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6G-enabled short-term forecasting for large-scale

traffic flow in massive IoT based on time-aware

Locality-Sensitive Hashing
Fan Wang, Min Zhu, Maoli Wang*, Mohammad R. Khosravi, Qiang Ni, Shui Yu, and Lianyong Qi

Abstract—With the advent of the Internet of Things (IoT)
and the increasing popularity of the Intelligent Transportation
System, a large number of sensing devices are installed on the
road for monitoring traffic dynamics in real-time. These sensors
can collect streaming traffic data distributed across different
traffic sites, which constitute the main source of big traffic data.
Analyzing and mining such a big traffic data in massive IoT can
help traffic administrations to make scientific and reasonable
traffic scheduling decisions, so as to avoid prospective traffic
congestions in the future. However, the above traffic decision-
making often requires frequent and massive data transmissions
between distributed sensors and centralized cloud computing
centers, which calls for lightweight data integrations and accurate
data analyses based on large-scale traffic data. In view of this
challenge, a big data-driven and non-parametric model aided by
6G is proposed in this paper to extract similar traffic patterns
over time for accurate and efficient short-term traffic flow
prediction in massive IoT, which is mainly based on time-aware
LSH (Locality-Sensitive Hashing). We design a wide range of
experiments based on a real-world big traffic dataset to validate
the feasibility of our proposal. Experimental reports demonstrate
that the prediction accuracy and efficiency of our proposal are
increased by 32.6% and 97.3%, respectively, compared with the
other two competitive approaches.

Index Terms—Short-term traffic forecasting, Intelligent Trans-
portation System, time-aware LSH, massive Internet of Things,
6G, large-scale traffic management.

I. INTRODUCTION

THE improvement of people’s living standards has led

to the expansion of data scale [1] and the growth of

the number of vehicles. In response to this situation, the
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development of the Internet of Things (IoT) and mobile com-

munication technologies render real-time traffic management

feasible [2] [3]. First, a large number of devices (e.g., sensors)

are installed on the road to monitor traffic dynamics in real-

time. Afterwards, 6G technology enables frequent but stable

traffic data transmission between these distributed sensors and

the cloud platform. Finally, the large-scale traffic sensing data

can be integrated to provide an effective reference for traffic

management.

Nevertheless, congestions and queues occur more and more

frequently nowadays, which requires traffic managers to devel-

op more effective traffic management strategies based on the

large-scale sensor data and anticipate flow breakdowns in the

future, especially during peak hours. A promising way is to

forecast traffic conditions accurately and timely from a short-

term perspective and allow traffic managers to understand

potential traffic variations instantly. Therefore, as a decision

support tool, the short-term traffic flow forecasting model for

large-scale traffic data in massive IoT is expected to make a

high contribution to active traffic management.

Due to the significance of predicting potential traffic volume

in advance, many researchers have devoted themselves to the

study of this topic in recent years [4]. Generally, a robust

traffic forecast algorithm requires excellent response time and

high accuracy. However, the explosive growth of data size

makes it difficult to forecast the expected volume timely.

Moreover, the prediction is generally based on sampled data

with small scales, which decrease the prediction precision to

some extent. As the inherent ills of the data-driven traffic

forecasting approach, these problems have become a major

obstacle to enhance the effectiveness of large-scale traffic

management.

In light of the issues above, we propose a 6G-enabled

short-term traffic flow forecasting algorithm in a large-scale

traffic environment based on time-aware Locality-Sensitive

Hashing (LSH) technology, named TracForetime−LSH . LSH

technology is a fast nearest-neighbor search technology for

massive high-dimensional data, which identifies whether the

data points are neighbors by mapping them into some buckets.

Traditional LSH is usually applied to privacy protection issues

in service recommendation scenarios [5] [6] [7]. Furthermore,

our TracForetime−LSH is a data-driven prediction approach

implemented on real historical sensor data, where the traffic

pattern of each sensor is aggregated in 15-min intervals

and traffic data transmission between distributed sensors and

centralized cloud computing platform is guaranteed by 6G



JOURNAL OF LATEX CLASS FILES 2

technology. In summary, we make the following contributions

in this paper.

(1) We propose a novel short-term traffic flow forecasting

model based on time-aware Locality-Sensitive Hashing to pur-

sue a more accurate real-time prediction in massive IoT. To the

best of our knowledge, this is the first work that incorporates

time-aware LSH technology into large-scale traffic forecasting.

