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Abstract— To create with an autonomous mobile robot a 3D
volumetric map of a scene it is necessary to gage several 3D
scans and to merge them into one consistent 3D model. This
paper provides a new solution to the simultaneous localization
and mapping (SLAM) problem with six degrees of freedom.
Robot motion on natural surfaces has to cope with yaw, pitch
and roll angles, turning pose estimation into a problem in six
mathematical dimensions. A fast variant of the Iterative Closest
Points algorithm registers the 3D scans in a common coordinate
system and relocalizes the robot. Finally, consistent 3D maps are
generated using a global relaxation. The algorithms have been
tested with 3D scans taken in the Mathies mine, Pittsburgh, PA.
Abandoned mines pose significant problems to society, yet a large
fraction of them lack accurate 3D maps.

I. INTRODUCTION

The increasing need for rapid characterization and quan-

tification of complex environments has created challenges for

data analysis. This critical need comes from many important

areas, including industrial automation, architecture, agricul-

ture, and the construction or maintenance of tunnels and

mines. Especially mobile systems with 3D laser scanners that

automatically perform multiple steps such as scanning, gaging

and autonomous driving have the potential to greatly advance

the field of environment sensing. On the other hand, having 3D

information available in real-time enables autonomous robots

to navigate in unknown environments, e.g., in the field of

autonomous mine inspection.

The problem of automatic environment sensing and mod-

eling is complex, because a number of fundamental scientific

issues are involved in this research. One issue is the control

of an autonomous mobile robot and scanning the environment

with a 3D sensor. Another question is how to create a

volumetric consistent scene in a common coordinate system

from multiple views. The latter problem is addressed here:

The proposed algorithms allows to digitize large environments

fast and reliably without any intervention and solve the simul-

taneous localization and mapping (SLAM) problem. Finally

robot motion on natural outdoor surfaces has to cope with yaw,

pitch and roll angles, turning pose estimation as well as scan

matching or registration into a problem in six mathematical

dimensions. This paper presents a new solution to the SLAM

problem with six degrees of freedom. A fast variant of the

iterative closest points (ICP) algorithm registers the 3D scans

in a common coordinate system and relocalizes the robot. The

computational requirements are reduced by two new methods:

First we reduce the 3D data, i.e., we compute depth images that

approximate the scanned 3D surface and contain only a small

fraction of the 3D point cloud. Second a fast approximation

of the closest point for the ICP algorithm is given. These

extenstions of the ICP result in an algorithm for generating

overall consistent 3D maps using global error minimization.

This paper describes an algorithm for acquiring volumetric

maps of underground mines. Mapping underground mines is of

enormous societal importance [16], as a lack of accurate maps

of inactive, underground mines poses a serious threat to public

safety. According to a recent article [3], “tens of thousands,

perhaps even hundreds of thousands, of abandoned mines

exist today in the United States and worldwide. Not even the

U.S. Bureau of Mines knows the exact number, because federal

recording of mining claims was not required until 1976.”

The lack of accurate mine maps frequently causes accidents,

such as a recent near-fatal accident in Quecreek, PA [18].

Even when accurate maps exist, they provide information only

in 2D, which is usually insufficient to assess the structural

soundness of abandoned mines. Accurate 3D models of such

abandoned mines would be of great relevance to a number

of problems that directly affect the people who live or work

near them. One is subsidence: structural shifts can cause

collapse on the surface above. Ground water contamination

is another problem of great importance, and knowing the

location, volume, and condition of an abandoned mine can be

highly informative in planning and performing interventions.

Accurate volumetric maps are also of great commercial inter-

est. Knowing the volume of the material already removed from

a mine is of critical interest when assessing the profitability

of re-mining a previously mined mine.

Hazardous operating conditions and difficult access routes

suggest that robotic mapping of abandoned mines may be

a viable option to traditional manual mapping techniques.

The idea of mapping mines with robots is not new. Past

research has predominantly focused on acquiring maps for

autonomous robot navigation in active mines. For example,

Corke and colleagues [8] have built vehicles that acquire and

utilize accurate 2D maps of mines. Similarly, Baily [2] reports

2D mapping results of an underground area using advanced

mapping techniques. The experiments reported in this paper

utilize data by CMU’s mine mapping robot Groundhog [10],

[24], which relies on 2D mapping for explorating and mapping

of abandoned mines. While Groundhog and a related bore-hole



deployable device “Ferret” [16] utilizes local 3D scans for

navigation and terrain assessment, none of these techniques

integrates multiple 3D scans and generates full volumetric

maps of abandoned mines.

