
HAL Id: hal-02263364
https://hal-polytechnique.archives-ouvertes.fr/hal-02263364

Submitted on 4 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

6LB: Scalable and Application-Aware Load Balancing
with Segment Routing

Yoann Desmouceaux, Pierre Pfister, Jérôme Tollet, Mark Townsley, Thomas
Heide Clausen

To cite this version:
Yoann Desmouceaux, Pierre Pfister, Jérôme Tollet, Mark Townsley, Thomas Heide Clausen. 6LB:
Scalable and Application-Aware Load Balancing with Segment Routing. IEEE/ACM Transactions on
Networking, IEEE/ACM, 2018, 26 (2), pp.819-834. ฀10.1109/TNET.2018.2799242฀. ฀hal-02263364฀

https://hal-polytechnique.archives-ouvertes.fr/hal-02263364
https://hal.archives-ouvertes.fr

1

6LB: Scalable and Application-Aware

Load Balancing with Segment Routing
Yoann Desmouceaux, Pierre Pfister, Jérôme Tollet, Mark Townsley, Thomas Clausen

Abstract—Network load-balancers generally either do not take
application state into account, or do so at the cost of a central-
ized monitoring system. This paper introduces a load-balancer
running exclusively within the IP forwarding plane, i.e. in an
application protocol agnostic fashion – yet which still provides
application-awareness and makes real-time, decentralized deci-
sions. To that end, IPv6 Segment Routing is used to direct data
packets from a new flow through a chain of candidate servers,
until one decides to accept the connection, based solely on its local
state. This way, applications themselves naturally decide on how
to fairly share incoming connections, while incurring minimal
network overhead, and no out-of-band signaling. A consistent
hashing algorithm, as well as an in-band stickiness protocol, allow
for the proposed solution to be able to be reliably distributed
across a large number of instances.

Performance evaluation by means of an analytical model and
actual tests on different workloads (including a Wikipedia replay
as a realistic workload) show significant performance benefits in
terms of shorter response times, when compared to a traditional
random load-balancer. In addition, this paper introduces and
compares kernel bypass high-performance implementations of
both 6LB and a state-of-the-art load-balancer, showing that the
significant system-level benefits of 6LB are achievable with a
negligible data-path CPU overhead.

Index Terms—Load-balancing, Segment Routing (SR), IPv6,
Application-aware, Consistent hashing, Performance evaluation.

I. INTRODUCTION

Virtualization and containerization has enabled scaling of

application performance by way of (i) running multiple in-

stances of the same application within a (distributed) data

center, and (ii) employing a load-balancer for dispatching

queries between these instances.

For the purpose of this paper, it is useful to distinguish

between two categories of load-balancers:

1. Network-level load-balancers, which operate below the

application layer – a simple approach being to rely on Equal

Cost Multi-Path (ECMP) [1] to homogeneously distribute

network flows between application instances. This type of

load-balancer typically does not take application state into

account, which can lead to suboptimal server utilization.

2. Application-level load-balancers, which are bound to a

specific type of application or application-layer protocol, and

make informed decisions on how to assign servers to incoming

requests. This type of load-balancer typically incurs a cost

Y. Desmouceaux, P. Pfister, J. Tollet and M. Townsley are with Cisco
Systems Paris Innovation and Research Laboratory (PIRL), 92782 Issy-les-
Moulineaux, France; emails {ydesmouc,ppfister,jtollet,townsley}@cisco.com.

Y. Desmouceaux, M. Townsley and T. Clausen are
with École Polytechnique, 91128 Palaiseau, France; emails
{yoann.desmouceaux,mark.townsley,thomas.clausen}@polytechnique.edu.

from monitoring the state of each application instance, and

sometimes also terminates network connections (such as is

the case for an HTTP proxy).

A desirable load-balancer combines the best of these cate-

gories: (i) be application or application-layer protocol agnos-

tic (i.e. operate at below the application layer) and (ii) incur

no monitoring overhead – yet (iii) make informed dispatching

decisions depending on the state of the applications.

Furthermore, data centers are more and more utilized to

run virtualized network functions alongside traditional ap-

plications. In light of this, network load-balancers are more

and more running as virtual functions (running e.g. in virtual

machines). This allows for the load-balancers themselves

to take full advantage of the flexibility and redundancy of

a virtualized data center: for resiliency, to allow a faulty

load-balancer instance to be safely removed and replaced,

without incurring a service outage, or for scalability, by

growing (and shrinking) the number of load-balancers to be

able to accommodate different daily traffic demands and/or

unexpected traffic peaks. The resulting architecture will thus

distribute incoming flows between an edge router and several

load-balancer instances, each of which will redistribute the

flows to application instances [2], [3]. A challenge arising

from this architecture is to provide a consistent service when

traffic for a given flow is directed by the edge router to a

different load-balancer instance. This can happen e.g. when

a load-balancer instance is added or removed, causing the

corresponding ECMP mapping between the edge router and

the load-balancers to be updated correspondingly.

Thus in addition to the three desired properties exposed

above can be added: (iv) be able to be fully distributed,

providing the same service regardless of whether traffic is

directed to different load-balancer instances within the lifetime

of a flow.

These four objectives may appear irreconcilable: operating

below the application layer makes it hard to take application

state into account, and balancing by state rather than deter-

ministically ties a flow to a given load-balancer instance. This

paper aims at providing a solution satisfying these four objec-

tives, by challenging the traditional network paradigm wherein

a packet is deterministically assigned only one destination.

A. Statement of Purpose

The purpose of this paper is to propose 6LB, a load-

balancing approach that is application server load aware, yet

is both application and application-layer protocol independent

and does not rely on centralized monitoring or transmission

of application state.

2

LB2 LB3 LB4LB1LB0

E
C

M
P

Load

Balancer

Application

Instances

S
e
g

m
e
n

t

R
o

u
tin

g

Candidate Application Instances

Flow

Edge

Router

After Pinning

Before Pinning

Figure 1. 6LB architecture: load-balancers assign a flow to a set of candidate
instances, through which the connection is passed until one accepts the
connection (section II). The flow is then pinned to the server having accepted
the connection (section IV).

LB2 LB3 LB4LB1LB0

E
C

M
P

Load

Balancer

Application

Instances
S

e
g

m
e
n

t

R
o

u
tin

g
Candidate Application Instances

Flow

Edge

Router

After Removal of LB 1

Before Removal of LB 1

Figure 2. 6LB consistent hashing: when a flow is rebalanced to another load-
balancer instance by the edge router, consistent hashing (section III) allows
the flow to re-browse the same set of candidate instances, then to be re-pinned
to the one that had accepted the connection (section IV).

A key argument behind this design goal is that an applica-

tion instance itself is best positioned to know if it should be

accepting an incoming query, or if doing so would degrade

performance. Thus, 6LB disregards any design by which

queries are unconditionally assigned to an application instance

by the load-balancer. Rather, 6LB offers a received query to

several candidate application instances, ensuring that exactly

one instance accepts and processes the query.

The architecture behind 6LB is as follows, and as illustrated

in figure 1: the edge router receives and uses ECMP to assign

each incoming flow to a load-balancer. Each load-balancer

selects a set of candidate application instances, to which it

forwards (in order) the flow, using IPv6 Segment Routing

(SR) [4], which permits directing data packets through an

(ordered) set of intermediaries (see section I-C). In this way,

6LB enables that flow acceptance decisions are made strictly

locally by an application instance, based on its real-time state

information about itself, only – i.e. without any centralized

monitoring.

Once a flow is accepted by an application instance, it is

“pinned” to it by the load-balancer: subsequent packets in that

flow are all forwarded directly to that application instance. As

depicted in figure 3, this is accomplished by the load-balancer

inspecting the TCP handshake and establishing a mapping

between a flow and the application instance serving it. A

mechanism is provided to permit a load-balancer to recover

LB
client c

SYN {c, a}

S2

accepts

S1

refuses

S
Y

N
-A

C
K

{a

, S
2

,
L

B
,

c
}

S3

ACK {c, a}

SYN-ACK {a, c}

A
C

K

{c
, S

2
,

a
}

1

2

3

45

6
7

Figure 3. TCP Connection pinning from client c to application a with 3
instances s1, s2, s3. The path (source, segments, destination) is indicated
between curly braces. The active segment is underlined.

this mapping, if for some reason it is lost1.

The final mechanism in 6LB is consistent hashing, as

illustrated in figure 2: a given flow will be assigned to the

same set of candidate application instances, regardless of by

which 6LB instance (past, current, or future, in case the pool

of instances changes) it is assigned.

While the algorithms developed in this paper are generally

applicable for any number of candidate application instances,

the concept of power of two choices [5] applies: selecting

two candidate application instances ensures a low network

footprint while providing a significant load-balancing improve-

ment – with diminishing returns beyond that. Building on the

work of [6], the novel contributions of this paper are fivefold:

(i) a consistent hashing algorithm, (ii) an in-band stickiness

protocol (the union of which allows to scale the number

of load-balancer instances for reliability and performance),

(iii) an analytic model analyzing the performance of SR-

based load-balancing, (iv) experiments with the combined

6LB load-balancing architecture conducted on a larger testbed,

and finally (v) kernel-bypass implementations of 6LB and a

state-of-the-art load-balancer (Maglev [2]) with performance

comparison of the two implementations.

B. Related Work

Among existing load-balancing approaches below the ap-

plication layer, Maglev [2] and Ananta [7] aim at providing

a software load-balancer instance that can be scaled at will,

and make use of ECMP to distribute flows between those

instances. In addition to a flow stickiness table, they also

make use of consistent hashing [8], [9], [10], for ensuring

that data packets within a given flow are directed to the same

application instance – regardless of the selected load-balancer

instance forwarding a data packet, and with minimal disruption

when the set of application servers changes. However, flows

are distributed to application instances regardless of their

current load. This is taken one step further in Duet [11]

and Rubik [12], by moving the load-balancing function to

hardware instances, while handing traffic over to software

instances in case of failure. Conversely, [13], [14] use Software

Defined Networking (SDN) on a controller, to monitor the

1For example, if a load-balancer is removed, and another load-balancer
takes over the active flows it was serving.

3

Next Header Ext Hdr Length Routing Type = 4 Segments Left

First Segment Flags Reserved

Segments...

Optional TLVs...

Figure 4. IPv6 Segment Routing Header

application instance load and network load – and then install

network rules to direct flows to these application instances.

Other frameworks, such as [15], can be used to gather precise

monitoring information on the network load.

Simple application-aware load-balancing policies (random,

shortest queue, threshold) have been introduced in [16]; in [5],

[17], it is shown that performing a load-balancing decision

based on two random servers is sufficient to exponentially

decrease the response time as compared to a random strategy.

