
6DMG: A New 6D Motion Gesture Database

Mingyu Chen
mingyu@gatech.edu

Ghassan AlRegib
alregib@gatech.edu

Biing-Hwang Juang
juang@gatech.edu

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332

ABSTRACT
Motion-based control is gaining popularity, and motion ges-
tures form a complementary modality in human-computer
interactions. To achieve more robust user-independent mo-
tion gesture recognition in a manner analogous to automatic
speech recognition, we need a deeper understanding of the
motions in gesture, which arouses the need for a 6D mo-
tion gesture database. In this work, we present a database
that contains comprehensive motion data, including the po-
sition, orientation, acceleration, and angular speed, for a set
of common motion gestures performed by different users. We
hope this motion gesture database can be a useful platform
for researchers and developers to build their recognition al-
gorithms as well as a common test bench for performance
comparisons.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: General; I.4.8 [Image Pro-

cessing and Computer Vision]: Scene Analysis—mo-
tion, sensor fusion, tracking

General Terms
Measurement

Keywords
6D Motion Tracking, Motion Gesture

1. INTRODUCTION
Human gestures can be broadly categorized as static, dy-
namic, or both, and they can be performed by hand, face,
or body. Hand gestures are often the most frequently used
and the most expressive. Among all human gestures, we are
most interested in motion gestures, the dynamic gestures
resulted from the user’s body motion. More specifically, we
focus on motion gestures of deliberate hand movements.

With the development of tracking technologies, motion-based
control and motion gestures are gaining popularity and form-

ing a complementary modality in human-computer inter-
actions beyond the traditional devices (e.g., mouse, track-
ball, or touch-pad, etc.) and modes (e.g., touch and voice).
The gaming experience of Wii, PlayStation 3 Move, and
XBox 360 Kinect best exemplifies this idea. Motion ges-
tures in game plays are usually limited in vocabulary size,
and the recognition process normally follows certain scripts,
to mimic the user’s real-world motions and to trigger corre-
sponding actions in the virtual world. When the player gets
involved in the game, it is natural for him or her to follow
the script that guides his or her motion, so as to comply
with the motion recognition design in the game. Errors or
ambiguity in motion recognition often can be resolved by
limiting the possible options in the script.

When we extend the use of motion gestures from gaming to
a general user interface, the system is expected to be able to
handle a much larger set of motion gestures, which are likely
to be rendered naturally with a substantial range of variabil-
ity. As a result, the robustness and accuracy of the motion
recognition algorithm become the primary challenge. Since
high accuracy is desired for user satisfaction, it becomes very
important to design a set of motion gestures that are large
enough to support a general user interface and conform to
natural human motions with customary semantic interpre-
tations. These gestures can be displacement in position or
orientation, and have speed, acceleration, or other kinematic
properties. Different types of motion gestures may have dis-
criminative features in different domains. Gesture recogni-
tion can be implemented using machine learning techniques,
such as Hidden Markov Models [10, 15, 1], Finite State Ma-
chines [11], Dynamic Time Warping [8], data-driven tem-
plate matching [20, 7], or feature-based statistical classifier
[12, 6]. The reported correct recognition rates are above
90% on average. There is still room for improvement if ex-
pressions of motion gesture can be more rigorously formal-
ized. The more precisely we can track the motion, the better
recognition results we may achieve.

Although 2D tracking may be sufficient for general graphic
user interfaces in the past, the time has come for a 6 DOF
tracking capability. As human-machine interactions occur
increasingly in virtual environments or through an emerging
3D user interface (3DUI), the interaction is more intuitive
and immersive if we can control the position and orienta-
tion simultaneously, which requires 6 DOF motion tracking
[18]. In such systems, we can capture 6D motion gestures
with no extra cost since they already possess the required

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

MMSys Chapel Hill, North Carolina, USA

 Copyright 2012 ACM 978-1-4503-1131-1/12/02 ...$10.00.

83

tracking capabilities, and the comprehensive tracking infor-
mation comes as a side product which can be beneficial to
the process of motion gesture recognition.