The paper is organized as follows: The next two sections

describe the state of the art in automatic 3D mapping and

present the autonomous mobile robot. Section IV presents

the registration algorithms and the solution to the SLAM

problem. Furthermore we show how data reduction and access

methods speed up computation and the methods become

real-time capable. Section V describes the Mathies Mine

experiment. Finally, section VI summerizes the results and

concludes the paper. The paper is accompanied with a 3D

map, given as video. The video is available for download at

www.ais.fraunhofer.de/ARC/3D/mine/.

II. STATE OF THE ART

Some groups have attempted to build 3D volumetric repre-

sentations of environments with 2D laser range finders. Thrun

et al. [23] use two 2D laser range finder for acquiring 3D data.

One laser scanner is mounted horizontally and one is mounted

vertically. The latter one grabs a vertical scan line which is

transformed into 3D points using the current robot pose. The

horizontal scanner is used to compute the robot pose. The

precision of 3D data points depends on that pose and on the

precision of the scanner. All these approaches have difficulties

to navigate around 3D obstacles with jutting out edges. They

are only detected while passing them.

The published 2D probabilistic localization approaches, e.g.,

Markov models or Monte Carlo algorithms work well in flat

and structured 2D environments but an extension in the third

dimension is still missing since the algorithm do not scale

with additional dimensions. Common approaches to SLAM

use global relaxation after incremental 2D scan matching in

order to create a globally consistent map [11].

A few other groups use 3D laser scanners [1], [14], [22].

A 3D laser scanner generates consistent 3D data points within

a single 3D scan. The AVENUE project develops a robot for

modeling urban environments using a CYRAX laser scanner

and a feature-based scan matching approach for registration

of the 3D scans in a common coordinate system [1]. The

research group of M. Hebert has reconstructed environments

using the Zoller+Fröhlich laser scanner and aims at building

3D models without initial position estimates, i.e., without

odometry information [14].

III. THE GROUNDHOG ROBOT

The robot has been deployed and built by the CMU Mine

Mapping Team [10], [24]. Groundhog’s chassis unites the

front halves of two all terrain vehicles, allowing all four

of Groundhog’s wheels to be both driven and steered. The

two Ackerman steering columns are linked in opposition,

reducing Groundhog’s outside turning radius to approximately

2.44m. A hydraulic cylinder drives the steering linkage, with

potentiometer feedback providing closed-loop control of wheel

angle. Two hydraulic motors coupled into the front and rear

Fig. 1. The Groundhog robot

stock ATV differentials via 3:1 chain drives result in a constant

0.145 m/sec velocity. When in motion, Ground hog consumes

upwards of 1kW, where processing and sensing only draw

25W and 75W respectively. Therefore, time spent sensing and

processing has minimal impact on the operational range of

the robot. The high power throughput combined with the low

speed of the robot means that Groundhog has the torque neces-

sary to overcome the railway tracks, fallen timbers, and other

rubble commonly found in abandoned mines. Equipped with

six deep-cycle lead-acid batteries, and in later experiments

with eight such battereis, Groundhog has a locomotive range

greater than 3km.

For acquiring 3D scans in a stop and go fashion, Groundhog

is equipped with tiltable SICK laser range finders on either

end. The area of 180◦(h) × 60◦(v) is scanned with the hori-

zontal resolution of 361 pts. and vertical of 341 pts. A slice

with 361 data points is scanned in 26ms by the 2D laser range

finder (rotating mirror device). Thus a scan with 361 × 341

data points needs 8.9 seconds. Fig. 4 shows an example scan

of the mine.

IV. RANGE IMAGE REGISTRATION AND ROBOT

RELOCALIZATION

Multiple 3D scans are necessary to digitalize environments

without occlusions. To create a correct and consistent model,

the scans have to be merged into one coordinate system.