(2) We conduct a wide range of experiments based on

a large scale real-world Intelligent Transportation Systems

(ITS) dataset collected from Nanjing city of China to validate

the performance of our proposal. The experimental results

show that our TracForetime−LSH outperforms the other two

approaches in terms of response time and forecast accuracy.

The rest of the paper is organized as follows. We review

related work following this introductory section. Following

the related work, the motivation of our research is presented.

This is followed by a detailed discussion about how our

TracForetime−LSH takes effect as well as the corresponding

experimental results. In the last section, we conclude the whole

paper and indicate some potential directions in our future

work.

II. RELATED WORK

Nowadays, many researchers are devoting themselves to

technologies in the context of the Internet of Things (IoT)

[8] [9] [10]. Based on IoT, Intelligent Transportation Systems

(ITS) is emerged as a novel paradigm to manage urban

traffic and bring convenience to the lives of residents [11].

As a vital element of ITS, short-term traffic flow forecasting

is a crucial topic that forecasts traffic patterns over a few

seconds to a few hours. As classified in [12], the traffic flow

forecasting approaches can be divided into three categories:

naive, parametric, and non-parametric methods. Considering

the diversity of short-term traffic flow prediction conditions,

we will discuss these three categories in detail according to

different traffic contexts.

Naive methods denote the traffic forecasting models based

on mathematical statistics, e.g., historical average and cluster-

ing approaches. Although Naive methods are with simplicity

and efficiency characteristics, they cannot reflect the uncer-

tainty and nonlinearity of traffic dynamics.

Parametric methods utilize the overall distribution of data to

estimate a set of parameter values and forecast future traffic

patterns. Some typical methods include ARIMA as well as

its variation SARIMA based on time series analysis [13],

macroscopic traffic flow analysis model for better accuracy

[14] to name just a few. Although this kind of methods are with

high prediction accuracy, they have a complicated parameter

estimation process and have been proven to be unfriendly to

unstable traffic environments.

Most of the non-parametric methods are data-driven and

free of restriction regarding the data distribution, including

neural networks, pattern recognition methods, and so on. In

recent years, due to the characteristics of adaptive ability and

flexibility, neural networks have received extensive attention

from scholars [15] [16]. Li et al. [17] utilize bayesian networks

to implement multiple measures chaotic time series prediction

approach. Besides, the recurrent neural network (RNN) is very

aggressive in processing time series corresponding to traffic

patterns, but it is prone to vanishing gradient problems. In

this situation, the variants of RNN, long short-term memory

(LSTM), and Gated recurrent units (GRU) can better alleviate

the issue [18]. Dai et al. [19] develop a gated recurrent

units (GRU) model based on traffic information to predict

traffic flow in short-term. Ma et al. [20] propose an LSTM

model for predicting the time cost during travel in urban.

However, the above studies only take time series instead of

more comprehensive contexts into account. To overcome their

drawbacks, Zhang et al. [21] employ convolutional neural

networks (CNN) to combine time and space information to

analyze traffic flow data. Nevertheless, all the above neural

network methods suffer from common shortcomings that are

without high interpretability and really depend on data scale.

On the other hand, K-nearest neighbor (K-NN) methods con-

duct short-term traffic flow forecasting by extracting valuable

characteristics in the dataset. Thus, we can draw an under-

standing of the prediction results from the execution of K-NN.

For instance, Lin et al. [22] combine K-NN with local linear

wavelet neural network to predict short term traffic flow. Zhang

et al. [23] propose an improved K-NN for short-term traffic

flow prediction. However, the data-driven K-NN technology

consumes a lot of time and its precision is not high enough.

Although researchers have made different enhancements on

the basis of K-NN, the accuracy of the enhanced K-NN has

not been greatly improved and the time consumption continued

to increase.

In general, since existing researches are often conducted in

various contexts, it is difficult to define whether a method is

the best. However, compared with parametric methods, a large

number of researchers have concluded that non-parametric

methods are better because of their powerful self-learning

functions and adaptive capabilities. Thus, we also propose a

data-driven non-parametric method, which can achieve more

accurate training results in a fairly short response time. Our

experimental results demonstrate that our proposal can be

easily incorporated into an online traffic control system and

achieve better performance.

III. MOTIVATION

Fig. 1. Traffic dynamics: an example.