There is no standard or consensus on how motion gestures
should be defined, performed, and mapped onto commands
invoked on the system. Wobbrock [19] elicited motions from
20 participants in response to a variety of tasks to find the
commonalities in mental models for user-defined gestures.
The design of motion gestures can be considered as manip-
ulating established motion taxonomies while preserving the
logical (and conventional) mapping of causes to effects [13].
MAGIC [2] helps the designer create motion gestures with
information on internal consistency, the distinguishability
between gesture classes, and false positives. The design or
logical function mapping of motion gestures is not in the
scope of this paper; rather, we focus on the essence of the
motion itself.

Similar to the case of speech recognition, it is desirable that
the recognition system accommodates user-specific adap-
tation or customization, but it is also very important to
achieve robust user-independent recognition. If we find a
way to represent a motion gesture as a string of motion
“alphabets”, the recognition problem can be restated and
solved in a manner analogous to automatic speech recog-
nition. Therefore, we need a much better understanding of
the motions in gestures, which arouses the need for a motion
gesture database.

In this work, we present a database that contains compre-
hensive spatio-temporal data, including the position, orien-
tation, acceleration, and angular speed, for a set of motion
gestures performed by different users. Our contribution in
this paper includes the rationale and analysis of a number of
factors that may prove imperative in ensuring the sustain-
able usefulness of the database. The gesture set consists of
widely used motion gestures such as circle, cross, v-shape,
roll (wrist twisting), etc. It also has the most basic swip-
ing motions which may be considered as the basic elements
to form other complex gestures. Variations of the same ges-
ture between individuals are expected, and recording motion
gestures from different users ensures inclusion of the in-class
variability. We would like to publish this database for people
to derive, verify, and compare their recognition algorithms
with it.

2. WHY 6D MOTION GESTURE?
The hand is a dexterous object with more than 20 degrees
of freedom (DOF). Due to the interdependencies between
fingers and joints, we can reduce the DOF, but studies have
shown that it is not possible to use less than six dimensions
[4]. In our case, the motion gestures are composed only by
the location and orientation of the hand or the handheld
device, i.e., 6D motion gestures.

Common motion gestures are mostly defined with 2D move-
ments on a plane (usually the vertical plane), and we can
perform recognition as if the motion gesture is captured with
an image plane parallel to the motion plane. It is natural
that human motions are still in 3D even though we intend to
perform planar motions. Therefore, information other than
2D trajectory, such as depth and orientation, may give more

insight into the motion gesture and improve the accuracy
and robustness of recognition. For planar motion gestures,
we can also derive the orientation of the motion plane, which
can be useful in assigning directional meanings. Moreover,
we are no longer limited to planar motion gestures if full
spatial tracking results are available. Any type of motion
can be considered as a gesture as long as it can be differenti-
ated from others, and it is thus possible for designers and/or
users to define their own motion gestures.

3. MOTION TRACKING
We have to capture the motion gestures before performing
the recognition. Motion can be tracked via vision-based sys-
tems or via attaching sensors to the human’s body. Based
on images or videos, computer vision techniques for hand
detection usually consider motion gestures as signals of 2D
position and perhaps orientation. With the help of stereo or
multi-view cameras, it is possible to track 3D position and
orientation of the hand [17, 14]. Vision-based techniques
provide more natural and unencumbered interaction. Xbox
360 Kinect demonstrates the tracking capabilities of human
body in 3D, but it also has limitations on resolution and
precision. For example, it cannot track subtle hand move-
ments such as wrist twisting. Moreover, the accuracy and
the robustness of vision-based systems are affected by many
factors such as illumination and lighting, color of existing
objects, and occlusion instances. In this work, our goal is
to record accurate motions with as minimum noise intro-
duced by the system as possible. Therefore, we use tracking
devices to capture the precise position and orientation of
the motion. Nevertheless, the generated motion database as
illustrated in the remaining of the paper is still useful for
vision-based recognition systems. One could consider our
database as the ground truth hand motion.