This process is called registration. If the localization of the

robot with the 3D scanner were precise, the registration could

be done directly by the robot pose. However, due to the

unprecise robot sensors, the self localization is erroneous, so

the geometric structure of overlapping 3D scans has to be

considered for registration.

The matching of 3D scans can either operate on the whole

3D scan point set or can be reduced to the problem of scan

matching in 2D by extracting, e.g., a horizontal plane of fixed

height from both scans, merging these 2D scans and applying

the resulting translation and rotation matrix to all points of the

corresponding 3D scan.

Matching of complete 3D scans has the advantage of having

a larger set of attributes (either pure data points or extracted

features) to compare the scans. This results in higher precision

and lowers the possibility of running into a local minimum of



the cost function. Furthermore, using three dimensions enables

the robot control software to recognize and take into account

changes of height and roll, yaw and pitch angles of the robot.

This 6D robot relocalization is essential for robots driving

cross country or in mines.

6D matching approaches of 3D surfaces can be classified

into two categories: First, scan matching as optimization prob-

lem uses a cost function for the quality of the alignment of the

scans. The range images are registered by determining the rigid

transformation (rotation and translation) which minimizes the

cost function. Second, feature based scan matching extracts

distinguishing features of the range images and uses corre-

sponding features for calculating the alignment the scans. Even

though through this approach is more intuitive, it cannot be

applied to scan matching in mines, since the surface structure

of the mine is too simple. In consequence there are not many

features and an algorithm based on feature matching will fail

[22], [17].

A. Matching as Optimization

The following method for registration of point sets is part of

many publications, so only a short summary is given here. The

complete algorithm was invented in 1992 and can be found,

e.g., in [5]. The method is called Iterative Closest Points (ICP)

algorithm.

Given two independently acquired sets of 3D points, M

(model set, |M | = Nm) and D (data set, |D| = Nd)

which correspond to a single shape, we want to find the

transformation consisting of a rotation R and a translation

t which minimizes the following cost function:

E(R, t) =

Nm
∑

i=1

Nd
∑

j=1

wi,j ||mi − (Rdj + t)||
2
. (1)

wi,j is assigned 1 if the i-th point of M describes the same

point in space as the j-th point of D. Otherwise wi,j is 0. Two

things have to be calculated: First, the corresponding points,

and second, the transformation (R, t) that minimize E(R, t)
on the base of the corresponding points.

The ICP algorithm calculates iteratively a local minimum

of equation (1). In each iteration step, the algorithm selects

the closest points as correspondences wi,j and calculates the

transformation (R, t) for minimizing equation (1). Fig. 2

shows three steps of the ICP algorithm. Besl and McKay prove

that the method terminates in a minimum [5]. The assumption

is that in the last iteration step the point correspondences are

correct.

In each ICP iteration, the transformation is calculated by

the quaternion based method of Horn [15]: A unit quaternion

is a 4 vector q̇ = (q0, qx, qy, qz)
T , where q2

0 + q2
x + q2

y + q2
z =

1, q0 ≥ 0. It describes a rotation axis and an angle to rotate

around that axis. A 3×3 rotation matrix R is calculated from

the unit quaternion according the the following scheme: R =
(

(q2

0
+ q2

x − q2

y − q2

z) 2(qxqy + qzq0) 2(qxqz + qyq0)

2(qxqy + qzq0) (q2

0
− q2

x + q2

y − q2

z) 2(qyqz − qxq0)

2(qzqx − qyq0) 2(qzqy + qxq0) (q2

0
− q2

x − q2

y + q2

z)

)

.

Fig. 2. Left: Initial odometry based pose of two 3D scans. Middle: Pose
after five ICP iterations. Right: final alignment.

To determine the transformation, the mean values of the paired

points (centroid vectors) cm and cd are subtracted from all

points in M and D, respectively, resulting in the sets M ′

and D′. The rotation expressed as quaternion that minimizes

equation (1) is the largest eigenvalue of the cross-covariance

matrix

N =

(

(Sxx + Syy + Szz) (Syz + Szy)
(Syz + Szy) (Sxx − Syy − Szz)
(Szx + Sxz) (Sxy + Syx)
(Sxy + Syx) (Syz + Szy)

(Szx + Sxz) (Sxy + Syx)
(Sxy + Syx) (Szx + Sxz)

(−Sxx + Syy − Szz) (Syz + Szy)
(Szx + Sxz) (−Sxx − Syy + Szz)

)

,

with Sxx =
∑Nm

i=1

∑Nd

j=1 wi,j m′

ixd′jx, Sxy =
∑Nm

i=1

∑Nd

j=1 wi,j m′

ixd′jy , . . . . After calculation the rotation

R, the translation is determined by t = cm−Rcd [15]. Fig. 2

shows two 3D scans in their initial, i.e., odometry-based pose,

after 5 iterations, and the final pose. 40 iterations are needed

to align these two 3D scans correctly.