JOURNAL OF LATEX CLASS FILES 3

Fig. 3. The technical architecture of our TracForetime−LSH .

Fig. 2. Graphical representation of our TracForetime−LSH .

We employ Fig. 1 to illustrate the motivation of this

paper vividly. As shown in Fig. 1, queues and increasingly

frequent congestions nowadays require more extensive traffic

monitoring. Therefore, the corresponding departments have

installed a great deal of devices on the traffic networks, such

as sensors in Fig. 1. Based on these sensors, all the real-

time traffic data will be provided to the cloud for processing,

during which the advanced 6G technology guarantees the

efficiency, stability, and integrity of the extensive distributed

data transmission. It can be said that implementing 6G-enabled

short-term traffic flow forecasting based on the integrated data

collected from all sensors is a promising way to provide

traffic managers with strategies to anticipate flow breakdowns

in the future. However, two issues arise in the traditional

short-term traffic flow forecasting methods: (1) The continuous

sensors as well as their observed big traffic data render the

instant response to variations in traffic conditions infeasible.

(2) Only a small portion of sampled data is utilized for

traffic flow prediction, which causes the predictive result not

accurate enough. Generally, a more effective road capacity

management strategy adopted from the forecasting algorithm

requires shorter response time and higher accuracy. In light of

this situation, we propose an efficient and accurate algorithm

named TracForetime−LSH , which will be introduced in the

subsequent section.

IV. TRAFFIC FLOW FORECASTING BASED ON LSH:

TracForetime−LSH

In this paper, we perform 6G-enabled traffic flow fore-

casting based on similar flow rate sequences in historical

traffic patterns recorded by sensors, where the historical traffic

patterns are the search spaces from which we obtain valuable

information. Our algorithm is based on the hypothesis that

if a previous profile is similar to the current profile, then the

subsequent values of the previous profile is similar to the future

values of the target profile. Hence, as graphically shown in

Fig. 2, given an incomplete traffic sequence of the target day

(depicted in solid red line in Fig. 2), i.e., the subject profile

desired to be forecasted, our algorithm aims to recognize

similar neighbors (depicted in solid black line and blue line

in Fig. 2) for it accurately and efficiently from a pool of

archived datasets. Concretely, we exploit the sequences in a

time window (denoted as lag duration) to determine similar

candidates. Then we aggregate the flow rate of the similar

profiles in some form and draw the future traffic volume of

the subject profile (depicted in broken green line in Fig. 2).

To facilitate the discussion of our proposed

TracForetime−LSH , we define several symbols as below:

(1) S = {s1, . . . , sm}: the set of sensors that record the

traffic dynamics.

(2) D = {d1, . . . , dp}: the set of dates in the archived

datasets that sensors monitor traffic dynamics.
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Fig. 4. Traffic flow representation in three-dimensional space.

(3) T = {t1, . . . , tn}: the set of time slices in the lag

duration with fixed time step, where the size of the set is

determined by the number of time steps included in the lag

duration, e.g., if the lag duration is 1 h and the time step is

15 minutes, then n = 4 (1 [h] * 60 [min/h] / 15 [min]).

(4) fi,j,k: the traffic flow of the sensor si (1 ≤ i ≤ m) in the

jth time slice tj (1 ≤ j ≤ n) of the kth day dk (1 ≤ k ≤ p).

Then, we will introduce our accurate traffic flow forecast-

ing approach with quick response time based on time-aware

LSH, named TracForetime−LSH . Fig. 3 shows the technical

framework of our methods with 4 steps.

A. Step-1: Data formalization and preprocessing

1) Data formalization: As shown in Fig. 4, the archived

traffic profile can be visualized as a three-dimensional space

consists of sensor (i), time slice (j), and date (k), where fi,j,k
is a point representing the traffic flow in a specific space-time.

In this situation, we aggregate the volume of traffic for sensor

si every 15 minutes (i.e., a time slice) and formalize it as a

matrix specified in (1). In this matrix, each row represents the

flow of n time slices observed by si at a specific date, and each

column represents the flow of a certain time slice observed by

si in p days. It is worth noting that we only utilize the traffic

flow of time slices in the lag duration with 15-min intervals to

construct the matrix in (1) and perform index table generation

as well as similar dates determination subsequently. Here, the

number of columns in (1) is the time steps included in the lag

duration, i.e., n.