There are several technologies for 3D motion tracking, such
as optical-sensing, inertial-sensing, and magnetic-sensing [18].
These sensing technologies have their individual influence
on the sampling rate, latency, spatial resolution, and spatio-
temporal accuracy in implementation. Among them, we pro-
pose a hybrid framework that combines optical sensing and
inertial sensing. The former measures the position of the
optical tracker, and the latter estimates the orientation of
the tracking device.

Optical motion tracking provides accurate estimation at a
relatively high speed with small and untethered user-worn
components. The tracking target can be either active / re-
flective markers or features extracted from video frames by
vision-based techniques. A primary constraint of all optical
systems is that there must be a clear line of sight between
the tracking target and the optical sensor, and at least two
pairs of the tracker-sensor relationships are needed for valid
triangulation to determine the position of the trackers. The
sampling rate of optical motion tracking depends on the
frame rate of the cameras. 3D input devices usually have
higher tracking noise compared to planar pointing devices,
and are subject to hand tremor if held in space. More thor-
ough study of the characteristics of spatio-temporal signals
acquired by optical motion tracking has been done in [16,
3].

Comparing to optical motion tracking, inertial sensors have

84

smaller latency and a much higher sampling rate. The ac-
curacy of inertial sensing has been studied in static, quasi-
static, and dynamic cases [5]. The inertial tracking device
here refers to the Micro-Electro-Mechanical System (MEMS)
accelerometers and gyroscope, which can be commonly found
in the smartphone nowadays. The accelerometers measure
the accelerations in the device-wise coordinates, and the gy-
roscope measures the angular speeds in yaw, pitch, and roll.
The orientation, as a measurement, is actually accumulated
from the angular speeds based on a global reference frame
which can be determined by measuring the direction of grav-
ity, and the magnetic north if magnetic sensors are equipped.

We can calculate the motion trajectory by integrating the
accelerations along the corresponding orientation but can-
not rely on its accuracy due to the drifting problem and
error propagation over time. Hence, we use optical motion
tracking for the trajectory and employ inertial tracking to
supplement the orientation measurement. In addition to the
6 DOF of position and orientation, we actually have six ex-
tra dimensions from accelerations and angular speeds, which
also infer the kinematic properties of the motion gestures.

In this work, we use WorldViz PPT-X4 as the optical track-
ing system, which tracks infrared dots at 60 Hz and trans-
mits the tracking results with Virtual Reality Peripheral
Network (VRPN) through Ethernet. It claims to have sub-
millimeter precision and sub-centimeter accuracy with min-
imum 18 ms latency. As for the inertial sensors, we use the
MEMS accelerometers and gyroscope embedded in Wii Re-
mote Plus (Wiimote), which samples and reports at about
100 Hz. WiiYourself! library is used to communicate with
Wiimote through Bluetooth.

4. MOTION GESTURE RECORDING
4.1 Recording System Setup
With the hybrid framework of motion tracking, we are able
to record the motion gestures and build the database. We
mount an infrared LED at the head of the Wiimote to fuse
the two tracking devices together. The Object-Oriented
Graphics Rendering Engine (OGRE) is used to render a con-
troller with 6D motions captured by the hybrid framework,
so as to provide the user with real-time feedback. We prop-
erly adjust the scale of the 3D model to make the rendered
motion and the real-world action as close to one-to-one as
possible. We further utilize the 3D display technology to
provide better perception for the motion in depth.

The sampling rate is chosen to be 60 Hz, so the engine is
set to update the motion data and render at 60 frames per
second (fps). Even though the PPT system, Wiimote, and
the render engine sample at different instants, we consider
that they are synchronized with various delay and negligible
latency jitter. The system continuously tracks the controller
and updates the virtual controller on the display. However,
only motions with explicitly signaled start and end points
by the user are recorded. In our implementation, the user
simply holds a button to start recording and releases it to
stop. This button holding does not restrict the user from
performing a natural and desired motion. Nevertheless, it
is still possible that the recording is started or terminated
early or late. Since this is also likely to happen in a real-
world scenario, we consider the imprecise segmentation as

Figure 1: The experiment apparatus

part of the variation of the gesture data.