This concept has been used by [18] for peer-to-peer applica-

tions. Another similar idea, proposed in [19], [20], consists

of duplicating queries among several replicas, and serving the

quickest reply to the client. In [21], SR is used to duplicate

traffic through two different disjoint paths, so as to decrease

latency and packet loss.

In [22], three load-balancing techniques are listed, which

can be used for dispatching queries among Web servers:

DNS round-robin, dispatchers that perform NAT or destination

IP rewrite, and redirect-based approaches. Application-aware

load-balancing mechanisms for static Web content include

[23], [24], [25], which assign queries as a function of their es-

timated size so that each application instance becomes equally

loaded. In [26], a feedback approach is used to estimate the

parameters of a queuing model representing the system, before

making a load-balancing decision.

Application-layer protocol aware load-balancers, e.g.

HAProxy [27], also propose application-awareness by esti-

mating the load on each application instance and assigning

new queries accordingly. Load estimates are obtained either

by tracking open connections through the load-balancer to the

backend servers (and thus do not consider other loads), or by

periodically probing the backends for load information (and

thus suffer from polling delay and incur network overhead).

Another issue with application-level load-balancers is that

network connection is reset when a failure causes a flow to be

migrated from one load-balancer instance to another. The load-

balancer introduced in [28] aims at solving this by keeping

per-flow TCP state information in a distributed store.

C. Segment Routing

IPv6 Segment Routing (SR) [4] permits directing data pack-

ets through an (ordered) set of intermediaries, and instructing

these intermediaries to perform a specific function [29]. For

example, one instruction could be “process the contained

query, if you are not too busy”. As SR is a network layer

service, segments are expressed by way of IPv6 addresses,

and the simplest possible sequence of segments interprets into

“forward the packet to A, then B, then C” – i.e. source routing.

The SR information is expressed as an IPv6 Extension Header,

defined in [30] (figure 4), comprising a list of segments

and a counter SegmentsLeft – indicating the number of

remaining segments to be processed. Although [30] specifies

that the last segment in the header is the first segment to be

processed (i.e. the order of segments in the packet is reversed),

for the purpose of readability this paper will use the convention

that (s1, . . . , sn) represents an SR header indicating s1 as a

first segment to be traversed.

D. Paper Outline

The remainder of this paper is organized as follows. Sec-

tion II describes the use of Segment Routing for performing

load-balancing. Section III describes a consistent hashing algo-

rithm, which allows to distribute the load-balancing function

into different instances, for scalability. Section IV describes

how “stickiness” can be established and recovered between

load-balancer instances and server instances, using an in-band

channel. An analytical performance model of 6LB is derived in

section V. 6LB is then experimentally evaluated in section VI,

by means of a synthetic workload and a realistic workload

consisting of a Wikipedia replica; and the performance of the

implementation in terms of packet forwarding capabilities is

evaluated. Finally, section VII concludes this paper.

II. SERVICE HUNTING WITH SEGMENT ROUTING

A. Description

Service Hunting uses SR to direct network packets from

a new flow through a set of candidate application instances

until one accepts the connection. It assumes that applications

are identified by virtual IP addresses (VIPs), and can be repli-

cated among several servers, identified by their topological

addresses. Servers run a virtual router (e.g. VPP [31]), which

dispatches packets between physical NICs and application-

bound virtual interfaces. Finally, a load-balancer within the

data center advertises routes for the VIPs.

When a new flow2 for a VIP arrives at the load-balancer, it

will select a set of candidate application instances from a pool,

and insert an SR header identifying this set into the IPv6 data

packet. The SR header will contain a list of segments, each

indicating that the query can be processed by either of these

application instances, and with the VIP as the last segment.

Different policies can be used to select the list of candidate

application instances to include in the SR header. It has been

shown in [5] that selecting two random candidate application

instances is enough to greatly improve load-balancing fairness,

with a decreasing marginal benefit when using more than

two instances. Thus, 6LB assigns each new flow to two

pseudo-randomly chosen application instances – by way of

a consistent hashing scheme, described in section III.

When the flow reaches a candidate application instance,

the corresponding segment in the SR header indicates that

the virtual router may either forward the packet (i.e. start

processing the next segment), or may directly deliver it to

the virtual interface corresponding to the application instance.

This purely local decision to accept query, or not, is based

on a policy shared only between the virtual router and the

application instance, running on the same compute node.

To guarantee satisfiability, however, the penultimate segment

indicates that the application instance must not refuse a query.

2Typically, a TCP SYN packet as part of a connection request.

4

Algorithm 1 Static Connection Acceptance Policy SRc

for each SYN packet do
b← number of busy threads
if b < c or SegmentsLeft = 1 then

SegmentsLeft← 0, forward packet to application
else

SegmentsLeft← SegmentsLeft− 1
forward packet to next application instance in SR list

end if
end for

Algorithm 2 Dynamic Connection Acceptance Policy SRdyn

accepted← 0, attempt← 0
c← 1 ⊲ or other initial value

ǫ← 0.1 ⊲ or other increment value

windowSize← 50 ⊲ or other window size

for each SYN packet with SegmentsLeft = 2 do
attempt← attempt+ 1
if attempt = windowSize then

⊲ end of window reached, adapt c if needed and reset window

if accepted/windowSize < 1
2
− ǫ and c < n then

c← c+ 1
else if accepted/windowSize > 1

2
+ ǫ and c > 0 then

c← c− 1
end if
attempt← 0, accepted← 0

end if
SRc policy() ⊲ use SRc policy with current value of c
if SRc succeeded then

accepted← accepted+ 1
end if

end for
for each SYN packet with SegmentsLeft = 1 do

SegmentsLeft← 0, forward packet to application
end for

B. Connection Acceptance Policies

An application agent informs the virtual router if the local

application instance wishes to accept a flow. The application

agent may make this decision based on whatever information

it has locally available – from the operating system, or from

real-time application metrics, if exposed. If information is

exchanged through shared memory, this incurs no system calls

or synchronization, thus imposes a negligible run-time cost.

This section describes two simple policies for deciding if

to accept new flows, or not. They assume that the application

uses a standard master-slave thread architecture. Section VI-A

will illustrate the application of these policies, in case of an

HTTP server such as Apache. Table I summarizes the notation

used throughout this paper to designate the different policies.

1) Static: With n worker threads in the application instance,

and a threshold parameter c between 0 and n+1, Algorithm 1

describes a policy, SRc, where an application instance accepts

the flow if and only if strictly less than c worker threads are

busy (except for the last in the SR list, which must always

accept). Thus, an application instance which is “too busy”

will be assigned a connection only if all previous application

instances in the list are also “too busy”. The choice of the

parameter c directly influences the global system behavior:

small values of c yield better results under light loads, and

high values yield better results under heavy loads. As extreme

examples, when c = 0, all requests are satisfied by the last

application instance of their SR lists; when c = n + 1, all

requests are satisfied by the first: both cases reduce to a random

SC Single-Choice policy (baseline)

SRc
Static acceptance policy (Algorithm 1) with threshold c

e.g. SR4 is the policy of Algorithm 1 with c = 4
SRdyn Dynamic acceptance policy (Algorithm 2)

Table I
NOTATION

Protocol new flow pinned flow

IPv6 SR insert 72 56

IPv6 SR encap 96 80

IPv6 GRE Tunnel 88 44

IPv6 VXLAN Tunnel 140 70

Figure 5. Protocol overhead (in bytes) for different steering mechanisms,
towards two (new flow) or one (pinned flow) application instances.

load-balancing scheme. If the chosen value of c is too small

as compared to the load, almost all connections are treated by

the last application instance of their SR lists, and vice-versa.

If the typical load is known, the value of c can be configured

statically – otherwise, a dynamic policy can be employed.

2) Dynamic: When the typical load is unknown, the policy

SRdyn adapts c to maintain a rejection ratio of each appli-

cation instance of 1
2 , as detailed in Algorithm 2. Previous

acceptance decisions are recorded over a fixed window of

queries. When the end of the window is reached, if the number

of accepted queries is significantly below (or above) 1
2 , the

value of c is incremented (or decremented).

C. Protocol Overhead

Inserting an IPv6 SR header to steer a connection through

multiple application instances has an impact in terms of packet

size overhead. To quantify this, figure 5 depicts the number

of extra bytes needed to steer a packet through two (new

flow) or one (pinned flow) servers, for different protocols.

As compared to other equivalent solutions allowing to steer

a request through a set of instances (by sticking several

successive tunneling headers), the proposed approach has the

lowest overhead. After flow pinning, the overhead incurred by

using SR to steer packets is of 12 bytes as compared to GRE.

D. Reliability

The solution described in this section (and more generally

in this paper) focuses on the data-plane: it is assumed that

a controller takes care of installing the mapping between a

VIP and the set of addresses of servers capable of serving that

VIP. Notably, as in other distributed load-balancing approaches

[2], [7], the controller should take care of health-checking the

backend servers, and removing them from the set of available

servers if unresponsive.

Since connection establishment packets go through a chain

of servers rather than a single one, the properties of 6LB

when facing failures need to be considered. Two scenarios

can be distinguished. First, if a whole machine goes down

(critical failure), new flows whose first candidate application

instance is hosted on this machine will fail to be established,

and new flows whose second candidate application instance

is hosted on this machine will fail only if the first instance

rejected them. This incurs a pR% failure overhead as compared

to single-choice load-balancing approaches, where pR is the

5

percentage of connections being rejected by a first instance

(e.g. 50% with SRdyn). However, this happens only during

the short amount of time before the controller detects that

the machine is down and updates the backend pool on load-

balancers accordingly3. Second, if an application instance goes

down (crashes or becomes unresponsive) but the machine

hosting it still remains up (non-critical failure), the virtual

router on that machine will be able to forward connection

establishment packets to the next instance in the SR list, for

new flows whose first candidate instance is failing. Thus, for

non-critical failures, 6LB increases the reliability of the system

as compared to single-choice approaches, with a (100−pR)%
failure reduction.

III. HORIZONTAL SCALING WITH CONSISTENT HASHING

Elastic scaling of the number of load-balancer instances is

required, in order to accomodate dynamic data center loads

and configurations. When a load-balancer instance is added or

removed, the ECMP function (see figure 1) performed by the

edge router(s) may rebalance existing flows between remaining

load-balancer instances. Thus, it is necessary to ensure that the

mapping from flows to lists of candidate application instances

is consistent across all load-balancers. This is achieved by the

use of consistent hashing, depicted in figure 2 – which must

also be resilient to modifications to the set of applications

instances: adding or removing an application instance must

have minimal impact on the mapping of existing flows.