F (si) =







fi,1,1 · · · fi,n,1
...

. . .
...

fi,1,p · · · fi,n,p






(1)

2) data preprocessing: Inevitably, there is some noise in the

dataset that harms similar profile recognition and thus results

in a bad prediction. To dampen the effect of noise, we first

take advantage of boxplots to identify outliers, and then apply

winsorization on the abnormal data. Boxplot is a statistical

chart based on distance measurement that shows a set of data

Fig. 5. The composition of classical boxplots.

dispersion. Both [24] and [25] proposed functional boxplots

methodologies as informative exploratory tool for outlier de-

tection. Inspired by them, we also employ boxplots to provide

a global analysis suitable for the whole data and conduct

outlier identification. Fig. 5 introduces the components of the

classical boxplots.

Specifically, we perform outlier processing on each row and

column of the matrix in (1). In order to ensure the conciseness

of this paper, we only introduce the detailed processing of

one row of the matrix. Assuming the kth row of the matrix

is given by
−−−−→
F (si)k, where

−−−−→
F (si)k = (fi,1,k, . . . , fi,n,k), we

first arrange the values of
−−−−→
F (si)k in descending order and

denote it as −→c , where −→c = (ci,1,k, . . . , ci,n,k). As shown

in Fig. 5, the upper border of the box (enveloped by a blue

line) indicates upper quartile value U which is the value at the

25% position of the vector −→c , i.e., U = ci,n
4
,k. Likewise, the

lower border of the box indicates the lower quartile value L

which is the value at the 75% position of the vector −→c , i.e.,

L = ci, 3n
4
,k. Then the difference between the upper quartile

U and the lower quartile L is defined as IQR (inter-quartile

range) to represent the 50% central region of the curves,

i.e., IQR = U − L = ci,n
4
,k − ci, 3n

4
,k. Actually, IQR is a

robust expression of data characteristics because it covers the

50% central range of the data, which will not be affected by

outliers. The whisker of the boxplot is the black vertical lines

extending from the edge of the box in Fig. 5, which indicates

the maximum range of data except for outliers. Now, we begin

to detect outliers. We first extend the range of the 50% central

range by 1.5 times to obtain the upper and lower bounds of

the data. Formally, we define the upper bound as SUP , where

SUP = U + 1.5IQR, and the lower bound as INF , where

INF = L − 1.5IQR. We regard the points outside these

two bounds as potential outliers. Here, the coefficient 1.5 is

suggested by [24] as well as [25], and can be proved by the

standard normal distribution. The reader can refer to these

two researches for more detailed discussion. Afterwards, add

data points larger than the upper bound SUP to the point

set SOt, where SOt = {ci,j,k|ci,j,k ≥ SUP}, and add data

points smaller than the lower bound INF to the point set

IOt, where IOt = {ci,j,k|ci,j,k ≤ INF}. In this situation,

SOt ∪ IOt is the set of all outliers. Finally, we use Eq. (2)

to perform winsorization on identified outliers by replacing
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the abnormal data points with the closest values in the normal

range.

{

ci,j,k=ci,n
4
,k+1.5(ci,n

4
,k−ci, 3n

4
,k) ∀ci,j,k ∈ SOt

ci,j,k=ci, 3n
4
,k−1.5(ci,n

4
,k−ci, 3n

4
,k) ∀ci,j,k ∈ IOt

(2)

B. Step-2: Building a sensor index table.

In this subsection, we focus on how to build a time-aware

sensor index table based on LSH by using the matrix in

(1). Generally, the cosine distance is of great significance

in spaces that have multi-dimensions. Due to that vehicles

passing through the sensor si in different time slices may

construct a multi-dimensional vector, thus we utilize time-

aware LSH technology corresponding to the cosine distance

to achieve similarity computation between traffic profiles of

different days. Concretely, for the kth row
−−−−→
F (si)k of matrix

F (si), where
−−−−→
F (si)k = (fi,1,k, . . . , fi,n,k), we first transform

it into a hash value h(
−−−−→
F (si)k) using the LSH function in (3).