During the gesture recording, we also shoot video asynchro-
nized to the tracking devices. The camcorder is placed in
front of the user and focuses on the hand motion. The sup-
porting video is recorded at full HD resolution (1920×1080p).
It serves the purpose for reference and can be used for vision-
based analysis later. This contributes to having a complete
database for the intended hand motions.

We also add a real-time playback function for the user to re-
view the recorded trial of a motion gesture before it is stored
into the database. We let the tester accept or reject the ten-
tatively recorded motion gesture on the fly, which is more
efficient than verifying the database offline at a later stage.
After the user reviews and decides to save the recorded trial,
the controller rumbles for 30 ms to confirm that the trial
has been successfully inserted into the database. The trial
number of the current gesture is also automatically updated
based on the number of trials that have been saved.

The system always shows a virtual controller with one-to-
one motion mapping to provide real-time visual feedback.
A semi-transparent red overlay on the controller is shown
while recording, and a semi-transparent green overlay in-
dicates the system is displaying a playback. The current
recording gesture name, tester, and the current trial number
are also displayed. Figure 1 illustrates the gesture recording
apparatus.

4.2 Motion Gesture Set
We consider swiping motions as the basic elements to form
other complex gestures and hence include the group of swip-
ing motions in eight directions into the gesture set as shown
in Figure 2a. We also define a group of “poke” gestures that
swipe rapidly forth and back in four directions (see Figure
2b). Other widely used motion gestures such as circle, cross,
v-shape, wrist twisting (Figure 2c-2g) are included. Table
1 lists the full list of the names and statistics on durations
of our 20 motion gestures. There are no “mirror” gestures,
which means the direction and rotation are the same for both
right- and left-handed users. New motion gestures may be
added if needed in the future.

For every user, the gripping posture and the way he or
she performs a given gesture can be different from one an-
other. These variations are considered inherent in natural

85

(a) Swipe (b) Poke (c) Vshape

(d) Xshape (e) CirHor (f) CirVer

(g) Twist (Roll)

Figure 2: The illustration of gestures in our database

Table 1: The gesture list of 6DMG

Figure Name
Duration (ms)
Avg. Std.

2a

SwipeRight 866.2 345.2
SwipeLeft 861.1 340.7
SwipeUp 743.6 258.7
SwipeDown 787.9 277.8
SwipeUpright 754.5 282.7
SwipeUpleft 748.9 291.4
SwipeDnright 777.1 313.9
SwipeDnleft 792.4 317.7

2b

PokeRight 1181.6 383.3
PokeLeft 1242.4 418.4
PokeUp 1206.4 389.9
PokeDown 1183.6 415.6

2c Vshape 1193.5 394.5
2d Xshape 1655.2 466.1

2e
CirHorClk 1738.4 449.2
CirHorCclk 1719.9 500.5

2f
CirVerClk 1806.5 549.3
CirVerCclk 1707.7 532.1

2g
TwistClk 1054.8 315.5
TwistCclk 1075.9 315.3

gesture rendering and need to be properly accounted for in
the database, which is key to modeling and testing a user-
independent motion gesture recognition task. We also would
like to explore the differences between motion gestures per-
formed by right-handed and left-handed users.

4.3 Recording Procedure
We recruited 21 right-handed and 7 left-handed participants
(22 male and 6 female, and ranging in the age of 15 to 33)
for recording. We first explain the basic functions of the
motion controller to the tester, and let him or her play with
the device for a while. Once the tester is familiar with the
control interface, we start the recording process described as
follows,

1. The tester resets the origin to a location he or she feels
comfortable to start with.

2. The system selects a motion gesture from the set in the
order as shown in Table 1, and briefly demonstrates it
to the tester.