Consistent hashing for load balancing is used e.g. in [2],

which proposes an algorithm mapping an incoming flow to one

application instance. This section introduces a new consistent

hashing algorithm (generalizing the one from [2]) to allow

each flow to map to an ordered list of application instances.

Although 6LB uses 2 choices, the mechanism presented in this

section is agnostic to this value, and is therefore presented for

lists of C instances.

A. Generating Lookup Tables

With M buckets and N application instances, and where

N ≪ M , a pseudo-random permutation p[i] of {0, . . . ,M−1}
is generated for each application instance i ∈ {0, . . . , N − 1}
– e.g. by listing the multiples of the i-th generator of the group

(ZM ,+). These permutations are then used to generate a

lookup table t : {0, . . . ,M−1} → {0, . . . , N−1}C , mapping

each bucket to a list of C application instances, following the

procedure described in Algorithm 3. This table t is then used to

assign SR lists of application instances to flows: each network

flow will be assigned an SR list by hashing its network 5-tuple

into a bucket j and taking the corresponding list t[j].
Generating the lookup table t is done by browsing through

the set of application instances in a circular fashion, making

them successively “skip” buckets in their permutation until

3A simple way to improve the reliability of the system during this short
amount of time would be to monitor, in-band, the responsiveness of the servers
(e.g. by gathering information about packet retransmissions or return traffic),
and to rotate the order of SR lists for packets whose first instance is deemed
unresponsive. This would increase reliability while ensuring that the browsed
set of instances remains the one returned by consistent hashing.

Algorithm 3 Consistent Hashing

nextIndex← [0, . . . , 0]
C ← 2 ⊲ or another size for SR lists

t← [(−1,−1), . . . , (−1,−1)]
n← 0
while true do

for i ∈ {0, . . . , N − 1} do
if nextIndex[i] = M then ⊲ permutation exhausted

continue
end if
c← p[i][nextIndex[i]] ⊲ advance in i’s permutation

⊲ skip buckets for which the SR list is already filled

while t[c][C−1] ≥ 0 do
nextIndex[i]← nextIndex[i] + 1
if nextIndex[i] = M then ⊲ permutation exhausted

continue 2 ⊲ continue the upper loop

end if
c← p[i][nextIndex[i]]

end while
⊲ c is now the first bucket with SR list not filled

choice← 0
while t[c][choice] ≥ 0 do

choice← choice+ 1
end while
⊲ choice is now the first available position in the SR list

t[c][choice]← i
nextIndex[i]← nextIndex[i] + 1
n← n+ 1
if n = M × C then return t
end if

end for
end while

finding one that has not yet been assigned C application

instances. Once each bucket has been assigned C application

instances, the algorithm terminates. This process is illustrated

in figure 6a, for C = 2 choices, with N = 4 application

instances and M = 7 buckets. For each application instance

i, the corresponding permutation table p[i] is shown, where

a circled number j©n means that bucket j has been assigned

to that application instance at step n. For each bucket j, the

lookup table t[j] returned by the algorithm is also shown. For

instance, bucket 3 is assigned to instance 1 (at step 5) and

instance 2 (at step 6), thus the lookup table for bucket 3 is

(1, 2). The “skipping” behavior occurs e.g. at step 9, where

bucket 5 is skipped in p[1][j] because it was already assigned

two application instances.

B. Analysis

1) Resiliency: Figure 6b illustrates how this scheme is

resilient to changes to the pool of application instances, by

showing how removing application instance 0 modifies the

tables t[j] from the example of figure 6a. Assuming that flows

are assigned to the first or second application instance in their

SR lists with equal probability (as with the SRdyn policy), the

question is how flows mapped to a non-removed application

instance (1, 2, 3 in this example) are affected by the table

recomputation. For each bucket, one failure is counted for

each non-removed application instance appearing in the lookup

table before recomputation, but not after. In the example of

figure 6, the only failure is induced by bucket 4, as the second

entry of its lookup table, 1, does not appear in its newly

computed lookup table, (3, 2). With 10 non-removed flows,

the failure rate in this example is 10%.

6

Permutation tables p[i] for each Application Instance i:
j 0 1 2 3 4 5 6

p[0][j] 4©0 5©4 6©8 0 1 2©12 3

p[1][j] 1©1 3©5 5 0©9 2 4©13 6

p[2][j] 5©2 3©6 1©10 6 4 2 0

p[3][j] 6©3 0©7 1 2©11 3 4 5
and lookup table t:

Bucket j 0 1 2 3 4 5 6

SR list t[j] (3,1) (1,2) (3,0) (1,2) (0,1) (2,0) (3,0)

(a) Before removal of Application Instance 0

Permutation tables p[i] for each Application Instance i:
j 0 1 2 3 4 5 6

p[1][j] 1©0 3©3 5©6 0©9 2©12 4 6

p[2][j] 5©1 3©4 1©7 6©10 4©13 2 0

p[3][j] 6©2 0©5 1 2©8 3 4©11 5
and lookup table t:

Bucket j 0 1 2 3 4 5 6

SR list t[j] (3,1) (1,2) (3,1) (1,2) (3,2) (2,1) (3,2)

(b) After removal of Application Instance 0

Figure 6. Example permutation tables p[i] and lookup table t (C = 2,M =
7, N = 4), before and after removal of application instance 0

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30

F
a

ilu
re

 r
a

te
 (

%
)

Number of servers removed

1 choice
2 choices

Figure 7. Resiliency of consistent hashing to application instance removals:
1 choice (no SR) vs 2 choices (6LB)

Intuitively, mapping flows to two application instances,

instead of just to one, increases resiliency: it is less likely

that the SR lists of a bucket before and after recomputation

have empty intersection – for this to happen, a single bucket

would need to be re-assigned twice.

The resiliency of algorithm 3 is studied by way of a simula-

tion. An initial lookup table was computed. Then, k application

instances were removed and the lookup table was recomputed

– which allowed computing the previously introduced failure

rate. The parameters were N = 1000 servers, M = 65537
buckets, and 20 experiments were performed, for each value

of k from 0 to 30.

Figure 7 reports the failure rate as a function of the number

of removed instances. First, with C = 1 (i.e. mapping each

flow onto a single application server), results identical to

figure 12 in [2] are obtained, confirming that the algorithm

reduces to the algorithm from [2] in this case. Using algo-

rithm 3 for mapping each flow to two application instances

(C = 2) shows up to 44% fewer failures (when k = 8) – or,

to put it differently, 44% fewer TCP connections being reset.

2) Fairness: Each application instance picks the same num-

ber of buckets (as first or second entry), except potentially one

in the last round. Assuming a probability of acceptance of 1
2

(as with SRdyn), this guarantees that traffic is equally spread

between application instances. Note that a given application in-

stance is not assigned the same number of first-choice buckets

and second-choice buckets; this is nonetheless compensated by

the fact that application instances do balance the load between

themselves – this is evaluated in section VI-B4.

3) Complexity: If permutations p[i] are randomly dis-

tributed, this algorithm is a variant of the coupon collector’s

problem, and is expected to terminate in M logM + O(M)
steps for C = 1 [32], and in M logM+M log logM+O(M)
steps for C = 2 [33]. Hence, choosing two, rather than one,

application instances requires only 1+ log logM
logM ≤ 1.368 times

more steps.

In comparison to the naı̈ve algorithm consisting in building

two uncorrelated lookup tables for the first and second appli-

cation instances in the SR list, the benefit of using Algorithm 3

is twofold: the generation time is smaller, and jointly building

the two entries make the scheme more resilient to changes as

shown in figure 7.

IV. IN-BAND STICKINESS PROTOCOL

A load-balancer instance should, for each flow it handles,

have knowledge of the application instance which has accepted

the flow. First, this allows packets to be directly steered to

the handling instance, without hopping through the chain of

candidates. Second, this ensures that, when the consistent

hashing table is recomputed (e.g. due to changes in the pool

of applications), existing connections are protected against

potential changes in the lookup table.

Thus, a signaling mechanism is required between the load-

balancer and the application instances. Four properties should

be satisfied: (i) no external control traffic should be generated,

(ii) deep packet inspection should be minimized, (iii) incoming

packets should go directly to the application instance handling

the flow, and (iv) outgoing packets should not transit through

the load-balancer.

To satisfy (i) and (ii), SR headers are inserted into packets

part of the accepted flow, i.e. a set of SR functions are

used for communicating between the load-balancer and the

application instance. Objective (iii) is accomplished by having

the appliation instance signal to the load-balancer when it has

accepted a flow (i.e. by adding an SR header to, typically, the

TCP SYN+ACK), and (iv) by making other traffic (i.e. packets

other than, typically, the TCP SYN+ACK) bypass the load-

balancer and be sent directly from the application instance to

the client.

A. SR Functions

SR functions are used to encode actions, which are to be

taken by a node, directly in the SR header. This is closely

linked to how IPv6 addresses are assigned: since each compute

node is assigned a (typically, 64 bit [34]) IPv6 prefix, it

is possible to use the lower-order bytes in this prefix to

designate different functions, as recommended by the SR draft

specification [29]. These functions will also depend on the

address of the first segment in the SR list (the “sender” of the

function). In practice, when a node whose physical prefix is

s receives a packet with SR header (x, . . . , s::f, . . .), it will

trigger a function f with argument x, which will be denoted

by s.f(x). In terms of a state machine, each SR function

will thus (i) move the node from one state to another and (ii)

trigger an action on the packet containing the SR function.

7

B. Handshake Protocol

When a (TCP) flow is initiated, SR functions are added

to the TCP handshake, so as to inform the load-balancer

candidate application instance has accepted the flow - thus

establishing a handshake protocol between the load-balancer

and the application instance handling a flow. This handshake

protocol is formally described as state machines in tables II

and III (in the appendix), and detailed below:

1. Upon receipt of a flow (typically, a TCP SYN packet)

from a client c for an application whose VIP is d, the load-

balancer lb will insert an SR header (lb, s1::ca, s2::cf, d)
comprising the physical addresses of the two candidate ap-

plication instances s1, s2 as given by the hashing function,

and the original VIP. The suffix ca in the addresses indicate a

function connectAvail, whereas cf represents a function

connectForce. The first application instance in the list will

make a local decision on whether to accept the flow. In case of

refusal, the packet will be forwarded to the second application

instance, which will have to forcefully accept the flow.

2. The application instance si (i ∈ {1, 2}) that has accepted

the connection enters a waiting state for this flow. While in

this state, it will temporarily steer traffic from the application

towards the load-balancer, so that the latter can learn which

application instance has accepted the connection. To do so, it

inserts an SR header (si, lb::cs, c) in packets coming from the

application, where cs is the createStickiness function.