Here, −→v is an n-dimensional vector (v1, . . . , vn) that randomly

generated in the space of [-1, 1], where vj is a random value

in the range [-1, 1]; The symbol · denotes the dot product

operation of two vectors.

h(
−−−−→
F (si)k) =

{

1 if
−−−−→
F (si)k · −→v > 0

0 if
−−−−→
F (si)k · −→v ≤ 0

(3)

After performing the hash mapping in (3) on the kth row

of matrix F (si), the row vector representing the traffic flow

on the kth day is mapped to a Boolean value. Repeat this

process for each row in (1) until all rows are mapped, i.e., a

p-dimensional Boolean vector h(F (si)) is obtained in (4).

h(F (si)) = (h(
−−−−→
F (si)1), . . . , h(

−−−−→
F (si)p)

T (4)

Through the above process, the traffic characteristics of each

date in the matrix F (si) will be transformed into a unique

Boolean value. However, LSH is a probability-based similar

candidate identification technique, and hash values mapped

by only one hash function in (3) can’t guarantee an accurate

expression of the traffic characteristics. To address this issue,

hash functions h1(·), . . . , hr(·) randomly generated by (2) are

employed to achieve r transformations from F (si) in (1) to

h(F (si)) in (4). Now, we can obtain a p ∗ r Boolean matrix

H(F (si)) in (5), i.e., the time-aware sensor index reflecting

the traffic pattern of si.

H(F (si)) =









h1(
−−−−→
F (si)1) · · · hr(

−−−−→
F (si)1)

...
. . .

...

h1(
−−−−→
F (si)p) · · · hr(

−−−−→
F (si)p)









(5)

Repeat the above process for each sensor in set S to build its

time-aware index matrix H(F (si)) in (5), and we can finally

obtain a sensor index table denoted as Tableindex, which

contains traffic characteristics of all sensors.

Algorithm 1: TracForetime−LSH

Input:

starget: the target sensor

S = {s1, . . . , sm}: sensor set

D = {d1, . . . , dp}: date set

T = {t1, . . . , tn}: time slice set

fi,j,k: traffic flow of sensor si in time slice tj of date dk
Output:

ftarget,J,k1
: traffic flow of sensor si in desired time slice

tJ of date dk1
.

1 for x = 1 to r do

2 for j = 1 to n do

3 vj = random [-1,1]

4 hx(·) = (v1, . . . , vn)

5 for each si ∈ S do

6 generate time matrix F (si) in Eq.(1)

7 preprocess data in F (si)
8 for k = 1 to p do

9 h(
−−−−→
F (si)k) =

−−−−→
F (si)k ∗ hx(·)

10 h(F (si)) = (h(
−−−−→
F (si)1), . . . , h(

−−−−→
F (si)p))

T

11 for each si ∈ S do

12 generate H(F (si)) using Eq. (5)

13 generate sensor index table for all sensors

14 for each si ∈ S do

15 for k = 1 to p do

16 decimal conversion from H(F (si))k to Ak(si)

17 if Ak1
(si) = Ak2

(si) then

18 simk1,k2
= 1

19 else

20 simk1,k2
= 0

21 Generate a hash table Htable based on

“si → sim matrix(si)” mappings

22 Repeat the above process to generate L hash tables

H table1, . . . , H talbeL
23 Set a date dk1

and a time slice tJ in which the traffic

flow needs to be predicted

24 Calculate SIM M(starget) using Eq.(8)

25 Select top−K similar dates into List(dk1
)

26 Set a similarity threshold

27 for k2 = 1 to p do

28 if k2 ∈ List(dk1
) , k2 6= k1 and

simk1,k2
(starget) ≥ threshold then

29 ftarget,J,k1
is predicted by Eq.(10)

30 return ftarget,J,k1

C. Step-3: Determination of similar dates

In this subsection, we will define the similarity between

different dates of sensors based on the sensor index table

Tableindex. Although Tableindex contains index matrix of all

sensors, we only consider the date similarity calculation of

sensor si as an example. Since each row of matrix H(F (si)) in
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(4) is an r-dimensional 0-1 string, we can regard it as a unique

binary value and convert it into a corresponding decimal value.

For example, when r = 4 and the string of the kth row in

matrix H(F (si)) is “0110”, we convert this 4-dimensional

0-1 string into a unique decimal number “6”. In this way,

we can convert the time-aware sensor index matrix H(F (si))
into the p-dimensional decimal vector H(F (si))decimal in (6),

where each decimal value uniquely represents the traffic flow

characteristics of the corresponding date.