3. The tester presses and holds Button B during record-
ing and releases the button upon termination of the
trial.

4. After performing each trial, the tester reviews the play-
back and decides to save it or not.

5. After recording 10 trials, repeat Step 2 until all ges-
tures in the set are recorded.

When recording, we advised the subject to perform the ges-
ture in a consistent way, but we did not constrain his or her
gripping posture, the gesture articulation style, range, and
speed. The tester is asked to perform the soft calibration at
the beginning of each trial. The hard calibration is required
before starting a new set of gesture recording. The calibra-
tion processes will be explained later. The overall recording
session per tester is less than one hour.

The accelerations and angular speeds of Wiimote are ac-
cessed through WiiYourself!, and we have to process the
raw data as in Listing 1 for two reasons. First, the Wi-
imote coordinates need to be converted to the Ogre coor-
dinates (see Figure 3). Second, we compensate the bias of
angular speeds, where bias stores the estimated values of
angular speeds when the gyroscope is static. After the con-
version, we can compute the orientation. The Kalman filter
has become the widespread orientation filter algorithms, but
Kalman-based solutions demand a large computational load
and high sampling rates, e.g., between 512 Hz and 30 kHz
for human motion tracking. Hence, we implement the ori-
entation estimation based on Madgwick’s method [9], which
is reported to perform similar and slightly better than the
Kalman filter at relatively low rate with much lower compu-
tation.

We fuse the accelerations, i.e., the indication of gravity, to
estimate the pitch and roll from the gyroscope. Unfortu-
nately, Wiimote is not equipped with magnetometers, and
we don’t have yawmag for automatic calibration in yaw. The
orientation is updated in the background whenever a report
is received from Wiimote, roughly every 10 ms, and our
system fetches the orientation information at 60 Hz. Our

86

Figure 3: The coordinate conversion from Wiimote to Ogre

experimental results show that the orientation estimation is
stable enough for the purpose of gesture recording. Also,
all the processed accelerations, angular speeds, and bias in
Listing 1 are available in our motion database if other tech-
niques for orientation estimation are preferred.

Since the estimated orientation still suffers from the drift-
ing issue and error propagation in yaw, we implement two
methods for calibration. Hard calibration requires the con-
troller to rest statically with the device coordinates aligned
to the world coordinates for 5 seconds to estimate the bias
(average) and the noise level (standard deviation) of the an-
gular speeds in yaw, pitch and roll. However, the bias may
still drift over time due to the heat issue, so we have to re-
estimate it after a certain period of time. Soft calibration
simply resets the orientation of the controller to identity
quaternion (aligned to the world coordinates) and continues
to accumulate the data measurement without bias estima-
tion. Thus, the hard calibration is intended to tackle the
drifting bias issue, and the soft calibration is the quick hack
to eliminate the error propagation and drifting in yaw.

In addition to the orientation calibration, the user can reset
the origin of the tracking position to any location that he or
she feels comfortable to start with, even though the absolute
position may not be a concern. We link the control functions
above to the buttons on Wiimote for remote control.

5. 6D MOTION GESTURE DATABASE
In our implementation, a formal database structure is used
to store the recorded motion gestures, which makes the man-
agement between gestures, testers, and trials very handy.
The database structure can also be convenient for further
development on motion gesture recognition. We use SQLite,
a self-contained, serverless, zero-configuration, transactional
SQL database engine for this purpose. The complete SQL
database is contained in a single disk file, and the user can
easily access it without installing any database server. All is
needed is to include the SQLite library and a C++ header
file that defines the structured type of samples and ges-
tures. The SQLite schema of the database is shown in List-
ing 2. We also provide example programs: 6DMG loader
and viewer to access and visualize the motion gestures (3D
display is not required). To make the database portable and
to keep the flexibility, we store the raw binary data. The
data are also available in MAT format with the MATLAB
exporter included in the 6DMG loader. The loader can be
easily modified to export other specific file formats, such as

AMC, BVH, C3D, or CSV.

