ERRATA

${ }^{75}$ As Nuclear Quadrupole Resonance in Weakly Substitutionally Disordered $\mathrm{Rb}_{1-x}\left(\mathbf{N H}_{4}\right)_{x} \mathbf{H}_{2} \mathrm{AsO}_{4}$
 [Phys. Rev. Lett. 73, 276 (1994)]

G. Papantopoulos, G. Papavassiliou, F. Milia, V. H. Schmidt, J. E. Drumheller, N. J. Pinto, R. Blinc, and B. Zalar

The text to Figs. 1 and 2 has to be interchanged.
The correct version of Eq. (11) is

$$
\begin{equation*}
W(p)=\frac{1}{\left\{2 \pi\left[q_{\mathrm{EA}}\left(T_{g}^{2} / T^{2}\right)+\left(T_{\Delta}^{2} / T^{2}\right)\right]\right\}^{1 / 2}} \frac{1}{1-p^{2}} \exp \left[-\frac{\left[\arctan p-\left(T_{c} / T\right) P-\left(T_{\varepsilon} / T\right) P^{3}\right]^{2}}{2\left[q_{\mathrm{EA}}\left(T_{g}^{2} / T^{2}\right)+\left(T_{\Delta}^{2} / T^{2}\right)\right]}\right] \tag{11}
\end{equation*}
$$

The zero temperature $W(p)$ shape (p. 278, end of first paragraph) should read

$$
W(p ; T=0)=\frac{1}{2}\{[1+P(T=0)] \delta(p-1)+[1-P(T=0)] \delta(p+1)\}
$$