H(F (si)decimal) = (A1(si), . . . , Ap(si))
T (6)

According to the column vector in (6), we compare the

decimal hash values of p dates. When Ak1
(si) = Ak2

(si)
(k1 − k2 6= 0), we assign simk1,k2

(si) to 1; otherwise,

we assign simk1,k2
(si) to 0. Here, simk1,k2

indicates the

similarity between traffic flow patterns of si during date

dk1
and date dk2

. Specifically, when dk1
= dk2

, we assign

simk1,k2
(si) to 0 as well, because the similarity of traffic

characteristics on the same day is meaningless. Thus, for the

sensor si, a p*p-dimensional Boolean matrix is obtained as

denoted in (7), which can describe the similarity of the traffic

flow characteristics of the sensor si on different days. The

mapping from si to sim matrix(si) can form a hash table

(named as Htable), which can be generated offline.

sim matrix(si) =







sim1,1(si) · · · sim1,p(si)
...

. . .
...

simp,1(si) · · · simp,p(si)






(7)

For sensor si, due to that our LSH technology

is actually a probability-based similar candidate identi-

fication technique, utilizing only one hash table can’t

guarantee the similarity retention of traffic character-

istics on different dates. Thus, we need to gener-

ate L hash tables offline (i.e., H table1, . . . , H talbeL)

and establish their L similarity matrices for sensor si
(i.e., sim matrix(si)1, . . . , sim matrix(si)L). Afterwards,

SIM M is obtained by using Eq. (8) to perform an “AND”

operation that accumulates the value of the corresponding

position in different similarity matrices, where each entry is

in the range [0, L], and a higher similarity value indicates that

the corresponding two dates have a high probability of being

similar.

SIM M(si)=sim matrix(si)1+. . .+sim matrix(si)L (8)

D. Step-4: Traffic flow forecasting

According to the similarity matrix in Step-3, for sensor si,

we can predict the traffic flow rate in the forecast duration of

its date dk1
. First, we add the top−K most similar dates to

si’s neighbor list List(dk1
). Afterwards, we set a similarity

threshold defined by Eq. (9) to filter out dates whose similarity

is less than the threshold. Here, Sim set(dk1
) in (9) is the set

of candidate dates that are actually similar to dk1
. Finally, the

traffic profile of dates in Sim set(dk1
) can provide a reference

by Eq. (10) for traffic volume forecasting, where J denotes

the time slice when we intend to predict traffic flow rate.

Sim set(dk1
)={dk2

|simk1,k2(si)≥threshold,dk2
∈List(dk1

)} (9)

fi,J,k1
=

∑

dk2
∈Sim set(dk1

) simk1,k2
(si)fi,J,k2

∑

dk2
∈Sim set(dk1

) simk1,k2
(si)

(10)

In summary, we design the pseudo code in Algorithm 1 to

formulate our TracForetime−LSH .

V. EXPERIMENTS

A. dataset and evaluation metrics

In this paper, we employ a real-world dataset collected

from Nanjing city of China to conduct our experiments,

which was generously provided by Xu et al. [26]. The dataset

contains 332 active sensors as well as their recorded traffic

information on the streets within Nanjing. According to this

dataset, a comprehensive analysis can be made corresponding

to different driving environments and the effectiveness of our

proposal can be examined under various traffic conditions.

Specifically, we aggregate the count of vehicles passing each

sensor at 15-min intervals based on the dataset and implements

our model.

Furthermore, we examine the performance of the proposed

method TracForetime−LSH by metrics shown in Eqs. (11)-

(13). Here, MAPE (Mean Absolute Percentage Error) consid-

ers the percentage between forecast error and the observed

value; MAE (Mean Absolute Error) considers the average

deviation between the observed and predicted traffic flow rates;

RMSE (Root Mean Square Error) considers the square root of

the mean-variance of the difference in the vehicle numbers.

In these equations, Fi is the ith predicted value, Oi is the

ith real value, N is the size of our samples. According to

these matrices, a further and broader evaluation of predicted

performance can be conducted.

MAPE =
1

N

N
∑

i=1

∣

∣

∣

∣

Fi −Oi

Oi

∣

∣

∣

∣

× 100% (11)

MAE =
1

N

N
∑

i=1

|Fi −Oi| (12)

RMSE =
1

N

√

∑N

i=1 (Fi −Oi)2

N
(13)

We will discuss the performance of our proposal from two

perspectives: (1) by the level of traffic flow when the forecast

occurs; (2) by the time of day when the forecast occurs.