B. Matching Multiple 3D Scans

To digitalize environments, multiple 3D scans have to be

registered. After registration, the scene has to be globally con-

sistent. A straightforward method for aligning several 3D scans

is pairwise matching, i.e., the new scan is registered against

the scan with the largest overlapping areas. The latter one is

determined in a preprocessing step. Alternatively, Chen and

Medioni [7] introduced an incremental matching method, i.e.,

the new scan is registered against a so-called metascan, which

is the union of the previously acquired and registered scans.

Each scan matching has a limited precision. Both methods

accumulate the registration errors such that the registration of

many scans leads to inconsistent scenes and to problems with

the robot localization.

Pulli presents a registration method that minimizes the

global error and avoids inconsistent scenes [19]. This method

distributes the global error while the registration of one scan

is followed by registration of all neighboring scans. Other

matching approaches with global error minimization have been

published, e.g., by Benjemaa et. al. [4] and Eggert et. al. [9].



Based on the idea of Pulli we have designed a method called

simultaneous matching [17], [22]. Thereby, the first scan is the

master scan and determines the coordinate system. This scan

is fixed. The following steps register all scans and minimize

the global error:

1) Based on the robot odometry, pairwise matching is used

to find a start registration for a new scan. This step

speeds up computation.

2) A queue is initialized with the new scan.

3) Three steps are repeated until the queue is empty:

a) The current scan is the first scan of the queue. This

scan is removed from the queue.

b) If the current scan is not the master scan, then a set

of neighbors (set of all scans that overlap with the

current scan) is calculated. This set of neighbors

forms one point set M . The current scan forms

the data point set D and is aligned with the ICP

algorithms.

c) If the current scan changes its location by applying

the transformation (translation or rotation), then

each single scan of the set of neighbors that is not

in the queue is added to the end of the queue.

Note: One scan overlaps with another iff more than 250

corresponding point pairs exist.

In contrast to Pulli’s approach, the proposed method is

totally automatic and no interactive pairwise alignment has

to be done. Furthermore the point pairs are not fixed [19].

The accumulated alignment error is spread over the whole set

of acquired 3D scans. An explicit detection of closed loops for

the proposed solution to the SLAM problem is not necessary,

multiple overlapping 3D scans are sufficient to diffuse the

alignment error equally over the set of 3D scans.

C. Data Reduction

The computational expense of the ICP algorithm depends

mainly on the number of points. In a brute force implemen-

tation the point pairing is in O(n2). Data reduction reduces

the time required for matching. Several approaches have been

presented for subsampling the data, including randomized

sampling, uniform sampling, normal-space sampling and co-

variance sampling [20], [12]. Randomized sampling selects

points at random, uniform sampling draws samples equally

distributed samples from the input point cloud. Normal space

sampling, as proposed by Rusinkiewicz and Levoy, aims at

constraining translational sliding of input meshes, generated

from the point cloud [20]. Their algorithm tries to ensure

that the normals of the selected points uniformly populate

the sphere of directions. Covariance sampling as proposed

by Levoy et al. and extends the nomal space approach. They

identify whether a pair of meshes will be unstable in the ICP

algorithms by estimating a covariance matrix from a sparse

uniform sampling of the input [12].