3. Upon receipt of such a packet, the load-balancer enters

a steering state, during which traffic from the client to the

application is sent using (lb, si::as, d) as an SR header, as
standing for a function ackStickiness. This permits both

steering the traffic directly to the correct application instance,

and acknowledging the creation of a stickiness entry.

4. Then, when si receives such a packet, it enters a direct

return state for this flow. As si has acknowledged the creation

of the stickiness entry on the load-balancer, it thus does not

need to send traffic through it anymore. Subsequent traffic sent

by si will therefore be sent directly towards the client, without

using SR.

5. Finally, when si receives a connection termination packet

from the application (typically, a TCP FIN or RST), it will

insert an SR header (si, lb::rms, c), where rms designates a

removeStickiness function. This allows explicitly sig-

naling connection termination to the load-balancer. When

receiving this packet, the load-balancer will start a small timer,

at the expiration of which it will remove the corresponding

stickiness entry – using a small timer ensures that packets

are correctly steered to the rightful application instance while

the transport layer connection teardown is happening. In ad-

dition to this explicit connection termination process, periodic

garbage collection is used to remove stale entries from the

load-balancer.

C. Failure Recovery

When adding or removing a load-balancer instance, traffic

corresponding to a given flow might be redirected to a dif-

ferent load-balancer instance from the one over which it was

initiated.

In order to recover state, when a new load-balancer instance

receives a flow for which it does not have any state, incoming

data packets corresponding to an unknown flow are added

an SR header (lb, s1::rs, s2::rs, d), where rs is an SR

function recoverStickiness. Consistent hashing ensures

that {s1, s2} is the same instance set as the one used by

the previous load-balancer. When receiving a packet for this

SR function, the application instance that, in the past, has

accepted the flow will re-enter the steering state, so as to

notify the load-balancer. Conversely, an application instance

that has previously not accepted the flow will simply forward

the packet to the next application instance in the SR list.

V. PERFORMANCE ANALYSIS

In this section, an analytic model describing the perfor-

mance of 6LB with the SRc policy (Algorithm 1) is derived.

By way of this model, 6LB is compared to a Single-Choice

random flow assignment approach (SC), which reflects the

behavior of standard consistent-hashing approaches (e.g. [2]).

A. System Model

It is assumed that the system contains N application in-

stances, with N → +∞, and that consistent hashing uses

enough buckets such that the SR list associated with a flow is

uniformly chosen amongst the N2 possible lists.

In this section, the expected response time for the static

acceptance policy SRc described in Algorithm 1 is derived,

for c an integer threshold parameter. While a similar model

has been formulated in [35], the contribution in this paper

is that the model developed allows deriving the associated

expected response time, the fairness index, and the response

time distribution. This paper also validates the model against

a real deployment experiment.

Incoming flows are assumed distributed according to a

Poisson process of rate Λ = Nλ, and each application

instance offers an exponentially distributed response time, with

a processing rate normalized to µ = 1. For stability, the arrival

rate must verify λ < 1. For i ≥ 0, si is the fraction of

application instances for which there are i or more pending

flows (with s0 = 1). This allows writing (as in [35]):
{

dsi
dt = λ(1 + sc)(si−1 − si)− (si − si+1), ∀1 ≤ i ≤ c
dsi
dt = λsc(si−1 − si)− (si − si+1), ∀i > c

(1)

When i ≤ c, the probability of a flow being sent to

an application instance which already handles (i − 1) other

flows (i) directly is (si−1 − si) and (ii) after having being

rejected by an application instance which already handles c
or more flows is sc(si−1 − si). This yields a total proba-

bility of (1 + sc)(si−1 − si). The same reasoning applies

for i > c, where the probability of a flow being sent to

an application instance which already handles (i − 1) flows

(i ≥ 1) is the probability of having been rejected by a first

application instance already handling c or more flows, before

having been sent to an accepting application instance, yielding

sc(si−1−si). The probability of a flow leaving an application

8

instance already handling i flows is (si−si+1). Since the per-

application-instance arrival rate is λ and the processing rate is

µ = 1, this yields equation (1).

To study the behaviour of the system once in equilibrium, it

is necessary to find a fixed point to the differential system (1).

Setting dsi
dt = 0 yields the following system of equations

(where s0 = 1):
{

0 = λ(1 + sc)(si−1 − si)− (si − si+1), ∀1 ≤ i ≤ c

0 = λsc(si−1 − si)− (si − si+1), ∀i > c
(2)

For 1 ≤ n ≤ c, summing equation (2) over i = n to +∞
gives sn = λ(1+ sc)(sn−1 − sc) + λs2c , or: sn = λ[sn−1(1+
sc) − sc]. Since s0 = 1, this gives s1 = λ. More generally,

solving this recursion yields:

sn =
(1− λ)(λ(1 + sc))

n − λsc
1− λ(1 + sc)

, ∀1 ≤ n ≤ c (3)

Then, for n > c, summing equation (2) over i = n to +∞
gives sn = λscsn−1, i.e. :

sn = (λsc)
n−csc, ∀n ≥ c (4)

Plugging n = c into equation (3) allows formulating an

implicit equation for sc:

sc(1− λsc) = (1− λ)[λ(1 + sc)]
c (5)

This polynomial equation can be solved explicitly for c ≤ 5,

and numerically otherwise. Using this solution in equations (3)

and (4) allows obtaining the value of sn for any n, i.e. the

distribution of the number of flows awaiting being handled by

an arbitrary application instance.

B. Expected Response Time

The expected number X of flows in the system can be com-

puted, given that the probability that an application instance

handles n flows is (sn − sn+1): E(X) = N
∑+∞

n=0 n(sn −
sn+1) = N

∑+∞
n=1 sn.

According to Little’s law [36], the expected time T spent

in the system by a flow is: E(T) = E(X)
Λ = 1

λ

∑+∞
n=1 sn.

Summing sn, as obtained in equations (3) and (4), and using

equation (5) gives:

c−1
∑

n=1

sn =
λ− λsc(c− 1)− sc

1− λ(1 + sc)
,

+∞
∑

n=c

sn =
sc

1− λsc

Hence:

E(T) =
1− csc(1− λsc)− λsc(1 + sc)

(1− λsc)(1− λ(1 + sc))
(6)

Figure 8a depicts the value of E(T) for different SRc

policies, and for λ ∈ [0, 1). As a reference, this value is

compared to 1
1−λ , the expected response time for SC, when

clients are randomly assigned to one server. It can be observed

that the SRc policies uniformly yield an improvement over

SC. When c is small, lower values of λ yield the highest

gain; when c is important, higher values of λ yield the highest

gain. For example, choosing SR8 offers an improvement over

SR4 only when λ ≥ 0.983, and thus might rarely be suitable.

C. Additional Forwarding Delay

In cases where the server-to-server forwarding delay is

significant as compared to the job duration, forwarding a

query to the second application instance in an SR list incurs

an additional cost. If δ > 0 denotes the network delay,

multiplying this by the probability of being rejected by a first

application instance gives the expected additional delay. Thus,

the response time including delay, T̂ , verifies:

E(T̂) = E(T) + δ × sc (7)

The following theorem states the conditions under which SRc

does not degrade performance as compared to SC:

Theorem 1. As long as the network delay δ is smaller than

the job duration 1/µ, the response time including delay with

SRc is better than with SC: E(T̂) ≤ 1
1−λ , ∀δ ≤ 1.

The proof is given in the appendix. Figure 8d gives the

expected response time including delay, in the “worst-case” in

which the network delay equals the job duration (δ = 1).

D. Fairness Index

Jain’s fairness index [37], defined as F = E(X)2

E(X2) ∈ [0, 1], is

a measure for how even a load is distributed in a system: the

closer it is to one, the more evenly is the load distributed.

Computing F requires computing E(X2), the second mo-

ment of the number of flows in the system:

E(X2) = N

+∞
∑

n=0

n2(sn − sn+1) = N

+∞
∑

n=1

(2n− 1)sn

Using equations (3), (4) and (5), this yields:

c−1
∑

n=1

(2n− 1)sn =
1

(1−λ(1+sc))2

[

λ2(sc + 1)((c−1)2sc+ 1)

+ λsc(2csc − 3sc + 2c− c2 − 2)− 2csc + λ+ sc

]

,

+∞
∑

n=c

(2n− 1)sn =
sc(c(2− 2λsc) + 3λsc − 1)

(1− λsc)2

Combining those expressions with the expression for E(X)
from section V-B allows to compute F . Figure 8b depicts F ,

for different SRc policies, and for λ ∈ [0, 1) – and compares

with λ
1+λ , the fairness index for the SC policy. It can be

observed that SRc policies provide a better fairness than the

reference SC policy, and that low values of c are more suitable

for a low rate of new flow arrivals whereas high values of c
are preferable for higher rates of new flow arrivals.

E. Wrongful Rejections

As has been shown in section V-C, using the SRc policy

yields better performance than SC, because an overloaded

application instance can offload a query to another random

instance. However, the proposed mechanism is not fully equiv-

alent to the canonical “power-of-two-choices” scheme [5],

wherein the least loaded of two random instances is chosen.

Suboptimal decisions happen when a first instance handling

n ≥ c flows rejects the connection to a second instance

9

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

E
x
p

e
c
te

d
 r

e
s
p

o
n

s
e

 t
im

e
 (

in
 u

n
it
s
 o

f
1

/μ
)

Normalized request rate λ

SC
SR 2
SR 4
SR 8

(a) Mean response time E(T)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
a

ir
n

e
s
s
 i
n

d
e

x

Normalized request rate λ

SC
SR 2
SR 4
SR 8

(b) Fairness index F =
E(X)2

E(X2)

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

9
0

-t
h

 p
e

rc
e

n
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

in
 u

n
it
s
 o

f
1

/μ
)

Normalized request rate λ

SC
SR 2
SR 4
SR 8

(c) 90-th percentile of response time

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

E
x
p

e
c
te

d
 r

e
s
p

o
n

s
e

 t
im

e
 (

in
 u

n
it
s
 o

f
1

/μ
)

Normalized request rate λ

SC
SR 2
SR 4
SR 8

(d) Worst-case response time with delay E(T̂)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20

C
D

F

Response time (in units of 1/μ)

SC
SR 2
SR 4
SR 8

(e) CDF of response time for λ = 0.88

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 5 10 15 20

N
u

m
b

e
r

o
f

s
e

rv
e

rs
 n

e
e

d
e

d
 a

s
 c

o
m

p
a

re
d

 t
o

 S
C

Target 90-th percentile response time (in units of 1/μ)

SC
SR 4

(f) Reduction in number of servers when using
SR4 vs SC, for different 90-th percentile SLAs

Figure 8. Performance analysis of 6LB: SC vs SR2, SR4 and SR8.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

P
ro

b
a

b
ili

ty
 o

f
w

ro
n

g
fu

l
re

je
c
ti
o

n

Normalized request rate λ

SR 2
SR 4
SR 8

Figure 9. Probability of wrongful rejection for different SRc policies.

with strictly more than n flows. It is possible to estimate the

quantity of such wrongful rejections: the probability of hitting

such a pair of instances is (sn−sn+1)sn+1. Using equation (4),

the probability pw of wrongful rejection can be expressed as:

pw =
+∞
∑

n=c

(sn − sn+1)sn+1 =
λs3c

1 + λsc
(8)

In order to quantify this, figure 9 shows the probability of

wrongful rejection for different SRc policies. For example,

with SR4, wrongful rejections happen with probability lower

than 4.5% when λ ≤ 0.9.