Concretely, for (1), we classify the traffic flow in increments of

500 veh/h/ln in different levels and investigate the accuracy of

our short-term traffic forecast corresponding to each level. The

volume bins with different levels is shown in Table I. For (2),
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TABLE I
CLASSIFICATION OF TRAFFIC LEVELS (PRESENTED BY [27])

Volume groups Group description

Group 1 ≥ 0 and < 500 veh/h/ln
Group 2 ≥ 500 and < 1000 veh/h/ln
Group 3 ≥ 1000 and < 1500 veh/h/ln
Group 4 ≥ 1500 and < 2000 veh/h/ln
Group 5 ≥ 2000 veh/h/ln
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Fig. 6. Forecast errors of different size of lag duration and candidates.

we examine the performance of predictions made at different

hours in a day that includes 24 hours. Such evaluations with

these two perspectives can provide an in-depth analysis of the

method performance.

B. Parameter adjustment for TracForetime−LSH

It is of necessity to determine several parameters in advance

to ensure that our method can achieve the best performance.

The parameters include lag duration (i.e., n), the number of

neighbors (i.e., Top−K), the number of hash functions (i.e.,

r) and the number of hash tables (i.e., L).

1) identifying optimal lag duration and candidate number:

Lag duration and candidates play a significant role in our short-

term traffic forecast algorithm, and the size of them determines

whether similar dates can be identified accurately. Fig. 6 de-

picts the effect of different sizes of lag duration and candidates

in terms of the performance indicator representing by MAPE.

In Fig. 6, we can observe that the 8-hour lag duration is

most suitable for the context of our TracForetime−LSH .

Similarly, our short-term traffic flow forecasting generally

performs better when the number of candidates is around 7.

According to the above analysis, we set n as 8 and top−K

as 7 to achieve similar dates search technology and traffic

prediction algorithm effectively and accurately.

2) identifying optimal number of hash functions and hash

tables: Due to that LSH is a probability-based similar can-

didate identification technique, the optimal number of hash

functions and hash tables ensures the stability of our forecast.
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Fig. 7. Forecast errors of different number of hash functions and hash tables.

We examine the impact of the number of hash functions

and hash tables on forecast accuracy in terms of MAPE, as

intuitively shown in Fig. 7. It can be observed that as the

number of hash functions and hash tables increases, forecast

accuracy increases. This result occurs because more hash

functions indicate a stricter condition for similar date searches,

while more hash tables indicate a more stable performance.

Specifically, we depict the contours of the best-performing

areas in Fig. 7 with steps of 0.02. According to Fig. 7, we can

conclude that our TracForetime−LSH performs well when

r = 27 and L = 30.

In addition, we set the threshold in (9) to 1 to filter the dates

in neighbor list List(dk1
) that are actually dissimilar to dk1

.

C. Predictive accuracy by the level of traffic and time of day

In this subsection, we examine the accuracy of the proposed

short-term traffic flow forecasting approach in terms of the

level of traffic and time of day. The experimental results are

shown in Fig. 8. Intuitively, we employ boxplots (as introduced

in Fig. 5) to illustrate the spread of the prediction errors, where

the blue solid line denotes the average effect of our algorithm.

As shown in Fig. 8, when we examine the forecast errors

in terms of the level of traffic, especially for MAPE, a corre-

sponding reduction in error is found as the flow level increases.

Generally, MAPE provides a better perspective in measuring

traffic forecast accuracy, which is because MAPE normalizes

errors by considering the percentage between forecast error

and the observed value. However, MAE and RMSE have

opposite performances to MAPE as traffic levels increase,

which is because MAE and RMSE only consider the absolute

deviation between the forecast value and the observed value.

As expected, the same things occur when we test

the forecast errors by the time of day. For MAPE, our

TracForetime−LSH performs better during peak-hours than

during off-peak hours. However, MAE and RMSE have s-

maller errors for time with fewer vehicles (e.g., at midnight)

because of the low observed volume.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Forecast errors of TracForetime−LSH by the level of traffic and time of the day.

Generally, according to the whisker distribution in Fig. 8,

it is evident that our TracForetime−LSH can provide a

reliable and accurate prediction result, especially for high-

level traffic (which always occurs during peak hours). In the

real world, congestions with negative effects occur increasing

frequently, thus it is becoming a necessity to forecast the traffic

flow during peak hours. Consequently, it is a promising way

to apply our stable and effective traffic forecasting method

TracForetime−LSH to understand congested traffic condi-

tions and anticipate flow breakdowns in the future.