The data reduction proposed here considers the procedure

of the scanning process, i.e., the spherical and continuous

measurment of the laser. Scanning is noisy and small errors

Fig. 4. A point cloud of a 3D laser scan taken inside the Mathies Mine
(perspective projection). Top left: Viewing pose 2.5 meter behind the scan
pose. Top right: Top view. Bottom: Reduced and filtered point cloud. The
reduced points have been enlarged. The number of points was reduced from
123101 to 10535.

may occur. Two kinds of errors mainly occur: Gaussian noise

and so called salt and pepper noise. The latter one occurs

for example at edges, where the laser beam of the scanner

hits two surfaces, resulting in a mean and erroneous data

value. Furthermore reflections lead to suspicious data. Without

filtering, only a few outliers lead to multiple wrong point pairs

during the matching phase and results in an incorrect 3D scan

alignment.

We propose a fast filtering method to reduce and smooth

the data for the ICP algorithm. The filter is applied to each

2D scan slice, containing 361 data points. It is a combination

of a median and a reduction filter. The median filter removes

the outliers (Fig. 3) by replacing a data point with the median

value of the n surrounding points (here: n = 7). The neighbor

points are determined according to their number within the

2D scan, since the laser scanner provides the data sorted in

a counter-clockwise direction. The median value is calculated

with regards to the Euclidian distance of the data points to

the point of origin. In order to remove salt and pepper noise

but leave the remaining data untouched, the filtering algorithm

replaces a data point with the corresponding median value if

and only if the difference (Euclidian distance) between both is

larger than a fixed threshold (here: threshold = 200 cm). The

data reduction works as follows: The scanner emits the laser

beams in a spherical way, such that the data points close to

the source are more dense. Multiple data points located close

together are joined into one point. This reduction lowers the

Gaussian noise. The number of these so called reduced points

is in the mine application one order of magnitude smaller than

the original one (Fig. 3). Finally the data points of a slice have

a minimal distance of 10 cm and approximate the surface. The

clue of the algorithm is that it is nearly impossible to detect

differences between the median filtered and the reduced data

(Fig. 3). The reduction fulfills the sampling criterions stated

by Boulanger et al. [6], i.e., sampling the range images, such

that the surface curvature is maintained.

The data for the scan matching is collected from every third

scan slice. This fast vertical reduction yields a good surface

description. Data reduction and filtering are online algorithms

and run in parallel to the 3D scanning.



Fig. 3. Filtering the data for removing noise and reducing the computational expense for the ICP algorithm. Left: Original data. Middle: median filter. Right:
median filtering combined with reduction. Notice: The data points have been connected with lines for better demonstration of effects from the median filter.
The reduced and filtered data fits the scanned surface perfectly.

D. Data Access

The ICP algorithms spends most of its time in creating the

point pairs. kD-trees (here k = 3) have been suggested to

speed up the data access [21]. The kd-trees are a binary tree

data structure with terminal buckets. The data is stored in the

buckets and the keys are selected, such that a data space is

divided into two equal parts. This ensures that a data point

can be selected in O(log n). The proposed SLAM algorithm

benefits from fast data access. In addition, the time spent on

creating the tree is important.

For a given data set, larger bucket size results in smaller

number of terminal buckets and hence less computational time

to build the tree. The implemented algorithm uses a bucket size

of 10 points and cuts recursively the scanned volume in two

equal-sized halves. Once the tree is built, the nearest neighbor

search for a given data point p starts at the root of the tree.

Each tree node contains the cut dimension, i.e., orientation of

the cut plane and the cut value. By comparing the coordinate

of the given 3D point at the cut dimension with the cut value

of this tree node, the search knows which branch to go for

next level of tree node, it will compare the cut value of this

tree node and go down further. This process is repeated until

the terminal bucket that contains the closest data points pb is

reached. It may occur, that the true neighbor lies in a different

bucket, e.g., if the distance between p and a boundary of its

bucket region is less than the distance p and pb. In this case

kd-tree algorithms have to backtrack, until all buckets that

lie within the radius ||p − pb|| are explored. This is known

as the Ball-Within-Bounds tests [13]. The number of distance

computations is minimal for the smallest bucket size, i.e., one

point per bucket. Nevertheless the running time of a kd-tree

decreases for a slightly larger bucket size. This is due to the

greater cost of backtracking as compared to a simple linear

traversal of a small list within the bucket.