F. Response Time Distribution

The model also allows deriving the distribution of the time

that a flow exists in the system. Knowing this distribution

allows, for example, characterizing the performance of 6LB

for Service Level Agreement (SLA) metrics, of the form “No

more than x% of clients experience a response time ≥ y”.

The distribution of the time T a flow waits, will be derived

by computing its characteristic function ϕT (θ) = E(eiθT) (for

θ ∈ R). Assume that the system is at its equilibrium given

by equation (2), and that application instances use a FIFO

policy with exponential response times. When a flow is being

directed to an application instance that is already handling

(k − 1) flows (k ≥ 1), its waiting time will be distributed

as the sum of k independent and identically distributed (i.i.d.)

exponential random variables (E1, . . . , Ek) of parameter µ = 1.

The characteristic function of one such variable is E(eiθE1) =
1

1−iθ , hence E(eiθT |k − 1 clients) =
(

1
1−iθ

)k

.

When a flow arrives at the system, it will, with probability

(1k≤c + sc)(sk−1 − sk) = 1
λ (sk − sk+1), be directed to an

application instance which is already handling (k − 1) other

flows. Based on this, it is possible to express the characteristic

function of the waiting time of an arbitrary flow:

E(eiθT) =

+∞
∑

k=1

1

λ
(sk − sk+1)

(

1

1− iθ

)k

Using equations (3), (4) and (5), this can be expressed as:

E(eiθT) =
(1− λ)(1 + sc)

1− λ(1 + sc)− iθ

−
sc(1− λsc)

(1− λsc − iθ)(1− λ(1 + sc)− iθ)(1− iθ)c−1
(9)

which can be inverted to find pT , the probability density of

T , using pT (t) =
1
2π

∫ +∞

−∞
e−iθt

E(eiθT)dθ.

Figure 8e depicts the CDF of this probability distribution,

for λ = 0.88, and for various SRc policies. At this high load,

10

the distribution for the SRc policies exhibit lower response

times and less variance as compared to SC.

Integrating this probability density allows finding πx, the

x-th percentile of response time, defined as the number satis-

fying:

Pr(T ≤ πx) =

∫ πx

0

pT (t)dt =
x

100
(10)

Figure 8c depicts π90, the 90-th percentile of response time,

for various SRc policies and for λ ∈ [0, 1), and is compared

to
ln(10)
1−λ , the same metric for the SC policy. Similarly as in

figure 8a, the response time with SRc is lower than with SC,

and small values of c are more suitable for low request rates.

G. Reducing the Number of Servers

The developed model allows estimating the gain, in terms

of how many fewer application instances are required to attain

a certain SLA, when using 6LB as compared to when using

“plain” SC.

Assuming that a system faces a daily request rate profile

with a peek rate Λ0, and the goal is to provide a given SLA

µ0 on the 90-th percentile of response time: no more than 10%
of clients should receive a target response time greater than

µ0 (i.e. π90 = µ0).

With a simple SC load-balancer, the system faces a nor-

malized request rate of λ0 = Λ0/N , and the 90-th percentile

of response time is π90 = ln(10)
1−Λ0/N

– thus, requiring deploying

N = Λ0

1−ln(10)/µ0
application instances to meet the SLA.

As per equation (10), let π(λ) be the function giving the

90-th percentile of response time π90 as a function of λ, when

using 6LB with the SRc policy. In order to meet the SLA,

i.e. to ensure that π(Λ0/N) = µ0, N ′ = Λ0

π−1(µ0)
application

instances must be deployed.

Comparing SC and 6LB with SRc yields:

N ′

N
=

1− ln(10)/µ0

π−1(µ0)
(11)

Figure 8f depicts this reduction in number of servers, as a

function of the target SLA µ0, between SC and SR4. If the

SLA requires that no more than 10% of clients experience a

response time greater than e.g. µ0 = 6, then if that is met by a

deployment of e.g. N = 100 application instances when using

SC, only N ′ = 71 application instances are required if using

6LB with the SR4 policy.

VI. EVALUATION

A. Experimental Platform

The experimental platform used for evaluating 6LB is

composed of a load-balancer and a server agent for the Apache

HTTP server.

1) Load-Balancer: The load-balancer performing consis-

tent hashing, SR header insertion and flow steering is imple-

mented as a VPP plugin [31]. Having kernel-bypass capabil-

ities and embedding an IPv6 Segment Routing stack, VPP is

a suitable choice to build a performing implementation. As a

reference, Maglev [2] was also implemented to evaluate the

single-choice consistent hashing flow assignment policy SC.

2) Apache HTTP Server Agent: A server agent for the

Apache HTTP server [38] has been implemented as a VPP

plugin, accessing Apache’s scoreboard shared memory4 to

allow the virtual router to access the state of the application

instance. Apache uses a worker thread model: a pool of

worker threads is started in advance, and received queries are

dispatched to those threads. Thus, a simple exposed metric is

the state of each worker thread, allowing to count the number

of busy/idle threads, and use this to decide on connection

acceptance, using one of the policies described in section II-B.

3) System platform: The experiments, described in sec-

tions VI-B and VI-C, are conducted on a common platform.

An edge router and two load-balancer instances are deployed

as 2-core VMs residing in one physical machine. N = 48
application instances of an Apache HTTP server reside each

in a 2-core VM, all of which are hosted across 4 physical

machines (distinct from the one hosting the edge router/load-

balancers). The edge router is configured to split traffic for the

application across the two load-balancer instances, by way of

ECMP, as in figure 1. VPP instances running in the edge router

VM, in the load-balancer VMs, and in each of the VMs of

the application instances, are on the same Layer-2 link, with

routing tables statically configured. Each physical machine has

a 24-core Intel Xeon E5-2690 CPU.

The size of the consistent hashing table of the load-balancer

instances was set to M = 65536 (except for the experiments

of sections VI-B4 and VI-B5), and the Apache servers were

configured to use the mpm_prefork module, each with 32

worker threads and with a TCP backlog of 128.

The tcp_abort_on_overflow parameter of the Linux

kernel was enabled, triggering a TCP RST when the backlog of

TCP connections exceeds queue capacity, rather than silently

dropping the packet and waiting for a SYN retransmit. Thus

under heavy load, it is application response delays that are

measured, and not possible TCP SYN retransmit delays.

B. Poisson Traffic

1) Traffic and Workload Patterns: To evaluate the efficiency

of the connection acceptance policies from section II-B under

different loads, 6LB was tested against a simple CPU-intensive

web application, consisting of a PHP script running a for loop

with an exponentially distributed number of iterations, and

whose duration is 190 ms in average. Using such a distribution

ensures that job durations exhibit reasonable variance (the

standard deviation of the exponential distribution is equal to its

mean). A traffic generator sends a Poisson stream of queries

(HTTP requests), with rate λ. A bootstrap step consisted of

identifying λ0, the max rate sustainable by the 48-servers farm,

i.e. the smallest value of λ for which some TCP connections

were dropped.

2) Connection Acceptance Policies Evaluation: With ρ =
λ/λ0 as the normalized request rate, for 20 values of ρ in the

range (0, 1), a Poisson stream of 80000 queries with rate ρ was

injected in the load-balancers, using the policies SR4, SR8,

SR16, SRdyn. As baseline, the same tests were run with

4This shared memory, internal by default, can be exposed as a named file
by specifying the ScoreBoardFile directive in the server configuration.

11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

M
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Normalized request rate ⍴

SC
SR 4
SR 8

SR 16
SR dyn

(a) Average page load time

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 50 100 150 200

S
e

rv
e

r
lo

a
d

 (
m

e
a

n
)

SC
SR 4

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 50 100 150 200

S
e

rv
e

r
lo

a
d

 (
fa

ir
n

e
s
s
)

Time (s)

SC
SR 4

(b) Instantaneous server load, ρ = 0.89.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

1.89x

C
D

F

Response time (s)

SC
SR 4
SR 8

SR 16
SR dyn

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

1.29x

C
D

F

Response time (s)

SC
SR 4
SR 8

SR 16
SR dyn

(c) CDF of page load time: ρ = 0.71 (top) and
ρ = 0.89 (bottom).

Figure 10. Connection acceptance policies evaluation: SC vs SR4, SR8, SR16, SRdyn.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 36 38 40 42 44 46 48

M
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Number of VMs

SC, 48 VMs
SR 4, 36..48 VMs

(a) Average page load time while decreasing the
number of VMs: SR4, ρ = 0.71.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 64 256 1024 4096 16384 65536

M
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Number of buckets

SC, 65536 buckets
SR 4, 64..131072 buckets

(b) Influence of the consistent hashing table size
M : SR4, ρ = 0.89.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600

C
D

F

SYN → SYN-ACK latency (μs)

SC
SR 4, 1st choice+2nd choice

SR 4, 1st choice
SR 4, 2nd choice

(c) SYN → SYN-ACK latency, ρ = 0.71.

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

%
 o

f
c
o

n
n

e
c
ti
o

n
 r

e
s
e

ts

Number of removed application instances

Resets due to removed instances
SC
SR

(d) Connection resets when removing x appli-
cation instances and simultaneously switching to
another 6LB instance

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

M
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Normalized request rate ⍴

SC
SR dyn

Round-Robin
Round-Robin+feedback

(e) Average page load time for centralized poli-
cies

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Std. dev. of job time (normalized to mean)

SC
SR dyn

Round-Robin
Round-Robin+feedback

(f) Average page load time for different variances
of job times, ρ = 0.71.

Figure 11. Poisson workload evaluation.

a policy SC where queries are pseudo-randomly assigned to

one server, without Service Hunting, using the single-choice

consistent hashing algorithm of Maglev [2].

