm.

NIST �2007�. National institute of standards and technol-
ogy, intelligent systems division, http://
robotarenas.nist.gov/competitions.htm.

Nüchter, A. �2006�. Semantische 3D-Karten für autonome mo-
bile Roboter �in German�. PhD thesis, University of
Bonn.

Nüchter, A., Lingemann, K., Hertzberg, J., & Surmann, H.
�2005�. 6D SLAM with Approximate Data Association.
In Proceedings of the 12th IEEE International Confer-
ence on Advanced Robotics �ICAR ’05�, pages 242–
249, Seattle, U.S.A.

Nüchter, A., Surmann, H., Lingemann, K., Hertzberg, J., &
Thrun, S. �2004�. 6D SLAM with an Application in
autonomous mine mapping. In Proceedings of the
IEEE International Conference on Robotics and Auto-
mation, pages 1998–2003, New Orleans, USA.

Pulli, K. �1999�. Multiview Registration for Large Data
Sets. In Proceedings of the 2nd International Confer-
ence on 3D Digital Imaging and Modeling �3DIM ’99�,
pages 160–168, Ottawa, Canada.

Se, S., Lowe, D., & Little, J. �2001�. Local and Global Local-
ization for Mobile Robots using Visual Landmarks. In
Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems �IROS ’01�, Hawaii,
USA.

Sequeira, V., Ng, K., Wolfart, E., Goncalves, J., & Hogg, D.
�1999�. Automated 3D reconstruction of interiors with
multiple scan-views. In Proceedings of SPIE, Elec-
tronic Imaging ’99, The Society for Imaging Science
and Technology/SPIE’s 11th Annual Symposium, San
Jose, CA, USA.

Smith, R., Self, M., & Cheeseman, P. �1986�. Estimating un-
certain spatial relationships in robotics. In Proceed-
ings of the 2nd Annual Conference on Uncertainty in
Artificial Intelligence �UAI ’86�, pages 435–461.

Surmann, H., Nüchter, A., & Hertzberg, J. �2003�. An au-
tonomous mobile robot with a 3D laser range finder

for 3D exploration and digitalization of indoor envi-
ronments. Journal Robotics and Autonomous Sys-
tems, 45�3–4�, 181–198.

Surmann, H., Nüchter, A., Lingemann, K., & Hertzberg, J.
�2004�. 6D SLAM A Preliminary Report on Closing the
Loop in Six Dimensions. In Proceedings of the 5th
IFAC Symposium on Intelligent Autonomous Vehicles
�IAV ’04�, Lisbon, Portugal.

Thrun, S. �1998�. Learning metric-topological maps for in-
door mobile robot navigation. Artificial Intelligence,
99�1�, 21–71.

Thrun, S. �2002�. Robotic mapping: A survey. In Lake-
meyer, G. & Nebel, B., editors, Exploring Artificial In-
telligence in the New Millenium. Morgan Kaufmann.

Thrun, S., Burgard, W., & Fox, D. �1997�. A probabilistic
approach to concurrent mapping and localization for
mobile robots. Machine Learning and Autonomous
Robots, 31�5�, 1–25.

Thrun, S., Fox, D., & Burgard, W. �2000�. A real-time algo-
rithm for mobile robot mapping with application to
multi robot and 3D mapping. In Proceedings of the
IEEE International Conference on Robotics and Auto-
mation �ICRA ’00�, San Francisco, CA, USA.

Thrun, S., Liu, Y., Koller, D., Ng, A. Y., Ghahramani, Z., &
Durrant-Whyte, H. F. �2004�. Simultaneous localiza-
tion and mapping with sparse extended information
filters. Machine Learning and Autonomous Robots,
23�7–8�, 693–716.

Thrun, S., Montemerlo, M., & Aron, A. �2006�. Probabilistic
Terrain Analysis For High-Speed Desert Driving. In
Proceedings of Robotics: Science and Systems, Cam-
bridge USA.

Weingarten, J. & Siegwart, R. �2005�. EKF-based 3D SLAM
for structured environment reconstruction. In Pro-
ceedings of the IEEE/ RSJ International Conference
on Intelligent Robots and Systems �IROS ’05�, pages
2089–2094, Edmonton, Alberta Canada.

Wulf, O., Arras, K. O., Christensen, H. I., & Wagner, B. A.
�2004�. 2D Mapping of Cluttered Indoor Environ-
ments by Means of 3D Perception. In Proceedings of
the IEEE International Conference on Robotics and
Automation �ICRA ’04�, pages 4204–4209, New Or-
leans, USA.

Wulf, O., Nüchter, A., Hertzberg, J., & Wagner, B. �2007�.
Ground Truth Evaluation of Large Urban 6D SLAM.
In Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems �IROS ’07�,
San Diego.

Zhao, H. & Shibasaki, R. �2001�. Reconstructing Textured
CAD Model of Urban Environment Using Vehicle-
Borne Laser Range Scanners and Line Cameras. In
Second International Workshop on Computer Vision
System �ICVS ’01�, pages 284–295, Vancouver,
Canada.

722 • Journal of Field Robotics—2007

Journal of Field Robotics DOI 10.1002/rob