Listing 1: Convert the raw Wiimote data (via WiiY-
ourself!)

ogre.yaw = -(wiimote.yaw -bias.yaw);
ogre.pitch = (wiimote.pitch-bias.pitch);
ogre.roll = -(wiimote.roll -bias.roll);
ogre.acc_x = - wiimote.acc_x;
ogre.acc_y = wiimote.acc_z;
ogre.acc_z = wiimote.acc_y;

Listing 2: The schema of GestureTable

CREATE TABLE GestureTable(
name TEXT NOT NULL,
tester TEXT NOT NULL,
trial INTEGER NOT NULL,
length INTEGER NOT NULL,
righthanded INTEGER NOT NULL,
data BLOB NOT NULL,
noise BLOB NOT NULL,
bias BLOB NOT NULL,
PRIMARY KEY (name, tester, trial)

);

Listing 3: The structure of samples and gestures

struct Sample{
float timestamp; // in ms
float position[3]; // in meter
float quaternion[4];
float acceleration[3]; // in g
float angular_speed[3]; // in rad/s

};
struct Gesture{

string name;
string tester;
int trial;
int length;
int rightHanded; // 1:right, 0:left
float noise[3]; // in degree/s
float bias[3]; // in degree/s
vector<Sample> data;

};

Listing 3 explains the data structure of the motion gesture in
the database. All the 3-element arrays store data in the x-y-z
order or in the yaw-pitch-roll order. Note that the orienta-
tion is stored in quaternion in the w-x-y-z order. Quater-
nions can be spherical linear interpolated without gimbal
lock. Even though it is easier to interpret or visualize Euler
angles, an Euler representation subjects to large and erratic
errors if it reaches a singularity. Compared to rotation ma-
trices, quaternions are more numerically stable and more
storage-efficient.

The accelerations and angular speeds stored in each sam-
ple are the converted values as in Listing 1. In case a user
wants to recover the raw angular speeds or derive the ori-
entation measurement with different algorithms, we include
the mean and standard variation of the angular speed of the
hard calibration, i.e., bias and noise in Listing 2.

6. CONCLUSIONS & FUTURE WORK

87

In this work, we first explain the potential need and im-
portance of 6D motion gestures, and then present a motion
gesture database of comprehensive motion data, including
the position, orientation, accelerations, and angular speeds,
which is named“6DMG”. The database itself is easy to man-
age and fully portable. 6DMG contains 20 motion gestures
and 5600 gesture samples recorded by 28 participants.

With this motion gesture database, we plan to investigate
motion gesture recognition using a hierarchical approach.
It is no longer a symbolic classification problem, and we
want to have a deeper understanding of motion gestures.
As in speech recognition, we are interested in robust user-
independent gesture recognition based on our 6D motion
gesture database, which can improve the accuracy and the
design space for motion gestures. Theoretically, both the
displacement in position and orientation can be inferred
from the accelerations and angular speeds. Our database
provides both the explicit (position and orientation) and im-
plicit (acceleration and angular speed) 6D motion data. The
data can be useful to investigate motion gesture recognition
with various dimensions of tracking signals. It is also an
interesting signal processing problem to make direct use of
raw data with the drifting issue.

We hope this motion gesture database can be a handy plat-
form for researchers and developers to build their recognition
algorithms and a common test bench for performance com-
parison. Moreover, a subset of information in our database,
e.g., only the accelerations, can be used. The most recent re-
lease of the 6D motion gesture database and the accompany-
ing example programs, including the viewer, loader, and ex-
porter, are available at: http://www.ece.gatech.edu/6DMG

7. REFERENCES
[1] C. Amma, D. Gehrig, and T. Schultz. Airwriting

recognition using wearable motion sensors. In Proc. of
the 1st Augmented Human Intl. Conf., AH ’10, pages
10:1–10:8, 2010.

[2] D. Ashbrook and T. Starner. Magic: a motion gesture
design tool. In Proceedings of the 28th international
conference on Human factors in computing systems,
CHI ’10, pages 2159–2168, New York, NY, USA, 2010.
ACM.

[3] M. Chen, G. AlRegib, and B.-H. Juang.
Characteristics of spatio-temporal signals acquired by
optical motion tracking. In Signal Processing (ICSP),
2010 IEEE 10th International Conference on, pages
1205 –1208, oct. 2010.