Figure 10a depicts mean response times for each tested

request rate and for each policy, and show that, among those,

SR4 yields the best response time profile, up to 2.3× better

than SC for ρ = 0.87. SR8 and SR16 likewise perform better

than SC for all loads, but with a lesser impact. SRdyn offers

results close to the best tested static policy. In order to validate

the analytical model introduced in section V, the response

time as obtained from equation (6) is displayed in dotted lines

alongside the experimental results5: it can be observed that the

model accurately fits the data, as long as ρ < 0.9. After that,

5A fit is performed on SC to rescale the units. The obtained scaling
coefficients are then used for all policies.

the assumptions (steady state, infinite number of servers) do

not hold anymore.

Figure 10c shows the CDF of the page response time for

the 80000 queries batch with ρ = 0.89, for each policy.

SC exhibits a very dispersed distribution of response times,

whereas the different SRc policies yield lower, and less

dispersed, response times. This can be explained by inspecting

the evolution of the mean instantaneous load (the number

of busy worker threads) over all servers, as well as the

corresponding fairness index:
(
∑

48
i=1

xi(t))
2

48
∑

48
i=1

xi(t)2
(where xi(t) is

the load of server i at time t), depicted in figure 10b6. As

SR4 better spreads queries between all servers (the fairness

6These values have been smoothed through an Exponential Window Moving
Average filter, of parameter α = 1 − exp(−δt) where δt is the interval of
time in seconds between two successive data points.

12

index is closer to 1), and servers are individually less loaded,

better response times result.

For lighter loads, a similar behavior can be observed, except

that high SRc policies exhibit no benefits as compared to

SC. Figure 10c shows the CDF of the page load time for an

experiment where ρ = 0.71: SR16 yields no improvement

over SC, and SR8 yields a relatively small improvement,

however the SR4 policy provides a substantial improvement

in response times – and SRdyn remains able to successfully

match SR4, the best tested static policy.

3) Reducing the Number of Servers: Previous experiments

have shown how 6LB is able to yield a reduced page response

time, for a given request rate. Conversely, if an SLA on the

target response time is to be satisfied, 6LB can be used to

decrease the number of servers needed to reach that SLA. In

order to quantify this, a simple experiment has been conducted

to find out how many VMs can be shut off while achieving

a pre-defined SLA. Assume that the 48 VMs were deployed

with SC to attain an average response time of 0.58 s, i.e. that

the application faces a total request rate of ρ = 0.71 (values

taken from figure 10a). Using the same request rate, a batch

of 80000 requests was ran against less and less VMs with the

SR4 policy, until the same average response time was reached.

Figure 11a shows the average response time as a function of

the number of VMs: with 6LB 40 VMs are needed to meet

the same SLA as compared to 48 VMs with SC – a reduction

of 17%.

4) Influence of the Consistent Hashing Table Size: Using a

smaller hash table can be beneficial in environments with tight

resources, but at the cost of evenness in the distribution of the

application instances within first segments of the SR lists (as

explained in section III). In order to quantify this, a Poisson

stream of 80000 requests with request rate ρ = 0.71 was sent

to the load-balancers against the SR4 policy, using different

hash table sizes. Figure 11b shows the average response time

as a function of the table size used (tables have sizes 2k for

performance reasons). The response times are almost identical

for high table sizes, with a noticeable influence when M ≤
1024. Also, except when M ≤ 128, the average response time

stays lower than when using the SC policy with the same rate.

5) Consistent Hashing Resiliency: The resiliency of the

consistent hashing mechanism introduced in Algorithm 3 in

real conditions is evaluated through a simple experiment,

where a simultaneous change in the application instances pool

and in the load-balancer pool is introduced. With M = 4096
buckets in the consistent hashing tables, 1000 long-lived flows

are injected in the system and handled by the first 6LB in-

stance. Then, x application instances are removed, while at the

same time the ECMP router is reconfigured to use the second

6LB instance. The number of connection resets is recorded

for SR8 and SC, and depicted in figure 11d for several

values of x (averaged over 10 experiments). 6LB increases

the resiliency over SC (as described in section III-B1): apart

from “unavoidable” resets corresponding to connections that

were pinned to a removed instance, no more than 2% of extra

connections were reset by 6LB, as compared to 4% with SC.

6) SYN → SYN-ACK Latency: In order to quantify the ad-

ditional forwarding latency induced by 6LB, figure 11c depicts

the SYN → SYN-ACK latency as seen by the client for SR4

and SC, for the experiment where ρ = 0.71. As compared to

SC, with 6LB, the SYN packet can be forwarded to an extra

server, and the SYN-ACK packet must be forwarded through

the load-balancer. Overall, this increases the median latency

by 69 µs. Restricted to those connections that are accepted

by the second server in the SR list (corresponding to 38% of

the 80000 queries in this experiment), the median latency is

increased by 57 µs. For connections accepted in first instance,

the median latency is increased by 32 µs.

7) Comparison against Centralized Policies: Centralized

load-balancing policies do not offer the resiliency of consistent

hashing approaches, but in exchange provide more fairness.

In order to position 6LB as compared to this class of load-

balancers, two centralized policies are evaluated: (i) Round-

Robin and (ii) weighted Round-Robin with feedback. With the

latter policy, feedback is obtained by polling the load of each

application instance every 200 ms (over an out-of-band TCP

channel), before adjusting the weight of the instance in the

Round-Robin algorithm accordingly7. Figure 11e depicts the

average page load time as a function of the request rate ρ.

Results show that Round-Robin provides more fairness than

single-choice consistent hash, but is outperformed by SRdyn

(with equivalent results for light loads ρ ≤ 0.7). For heavier

loads, the feedback policy slightly improves performance

over Round-Robin, but remains outperformed by SRdyn: this

shows the benefit of using instantaneous information rather

than relying on periodic feedback.

8) Influence of the Variance of Service Times: To under-

stand the influence of the variability of job service times, an

experiment is conducted, where job CPU times distributions

have different variances. To that purpose, the previously used

exponential distribution is replaced with several log-normal

distributions (a simple class of positive-valued distributions

with a parameter influencing the variance). The response times

are set to have the same median as previously, but different

variance parameters, allowing to evaluate from constant to very

skewed response times. Figure 11f depicts the mean response

time as a function of the standard deviation of service times,

for a Poisson stream of 80000 queries at rate ρ = 0.71, against

SRdyn, SC and Round-Robin.

In the extreme case where response times are constant,

Round-Robin performs the best (as instances will have totally

processed a query before being assigned a new one) and

6LB performs better than SC. Indeed, with single-choice

consistent-hashing queries can be placed on a server that is

already busy (if “unlucky once”), whereas 6LB needs to be

“unlucky twice” for this to happen. When the skewness of

job service times increases, 6LB’s use of local information

becomes a greater and greater advantage, and it eventually

shows the best performance among all approaches.

C. Wikipedia Replay

To evaluate the efficiency of 6LB when exposed to a realistic

workload, an experiment has been constructed to reproduce

7The weight w is adjusted with w = 0.1+0.9 exp(−8× (b/32)2), where
b is the current number of busy worker threads.

13

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

00:00 04:00 08:00 12:00 16:00 20:00

M
e

d
ia

n
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Time of day (UTC)

SC wiki pages
SR 4 wiki pages

SR dyn wiki pages

 100

 120

 140

 160

 180

 200

 220

 240

00:00 04:00 08:00 12:00 16:00 20:00

Q
u

e
ri

e
s
 p

e
r

s
e

c
o

n
d

Time of day (UTC)

wiki pages

(a) Query rate and median wikipage load time.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

00:00 04:00 08:00 12:00 16:00 20:00

D
e

c
ile

 1
-9

re
s
p

o
n

s
e

 t
im

e
 (

s
)

Time of day (UTC)

SC wiki pages

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

00:00 04:00 08:00 12:00 16:00 20:00

D
e

c
ile

 1
-9

re
s
p

o
n

s
e

 t
im

e
 (

s
)

Time of day (UTC)

SR 4 wiki pages

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

00:00 04:00 08:00 12:00 16:00 20:00

D
e

c
ile

 1
-9

re
s
p

o
n

s
e

 t
im

e
 (

s
)

Time of day (UTC)

SR dyn wiki pages

(b) Decile 1, . . . , 9 of wikipage load time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Static page load time (ms)

SC static pages
SR 4 static pages

SR dyn static pages

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

Wiki page load time (s)

SC wiki pages
SR 4 wiki pages

SR dyn wiki pages

(c) CDF of page load time over the 24 hours.

Figure 12. Wikipedia replay: SC vs SR4 and SRdyn policies.

a typical (and, popular) Web-service. Thus an instance of

MediaWiki8 (version 1.28), as well as a MySQL server and

the memcached cache daemon, were installed on each of

the 48 servers. The wikiloader tool from [39], and a dump

of the database of the English version of Wikipedia from

[40], were used to populate the MySQL databases, resulting

in each server containing an individual replica of the English

Wikipedia.

1) Traffic and Workload Patterns: A traffic generator, able

to replay a MediaWiki access trace and to record response

times was developed, and experiments were run using 24

hours of traces from [40]. These traces correspond to 10%

of all queries received by Wikipedia during this timeframe,

from among which only traffic to the English Wikipedia was

extracted and used for the experiment.

A first experiment was to size the server farm, i.e. to identify

the smallest number of VMs necessary to be able to serve

queries while exhibiting reasonable response times. With 28

VMs, the median response time during peak hours is smaller

than 400 ms: the remainder of this section will assume this

size for the server farm.

2) Connection Acceptance Policies Tested: Given the supe-

rior performance of SR4 and SRdyn in the experiments from

section VI-B, the 24-hour trace was replayed against both SR4

and SRdyn, and client-side response times were collected. As

a baseline, the trace was also replayed against the reference

SC policy.

3) Experimental Results: The experiment allowed classi-

fying queries into two groups: (i) requests for static pages,

which are not CPU-intensive, and for which response times

were of the order of a millisecond, and (ii) requests for

wiki pages, that trigger memcached or MySQL and thus

are more CPU-intensive. 6LB was found to offer only a

small improvement over SC for static page response time

(figure 12c, top). However, the load times of wiki pages,

identifiable by the string /wiki/index.php/ in their URL,

exhibited interesting differences.

Figure 12a depicts the wiki page request rate and the

median wiki page load time for the three tested policies

during the 24h replay (data has been binned in 10 minutes

slots). It can be observed that at the off-peak period around

8:00 UTC, when the system was lightly loaded and subject

8https://www.mediawiki.org/wiki/Download

 0

 2

 4

 6

 8

 10

1 3 10 30 10
0

30
0

10
00

30
00

10
00

0

30
00

0

10
00

00

30
00

00

10
00

00
0

30
00

00
0

P
a

c
k
e

t
fo

rw
a

rd
in

g
 p

e
rf

o
rm

a
n

c
e

 (
M

p
p

s
)

Number of flows

SC
6LB

Figure 13. Upstream packet forwarding rate evaluation: 6LB vs single-choice
consistent-hashing, using a single CPU core.

to a request rate of around 110 pages per second, SC and

SR4 yielded similar performance, and SRdyn exhibited even

lower response times. As the request rate increases, using

the application-unaware SC policy yielded notably increased

page load times – whereas when using SR4 or SRdyn, a

comparably much smaller increase in page load times incurred.