D. Experimental comparison results and analysis

To verify the performance of our proposal, we compare

TracForetime−LSH with two state-of-the-art methods: Naive

K-NN and Enhanced K-NN [28]. We employ Fig. 9 and

Fig. 10 to illustrate the experimental contrast effect in terms

of the level of traffic and time of the day (The reason for the

variation trend of the curves in Fig. 9 and Fig. 10 is the same

as that in Fig. 8, and will not be repeated here). Evidently,

our TracForetime−LSH can provide a lower forecast error in

short-term traffic flow prediction, especially during high traffic

levels and peak hours.

To test these three approaches thoroughly on short-term traf-
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(a) (b) (c)

Fig. 9. Forecast errors compared with the other two approaches by level of traffic.

(a) (b) (c)

Fig. 10. Forecast errors compared with the other two approaches by time of the day.

fic flow forecast errors, we compare their average performance

in Table II. The experimental results show that relative to the

average accuracy of Naive K-NN and Enhanced K-NN, our

TracForetime−LSH is reduced by 32.6% for MAPE, 7.5%

for MAE and 14.6% for RMSE. Consequently, our proposal

outperforms the other two methods in terms of short-term flow

forecasts. This result occurs because we not only filter noise

in the dataset with effective data preprocessing technology,

but also creatively apply time-aware LSH in finding the most

similar dates to the target date. In this way, these so picked

neighbors are employed to perform traffic flow prediction

based on the nature of LSH.

Generally, the efficiency of an algorithm is also a significant

indicator to measure its ability, which is especially important

for the real-time pre-perception of traffic dynamics. Thus,

we record the average time cost of the three methods (i.e.,

TracForetime−LSH , Enhanced K-NN, and Naive K-NN), as

presented in Table III. The results indicate that the time cost

of our algorithm is found to be quite small and remains

approximately stable compared with the other two methods.

Numerically, the time cost of our TracForetime−LSH is re-

duced by 97.3% compared with the average time cost of Naive

K-NN and Enhanced K-NN. The reason is that most of the

work in our proposal (e.g., hash table creation and similarity

calculation) can be completed offline and the remaining work

(e.g., similar dates search and flow forecasts) can be finished

quite efficiently based on the stored information. In contrast,

Enhanced K-NN is time-consuming because it takes a lot

of time in optimizing its performance. The results in Table

III mean that our TracForetime−LSH can usually meet the

demand for “immediate response” of traffic flow forecasting,

thereby providing more effective road capacity management.

TABLE II
MEAN FORECAST ERRORS OF THE THREE METHODS

model MAE RMSE MAPE

Naive K-NN 22.01 47.91 29.01%
Enhanced K-NN 21.53 45.43 28.07%

TracForetime−LSH 20.14 39.86 19.23%

TABLE III
PREDICTIVE EFFICIENCY OF THE THREE METHODS

model TracForetime−LSH Enhanced K-NN Naive K-NN

time cost (mm) 4.3 298.6 17.4

VI. CONCLUSION

In this paper, we propose TracForetime−LSH , a data-

driven and non-parametric approach aided by IoT and 6G tech-

nologies, which utilizes big traffic data detected from sensors



JOURNAL OF LATEX CLASS FILES 10

to perform short-term traffic flow forecasts in massive IoT. The

algorithm adopts time-aware Locality Sensitive Hashing for

massive high-dimensional traffic data to achieve a timely and

accurate prediction. It assists traffic managers in developing

proactive traffic management strategies and anticipating flow

breakdowns in the future. TracForetime−LSH provides a

novel perspective to predict the expected volume and can

achieve a good tradeoff between response time and prediction

accuracy in large-scale traffic data environment. The experi-

mental results demonstrate the effectiveness and availability

of our TracForetime−LSH .

In addition to the traffic patterns in the archived data,

complex application contexts, e.g., weather, incident, and road

work, also play a significant role in prediction performance.

One of the limitations of our research is that we fail to take

these impactive factors into account for more accurate preci-

sion. In future work, we will include more traffic conditions

as a valuable supplement to our study. Furthermore, privacy

concerns as an important factor in traffic scenes will also be

treated in our future research [29] [30].
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