[4] A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and
X. Twombly. Vision-based hand pose estimation: A
review. Computer Vision and Image Understanding,
108(1-2):52 – 73, 2007.

[5] A. Godwin, M. Agnew, and J. Stevenson. Accuracy of
inertial motion sensors in static, quasistatic, and
complex dynamic motion. Journal of Biomechanical
Engineering, 131(11):114501, 2009.

[6] M. Hoffman, P. Varcholik, and J. LaViola. Breaking
the status quo: Improving 3d gesture recognition with
spatially convenient input devices. In Virtual Reality
Conference (VR10), pages 59 –66, Mar. 2010.

[7] S. Kratz and M. Rohs. Protractor3d: a closed-form

solution to rotation-invariant 3d gestures. In
Proceedings of the 16th international conference on
Intelligent user interfaces, IUI ’11, pages 371–374,
New York, NY, USA, 2011. ACM.

[8] J. Liu, L. Zhong, J. Wickramasuriya, and
V. Vasudevan. uwave: Accelerometer-based
personalized gesture recognition and its applications.
Pervasive and Mobile Computing, 5(6):657 – 675,
2009. PerCom 2009.

[9] S. Madgwick. An efficient orientation filter for inertial
and inertial/magnetic sensor arrays. Technical report,
Department of Mechanical Engineering, University of
Bristol, Apr. 2010.

[10] J. Mäntyjärvi, J. Kela, P. Korpipää, and S. Kallio.
Enabling fast and effortless customisation in
accelerometer based gesture interaction. In
Proceedings of the 3rd international conference on
Mobile and ubiquitous multimedia, MUM ’04, pages
25–31, New York, NY, USA, 2004. ACM.

[11] S. Mitra and T. Acharya. Gesture recognition: A
survey. IEEE TRANSACTIONS ON SYSTEMS,
MAN AND CYBERNETICS - PART C,
37(3):311–324, 2007.

[12] D. Rubine. Specifying gestures by example.
SIGGRAPH Comput. Graph., 25:329–337, Jul. 1991.

[13] J. Ruiz, Y. Li, and E. Lank. User-defined motion
gestures for mobile interaction. In Proceedings of the
29th international conference on Human factors in
computing systems, CHI ’11. ACM, 2011.

[14] Y. Sato, M. Saito, and H. Koik. Real-time input of 3d
pose and gestures of a user’s hand and its applications
for hci. In Proceedings of the Virtual Reality 2001
Conference (VR’01), VR ’01, pages 79–, Washington,
DC, USA, 2001. IEEE Computer Society.

[15] T. Schlömer, B. Poppinga, N. Henze, and S. Boll.
Gesture recognition with a wii controller. In
Proceedings of the 2nd international conference on
Tangible and embedded interaction, TEI ’08, pages
11–14, New York, NY, USA, 2008. ACM.

[16] R. Teather, A. Pavlovych, W. Stuerzlinger, and
I. MacKenzie. Effects of tracking technology, latency,
and spatial jitter on object movement. Proceedings of
IEEE Symposium on 3D User Interfaces, 9:43–50,
2009.

[17] A. Utsumi and J. Ohya. Multiple-hand-gesture
tracking using multiple cameras. In Computer Vision
and Pattern Recognition, 1999. IEEE Computer
Society Conference on., volume 1, pages 2 vol.
(xxiii+637+663), 1999.

[18] G. Welch and E. Foxlin. Motion tracking: no silver
bullet, but a respectable arsenal. Computer Graphics
and Applications, IEEE, 22(6):24 – 38, Nov 2002.

[19] J. O. Wobbrock, M. R. Morris, and A. D. Wilson.
User-defined gestures for surface computing. In
Proceedings of the 27th international conference on
Human factors in computing systems, CHI ’09, pages
1083–1092, New York, NY, USA, 2009. ACM.

[20] J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures
without libraries, toolkits or training: a $1 recognizer
for user interface prototypes. In Proc. of UIST ’07,
pages 159–168, 2007.

88