To understand the response time variability over 24 hours,

figure 12b depicts deciles 1-9 of the wiki page load time

distribution, for each 10 minutes bin. Again, SR4 and SRdyn

show less variability under higher loads than does SC. Among

SR4 and SRdyn, the latter has the lower variability under

lighter loads, but is outperformed under higher loads.

Finally, as an indicator of “global good behavior”, figure 12c

(bottom) depicts the CDF of the wiki page load times over

the whole day. Overall, the median response time went from

0.22 s with SC to 0.18 s with SR4 and 0.16 s with SRdyn.

Furthermore, the tail of the distribution is steeper when using

6LB, with the 90-th percentile going from 0.67 s with SC to

0.32 s with SR4 and 0.31 s with SRdyn.

D. Throughput Evaluation

The advantages provided 6LB in load-balancing fairness

come at the cost of some overhead as compared to single-

choice load-balancing approaches, notably due to maintaining

flow state and performing IPv6 SR header insertion. To

understand the impact of 6LB in terms of CPU overhead,

the packet-forwarding performance of the VPP implementation

introduced in this paper is evaluated. Maglev [2] with GRE

encapsulation has also been implemented as a VPP plugin,

https://www.mediawiki.org/wiki/Download

14

and serves as a reference point. Evaluation was conducted on

a single core of a machine running an Intel E5-2667 CPU

at 3.2 GHz, with an Intel X710 10 Gbps NIC. The load-

balancer was manually initialized to install a pre-determined

number of flow entries, and a packet generator (sitting on

another machine on the same Ethernet link) was set to send

TCP ACK packets corresponding to these flows, at line rate.

Packets were set to return to the packet generator, and the

number of packets effectively forwarded by 6LB was recorded

– allowing to determine the maximum forwarding capability

of the implementation, for upstream traffic. ACK packets were

used rather than SYN, as they are expected to represent the

majority of the upstream traffic.

Figure 13 depicts the achievable forwarding rate (in millions

of packets per second, Mpps), as a function of the number of

flow entries installed. Two main results are to be noted. First,

the kernel bypass and vectorization capabilities of VPP make it

very efficient for load-balancing (be it single-choice or 6LB),

with a raw forwarding capability of around 8 Mpps with one

CPU core – with [2] reporting 2.7 Mpps with kernel bypass,

and 0.5 Mpps without. When the number of flows reaches

approximatively 105, the performance of both implementations

degrades, as the flow table cannot reside entirely in the CPU

cache. Second, it can be seen that 6LB incurs only 8%

CPU overhead as compared to the load-balancer reference

implementation. This overhead can be explained by the greater

complexity of the per-packet operations, and the fact that the

hash-table for flow state needs to handle collisions – whereas

the one from the reference load-balancing plugin does not.

Yet, this CPU overhead remains relatively negligible, and the

additional 8% resources that might need to be deployed to

use 6LB should be largely compensated by the fact that less

application instances need be deployed, due to the greater

fairness induced (as shown in section VI-B3).

VII. CONCLUSION

This paper has introduced 6LB, an innovative net-

work service offering flexible, scalable, reliable, distributed,

application-aware, but at the same time application-agnostic

and application-protocol-agnostic, load balancing.

This is accomplished by an architecture in which (i) load-

balancers using an extended consistent hashing algorithm

to map incoming flows onto a set of candidate application

instances, (ii) to offer – not impose – these network flows to

the candidate application instances, leaving them the decision

to accept (or not) a flow. Once an application instance has

accepted a flow (iii) data packets of no interest to the load-

balancer are sent directly from the application instance to the

client. When a network flow is reassigned to another load

balancer (e.g. if a load balancer is added to, or removed from,

the system), this will be detected, and in-band signaling will

reestablish the necessary state in this new load-balancer for

continued operation, ensuring (iv) that a traffic flow between

a client and an application instance becomes pinned to that ap-

plication instance, regardless of changes to the load balancing

infrastructure. The use of Segment Routing, specifically SR

Functions, allow defining and implementing this as a network

service, i.e. entirely below the application layer.

This paper has also introduced a simple two-server random

assignment policy (motivated by the concept of power of two

choices), combined with a static or dynamic query acceptance

policy. These policies were compared to a naive one-server

random query dispatch policy, by means of an analytical

model, as well as an evaluation on a 48-servers deployment.

Evaluation of those policies, conducted using a simulated

Poisson workload as well as on a Wikipedia replica, shows that

6LB is able to better spread the load between all servers than

single-choice consistent-hashing load-balancers. Evaluation of

the packet-forwarding performance of the implementation

shows that these benefits are attained at a negligible cost in

terms of CPU overhead.

APPENDIX

Proof of Theorem 1. Let c ≥ 1 a threshold parameter, and

λ ∈ [0, 1). First, it will be shown that sn ≤ λn for all n ≥ 0.

For 1 ≤ n ≤ c, sn = λ[sn−1 − sc(1 − sn−1)] ≤ λsn−1;

for n > c, sn = λscsn−1 ≤ λsn−1. Thus sn ≤ λsn−1 for all

n ≥ 1, and since s0 = 1, it follows by induction that sn ≤ λn.

It remains to show that E(T̂) ≤ 1
1−λ . Let δ ∈ [0, 1], then:

E(T̂) = 1
λ

∑+∞
n=1 sn + δsc = 1

λ

∑c−1
n=1 sn + 1

λ
sc

1−λsc
+ δsc.

Using sn ≤ λn, sc ≤ λc and δ ≤ 1 gives: E(T̂) ≤
1
λ

∑c−1
n=1 λ

n + 1
λ

λc

1−λc+1 + 1 · λc = 1−λc−1

1−λ + λc−1

1−λc+1 + λc =
1

1−λ+λc−1(1
1−λc+1−

1
1−λ+λ). Since c ≥ 1, λc+1 ≤ λ2, which

yields: E(T̂) ≤ 1
1−λ+λc−1(1

1−λ2 −
1

1−λ+λ) = 1
1−λ−

λc+2

1−λ2 ≤
1

1−λ , which completes the proof.

State
Incoming SR function

SR functions added
Next state

LB_LISTEN

SYN from client

s1.connectAvail(lb)

s2.connectForce(lb)

HUNTING

LB_LISTEN

data from client

s1.recoverStickiness(lb)

s2.recoverStickiness(lb)

HUNTING

HUNTING

SYN from client

s1.connectAvail(lb)

s2.connectForce(lb)

HUNTING

HUNTING
createStickiness(s)

remove SR header
STEER(s)

STEER(s)
data from client

s.ackStickiness(lb)
STEER(s)

STEER(s)
removeStickiness(s)

remove SR header

LB_LISTEN

after 10 sec

Table II
HANDSHAKE PROTOCOL STATE MACHINE FOR A GIVEN FLOW, AT A

LOAD-BALANCER lb

REFERENCES

[1] D. Thaler and C. Hopps, “Multipath issues in unicast and multicast next-
hop selection,” in Requests For Comments. Internet Engineering Task
Force, 2000, no. 2991.

[2] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein,
“Maglev: A fast and reliable software network load balancer,” in 13th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 16), 2016, pp. 523–535.
[3] M. Rahman, S. Iqbal, and J. Gao, “Load balancer as a service in cloud

computing,” in Service Oriented System Engineering (SOSE), 2014 IEEE

8th International Symposium on. IEEE, 2014, pp. 204–211.
[4] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,

“The segment routing architecture,” in 2015 IEEE Global Communica-

tions Conference (GLOBECOM). IEEE, 2015, pp. 1–6.

15

State
Incoming SR function

SR functions added
Next state

LISTEN
connectAvail(lb) (available)

remove SR header
WAIT(lb)

LISTEN
connectAvail(lb) (busy)

forward
LISTEN

LISTEN
recoverStickiness(lb) (not local)

forward
LISTEN

LISTEN
connectForce(lb)

remove SR header
WAIT(lb)

WAIT(lb)
connect[Avail|Force](lb)

remove SR header
WAIT(lb)

WAIT(lb)
data from app

lb.createStickiness(s)
WAIT(lb)

WAIT(lb)
ackStickiness(lb)

remove SR header
DIRECT(lb)

DIRECT(lb)
recoverStickiness(lb2) (local)

remove SR header
WAIT(lb2)

DIRECT(lb)
ackStickiness(lb)

remove SR header
DIRECT(lb)

DIRECT(lb)
data from app

direct return to client
DIRECT(lb)

DIRECT(lb)
FIN from app

lb.removeStickiness(s)

LISTEN

after 10 sec

Table III
HANDSHAKE PROTOCOL STATE MACHINE FOR A GIVEN FLOW, AT A

SERVER s

[5] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094–1104, 2001.

[6] Y. Desmouceaux, P. Pfister, J. Tollet, M. Townsley, and T. Clausen,
“SRLB: The Power of Choices in Load Balancing with Segment
Routing,” in Distributed Computing Systems (ICDCS), 2017 IEEE 37th

International Conference on. IEEE, 2017, pp. 2011–2016.

[7] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu et al., “Ananta: cloud scale
load balancing,” in ACM SIGCOMM Computer Communication Review,
vol. 43, no. 4. ACM, 2013, pp. 207–218.

[8] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Proceedings

of the twenty-ninth annual ACM symposium on Theory of computing.
ACM, 1997, pp. 654–663.

[9] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi, “Web caching with
consistent hashing,” Computer Networks, vol. 31, no. 11, pp. 1203–1213,
1999.

[10] D. G. Thaler and C. V. Ravishankar, “Using name-based mappings
to increase hit rates,” IEEE/ACM Transactions on Networking (TON),
vol. 6, no. 1, pp. 1–14, 1998.

[11] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud scale load balancing with hardware and
software,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4, pp. 27–38, 2015.

[12] R. Gandhi, Y. C. Hu, C.-K. Koh, H. H. Liu, and M. Zhang, “Rubik:
Unlocking the power of locality and end-point flexibility in cloud scale
load balancing.” in USENIX Annual Technical Conference, 2015, pp.
473–485.

[13] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Jo-
hari, “Plug-n-serve: Load-balancing web traffic using openflow,” ACM

Sigcomm Demo, vol. 4, no. 5, p. 6, 2009.