Recently, Greenspan and Yurick introduced Approximate

kd-trees (Apr-kd-tree) [13]. The idea behind this is to return

as an approximate nearest neighbor pa the closest point pb

in the bucket region where p lies. This value is determined

from the depth-first search, thus expensive Ball-Within-Bounds

tests and backtracking are not used [13]. In addition to these

ideas we avoid the linear search within the bucket. During

the computation of the Apr-kd-tree, the mean values of the

points within a bucket are computed and stored. Then the mean

value of the bucket is used as approximate nearest neighbor,

Fig. 5. Running time of scan registration using kd-tree search and approxi-
mate kd-tree search with different bucket sizes.

replacing the linear search.

The search using the Apr-kd-tree is applied until the error

function E(R, t) (1) stops decreasing. To avoid misalignments

due to the approximation, the registration algorithm is restarted

using the normal kd-tree search. A few iterations (usually

1-3) are needed for this final corrections. Fig. 5 shows the

registration time of two 3D scans in dependence to the bucket

size using kd-tree or Apr-kd-tree search. Both search methods

have their best performance with a bucket size of 10 points.

V. THE MATHIES MINE EXPERIMENT

Groundhog’s development began in the Fall of 2002 by the

CMU Mine Mapping Team [10], [24]. The robot was exten-

sively tested in a well-maintained inactive coal mine accessible

to people: the Bruceton Research Mine located near Pittsburgh,

PA. However, this mine is technically not abandoned and

therefore not subject to collapse and deterioration. On May

30, 2003 Groundhog finally entered an inaccessible abandoned

mine in fully autonomous mode. The mine is known as the

Mathies mine and is located in the same geographic area

as the other mines. The core of this surface-accessible mine

consists of two 1.5-kilometer long corridors which branches

into numerous side corridors, and which are accessible at

both ends. This was an important feature of this mine, as it

provided natural ventilation and thereby reduced the chances

of encountering combustible gases inside the mine.

To acquire an accurate 3D map of one of the main corridors,

the robot was programmed to autonomously navigate through

the corridor. 250 meters into the mine, the robot encountered

a broken ceiling bar draping diagonally across its path. The

robot made the correct decision to retract. The data acquired

on these runs has provided us with models of unprecedented

detail and accuracy, of subterranean spaces that may forever

remain off limits for people.



TABLE I

Computing time and number of ICP iterations to align two 3D scans

(Pentium-IV-2400). The time values, excluding the brute force, and the

number of iterations are averages over 48 3D scans. In addition the

computing time for the SLAM algorithm (simultaneous matching) is given.

points used time # ICP iterations

all points & brute force search 4 h 25 min 45
all points & kD–tree 6.8 sec 45
all points & Apx-kD–tree 5.9 sec 45
reduced points & Apx-kD–tree <0.62 sec 42

3D SLAM with 42 (step 1)
reduced points & Apx-kD–tree 52 sec 497 (step 3)

VI. RESULTS AND CONCLUSIONS

The algorithms have been applied to data collected in the

Mathies Mine after the robot returned. Table I summarizes

the results for the 3D scan matching and 6D SLAM. It is

shown that using approximate kd-tree search decreases the

running time of the proposed scan matching algorithms about

15%. Nevertheless, the main speedup is reached by the data

reduction, resulting in a real-time capable ICP algorithm. The

6D SLAM algorithm can be used on an inspection robot

for mines, the time needed for global consistent registration

roughly corresponds to the time, needed to drive to the next

scanning pose.

Fig. 6 shows the result of the Mathies Mine mapping. The

top plot shows the 2D map, i.e., xz-map, where z is the depth

axis. The bottom part shows the elevation, i.e., the xy-map.

The Groundhog robot had to overbear a height of 4 meters

during its 250 meter long autonomous drive.

To visualize the scanned 3D data, a viewer program based

on OPENGL has been implemented. The task of this program

is to project the 3D scene to the image plane, i.e., the

monitor, such that the data can be drawn and inspected from

every perspective. Fig. 2 and 4 show rendered 3D scans.

A video of all matched 3D scans is available for download

at www.ais.fraunhofer.de/ARC/3D/mine/. C This

paper has presented a new solution to the simultaneous lo-

calization and mapping (SLAM) problem with six degrees of

freedom. Based on the ICP algorithm the registration error

is globally spread over all 3D scans and thus minimized.

The presented algorithms are significant speeded up with

data reduction that maintains the surface structure and with

approximate kd-tree for closest point search.
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