[14] R. Wang, D. Butnariu, J. Rexford et al., “Openflow-based server load
balancing gone wild.” Hot-ICE, vol. 11, pp. 12–12, 2011.

[15] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Trumpet: Timely and
precise triggers in data centers,” in Proceedings of the 2016 conference

on ACM SIGCOMM 2016 Conference. ACM, 2016, pp. 129–143.

[16] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive load sharing
in homogeneous distributed systems,” IEEE transactions on software

engineering, no. 5, pp. 662–675, 1986.

[17] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced alloca-
tions,” SIAM journal on computing, vol. 29, no. 1, pp. 180–200, 1999.

[18] H. Shen and C.-Z. Xu, “Locality-aware and churn-resilient load-
balancing algorithms in structured peer-to-peer networks,” IEEE Trans-

actions on Parallel and Distributed Systems, vol. 18, no. 6, pp. 849–862,
2007.

[19] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the

ACM, vol. 56, no. 2, pp. 74–80, 2013.
[20] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective

straggler mitigation: Attack of the clones.” in NSDI, vol. 13, 2013, pp.
185–198.

[21] F. Aubry, D. Lebrun, Y. Deville, and O. Bonaventure, “Traffic duplica-
tion through segmentable disjoint paths,” in IFIP Networking Conference

(IFIP Networking), 2015. IEEE, 2015, pp. 1–9.
[22] V. Cardellini, M. Colajanni, and S. Y. Philip, “Dynamic load balancing

on web-server systems,” IEEE Internet computing, vol. 3, no. 3, p. 28,
1999.

[23] Q. Zhang, L. Cherkasova, and E. Smirni, “Flexsplit: A workload-
aware, adaptive load balancing strategy for media clusters,” in Electronic

Imaging 2006. International Society for Optics and Photonics, 2006,
pp. 60 710I–60 710I.

[24] G. Ciardo, A. Riska, and E. Smirni, “Equiload: a load balancing policy
for clustered web servers,” Performance Evaluation, vol. 46, no. 2, pp.
101–124, 2001.

[25] Q. Zhang, A. Riska, W. Sun, E. Smirni, and G. Ciardo, “Workload-
aware load balancing for clustered web servers,” IEEE Transactions on

Parallel and Distributed Systems, vol. 16, no. 3, pp. 219–233, 2005.
[26] S. Sharifian, S. A. Motamedi, and M. K. Akbari, “A content-based load

balancing algorithm with admission control for cluster web servers,”
Future Generation Computer Systems, vol. 24, no. 8, pp. 775–787, 2008.

[27] “HAProxy: the reliable, high-performance TCP/HTTP load balancer.”
[Online]. Available: http://www.haproxy.org

[28] R. Gandhi, Y. C. Hu, and M. Zhang, “Yoda: A highly available layer-7
load balancer,” in Proceedings of the Eleventh European Conference on

Computer Systems. ACM, 2016, p. 21.
[29] C. Filsfils et al., “SRv6 Network Programming,” Internet Engi-

neering Task Force, Internet-Draft draft-filsfils-spring-srv6-network-
programming-01, Jun. 2017, work in Progress.

[30] S. Previdi et al., “IPv6 Segment Routing Header (SRH),” Internet
Engineering Task Force, Internet-Draft draft-ietf-6man-segment-routing-
header-06, 2017, work in Progress.

[31] The Fast Data Project (fd.io), “Vector Packet Processing (VPP).”
[Online]. Available: https://wiki.fd.io/view/VPP

[32] F. William, “An introduction to probability theory and its applications,”
1950.

[33] D. J. Newman, “The double dixie cup problem,” The American Mathe-

matical Monthly, vol. 67, no. 1, pp. 58–61, 1960.
[34] D. S. E. Deering and R. M. Hinden, “IP Version 6 Addressing Archi-

tecture,” in Request for Comments. Internet Engineering Task Force,
2006, no. 4291.

[35] M. D. Mitzenmacher, “The power of two choices in randomized
load balancing,” Ph.D. dissertation, UNIVERSITY of CALIFORNIA
at BERKELEY, 1996.

[36] J. D. Little, “A proof for the queuing formula: L=λw,” Operations

research, vol. 9, no. 3, pp. 383–387, 1961.
[37] R. Jain, D.-M. Chiu, and W. R. Hawe, A quantitative measure of fairness

and discrimination for resource allocation in shared computer system.
Eastern Research Laboratory, Digital Equipment Corporation Hudson,
MA, 1984, vol. 38.

[38] “The Apache HTTP server project.” [Online]. Available: http:
//www.apache.org

[39] E.-J. van Baaren, “Wikibench: A distributed, wikipedia based web
application benchmark,” Master’s thesis, VU University Amsterdam,
2009.

[40] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis
for decentralized hosting,” Elsevier Computer Networks, vol. 53, no. 11,
pp. 1830–1845, July 2009.

Yoann Desmouceaux received the Diplôme d’Ingé-
nieur from École Polytechnique (Palaiseau, France)
in 2014, and the MSc degree in Advanced Comput-
ing from Imperial College (London, U.K.) in 2015.
He is currently undertaking an industrial PhD under
joint supervision of Mark Townsley (Cisco Systems)
and Thomas Clausen (École Polytechnique). His re-
search interests include high-performance network-
ing, IPv6-centric protocols, load-balancing, reliable
multicast and data-center optimization algorithms.

http://www.haproxy.org
https://wiki.fd.io/view/VPP
http://www.apache.org
http://www.apache.org

16

Pierre Pfister received an M.Sc from École Poly-
technique (Palaiseau, France) in 2012 as well as an
M.Sc in Communication Systems from École Poly-
technique Fédérale de Lausanne (Switzerland) in
2013. He has been an active participant in the Home
Networking and IPv6 IETF working groups, where
he co-authored multiple Standard Track RFCs. He is
currently a Research Engineer at Cisco’s Paris Inno-
vation and Research Lab, where his interests include
high-scale content delivery networks, load-balancing
and IPv6 multi-homed networks. He received the

Cisco Pioneer Award in 2017 for his work on FD.io VPP open-source project,
where he applies high performance computing principles to virtualization and
networking technologies.

Jérôme Tollet is a Distinguished Engineer working
for the CTO Office of Cisco. Jérôme has extensive
experience of computer systems and network archi-
tectures, and strong technical expertise gained from
more than 18 years designing and implementing
networking solutions. He actively contributed to the
Open Networking Foundation (ONF), ETSI Industry
Specification Group on NFV, IETF Service Function
Chaining (SFC) Working Group and various open
source initiatives including OpenDayLight, Open-
Stack and FD.io. He holds multiple patents and

obtained his Master’s degree in Computer Science from a joint degree program
at Pierre and Marie Curie - Paris 6 University and ENST Paris. Jérôme is a
frequent speaker at international conferences.

Mark Townsley is a Cisco Fellow, Professor Chargé
de Cours at École Polytechnique, and co-founder
of the Paris Innovation and Research Laboratory
(PIRL). Before Joining Cisco in 1997, he held
positions at IBM, the Institute for Systems Research
(ISR) and the Center for Satellite and Hybrid Com-
munications Networks (CSHCN) at the University of
Maryland. Mark served as IETF Internet Area Di-
rector from 2005-2009, IETF L2TP Working Group
Chair from 1999-2005, IESG Liaison to the Internet
Architecture Board (IAB), and IETF Pseudowire

WG Technical Advisor. Mark was the lead developer of the original imple-
mentation of L2TP in Cisco IOS as well as lead author of IETF L2TP protocol
specification (RFC 2661). One of the original architects of the World IPv6
Day and Launch, Mark contributed significantly to the deployment of IPv6
on the internet, including lead author of RFC 5969, IPv6 Rapid Deployment
(6RD). In 2011, Mark co-founded the IETF Homenet Working Group, and
served as chair until 2017. In addition to his Faculty appointment at École
Polytechnique, Mark lectures on Future Internet Architectures at Telecom
Paris Tech (TPT), and serves on the steering committee for the joint TPT-
Polytechnique Advanced Computer Networking master’s degree. Mark holds
a Bachelor of Science (summa cum laude) degree in Electrical Engineering
from Auburn University and a Masters degree in Computer Science (magna
cum laude) from the Johns Hopkins University Applied Physics Laboratory.
When not traveling, he lives with his family in Paris, France.

Thomas Clausen is a graduate of Aalborg Uni-
versity, Denmark (M.Sc., PhD – civilingeniør,
cand.polyt), and a Senior Member of the IEEE.
Thomas has, since 2004 been on faculty at École
Polytechnique, France’s leading technical and scien-
tific university, where he holds the Cisco-endowed
“Internet of Everything” academic chaire.
At École Polytechnique, Thomas leads the computer
networking research group. He has developed, and
coordinates, the computer networking curriculum,
and co-coordinates the Masters program in “Ad-

vanced Communication Networks” (ACN). He has published more than 80
peer-reviewed academic publications (which have attracted more than 12000
citations) and has authored and edited 24 IETF Standards, has consulted for
the development of IEEE 802.11s, and has contributed the routing portions
of the recently ratified ITU-T G.9903 standard for G3-PLC networks –
upon which, e.g., the current SmartGrid & ConnectedEnergy initiatives are
built. He serves on the scientific council of ThinkSmartGrids (formerly:
SmartGridsFrance).

	Introduction
	Statement of Purpose
	Related Work
	Segment Routing
	Paper Outline

	Service Hunting with Segment Routing
	Description
	Connection Acceptance Policies
	Static
	Dynamic

	Protocol Overhead
	Reliability

	Horizontal Scaling with Consistent Hashing
	Generating Lookup Tables
	Analysis
	Resiliency
	Fairness
	Complexity

	In-band Stickiness Protocol
	SR Functions
	Handshake Protocol
	Failure Recovery

	Performance Analysis
	System Model
	Expected Response Time
	Additional Forwarding Delay
	Fairness Index
	Wrongful Rejections
	Response Time Distribution
	Reducing the Number of Servers

	Evaluation
	Experimental Platform
	Load-Balancer
	Apache HTTP Server Agent
	System platform

	Poisson Traffic
	Traffic and Workload Patterns
	Connection Acceptance Policies Evaluation
	Reducing the Number of Servers
	Influence of the Consistent Hashing Table Size
	Consistent Hashing Resiliency
	SYN SYN-ACK Latency
	Comparison against Centralized Policies
	Influence of the Variance of Service Times

	Wikipedia Replay
	Traffic and Workload Patterns
	Connection Acceptance Policies Tested
	Experimental Results

	Throughput Evaluation

	Conclusion
	Appendix
	References
	Biographies
	Yoann Desmouceaux
	Pierre Pfister
	Jérôme Tollet
	Mark Townsley
	Thomas Clausen

