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Abstract— In-memory computing is an emerging non-von 

Neumann approach in which certain computational tasks such 

as matrix-vector multiplication are performed using resistive 

memory devices organized in a crossbar array. However, the 

conductance variations associated with the memory devices 

limit the precision of this computation. Here, we demonstrate 

that the so-called projected phase-change memory (Proj-

PCM) devices can achieve 8-bit precision while performing 

scalar multiplication. The devices were fabricated and 

characterized using electrical measurements and STEM 

investigation. They are found to be remarkably immune to 

conductance variations arising from structural relaxation, 1/f 

noise and temperature variations. Moreover, it is possible to 

compensate for the temperature-dependent conductance 

variations in a crossbar array using a simple model. Finally, 

we experimentally demonstrate a neural network-based image 

classification task involving 30 such Proj-PCM devices. 

I. INTRODUCTION 

In-memory computing is an emerging computing 

paradigm that has the potential to increase the performance 

and area/energy efficiency of several artificial intelligence 

related computational tasks [1-4]. However, the limited 

precision of in-memory computing remains a key challenge. 

Much of the research effort is focused on system-level or 

architectural solutions to address this problem [5,6]. Here, we 

propose a device-level solution to address this challenge based 

on the concept of projected phase-change memory (Proj-

PCM) [7,8]. In a Proj-PCM device, there is a non-insulating 

projection segment in parallel to the phase-change segment. 

By exploiting the highly non-linear IV characteristics of 

phase-change materials, we can ensure that during the write 

process, the projection segment has minimal impact on the 

operation of the device. However, during read, conductance 

values of programmed states are mostly determined by the 

projection segment that appears parallel to the amorphous 

phase-change segment. Hereby, we demonstrate the efficacy 

of these devices with respect to in-memory multiplications. 

II. DEVICE FABRICATION AND CHARACTERIZATION 

We fabricated Proj-PCM devices based on a lateral device 

geometry (Fig. 1). GeTe serves as the phase-change layer, 

while the projection layer consists of a metal nitride. By 

applying appropriate programming pulses that cause a melt-

quench process on the as-fabricated crystalline GeTe, it is 

possible to modulate the amorphous region’s size. During the 

read process, one measures the resistance of the projection 

layer, which is in parallel to the amorphous region. The 

resulting programing curve is shown in Fig. 2. To validate our 

assumption, that we have a single contiguous amorphous 

region separated by crystalline GeTe, we performed extensive 

STEM studies on these devices (Fig. 3). These studies also 

indicate that the amorphous region is not perfectly centered, 

which is indicative of additional thermo-electrical effects that 

have been shown to play a significant role in these nanoscale 

devices [9]. Scalar multiplication using resistive memory 

devices rely on Ohm’s law. Hence it is of interest to study the 
field dependence of electrical transport in Proj-PCM devices. 

It can be seen that compared with conventional PCM devices, 

Proj-PCM devices show a much weaker field dependence 

(Fig. 4). The precision associated with scalar multiplication 

and subsequently matrix-vector multiplication is strongly 

determined by the conductance variations associated with 

these devices. For example, conventional PCM devices exhibit 

a temporal evolution of conductance (drift) attributed to the 

structural relaxation of the amorphous phase [10]. Proj-PCM 

devices show a 50-fold reduction in drift (Fig. 5). Besides 

drift, there are conductance fluctuations arising from the 1/f 

noise which is also found to be substantially lower in our 

devices (Fig. 6). The variation in conductance arising from 

temperature fluctuations is another key challenge given the 

highly thermally activated nature of electrical transport in 

phase-change materials. What is even more detrimental is that 

the activation energy tends to vary for different programmed 

states and as can be seen later, this poses key challenges for 

developing effective temperature compensation schemes. The 

Proj-PCM devices on the other hand show a substantially 

weaker dependence on temperature variations (Fig. 7). 

III. IN-MEMORY MULTIPLICATION 

A. Scalar Multiplication 

To perform the scalar multiplication operation, β = α ∙ ξ, 
the variable ξ is mapped proportionally to a read voltage and α 
into a conductance state of the Proj-PCM device. Due to 

Ohm’s law, one can obtain an approximate result β̂ of β from 

the resulting read current. We performed 20,000 scalar 

multiply operations on 12 conductance states of a Proj-PCM 

device (Fig 8a). Due to the analog nature of the programming 

curve, it is possible to program the device to a desired 

conductance state with high precision using iterative 

programing. The achieved precision of the scalar multiply 

operation is comparable to 8-bit fixed point arithmetic at room 

temperature (Fig. 8b,c). This remarkable result is attributed to 

the significantly low conductance variations associated with 

the programmed states. The average dissipated power in a 

Proj-PCM device for scalar multiplication is 60 nW and the 

average energy consumption, assuming a 100 ns read time 

provided by an integrated readout circuit, is 6 fJ (Fig. 9). The 

latter is 33x lower than an 8-bit digital multiplication in 45 nm 

(0.2 pJ) [11]. A comparative study was done using non-
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projected PCM devices and one could observe substantially 

reduced precision (Fig. 10). This is due to the significantly 

higher drift, 1/f noise and non-Ohmic transport behavior. 

B. Temperature compensation method 

Remarkably, the 8-bit precision can be retained at elevated 

temperatures aided by a simple compensation scheme. The 

projection material’s resistivity exhibits a well-defined length-

independent temperature dependence. A compensation 

scheme was devised by multiplying the read current with a 

single-variable equation that describes the temperature 

dependence of the projection material, that is 𝑓(𝑇) = 1 +α𝑝(𝑇 − 𝑇0). The same value of αp (-3.0×10-3 K-1) was used 

independent of the device conductance state. We repeated the 

scalar multiplication experiment while varying the ambient 

temperature as a sinusoidal profile between 25 and 55oC. Fig. 

11a shows the resulting error and its elimination by the 

compensation scheme in scalar multiplication, recovering the 

8-bit fixed point arithmetic comparable precision (Fig. 11b). A 

slight shift to higher β̂ at high temperatures arises from the 

fact that the compensation scheme assumes zero contribution 

of the amorphous PCM in the total temperature behavior. This 

could be tackled with a more complex compensation scheme. 

C. Matrix-vector multiplication 

By invoking the Kirchhoff’s current summation rule in 
addition to the Ohm’s law, one can multiply a matrix by a 
vector. If resistive memory devices are organized in a crossbar 

configuration, the matrix-vector multiplication A ∙ x = b can 

be performed by mapping the elements of A to conductance 

values and the elements of x to read voltages applied to the 

rows of the crossbar (Fig. 12). Subsequently, the elements of b 

are computed from the column currents. The temperature 

compensation scheme proposed earlier can be applied to the 

column current. First, we simulated a 256×256 crossbar and 

tested the temperature compensation method in both PCM and 

Proj-PCM devices (Fig. 14a). The temperature dependence of 

the phase-change material was captured by a model based on 

the experimental results of Fig. 7. The activation energy for 

electrical transport was assumed to be normally distributed 

around the mean value E̅α = 0.2 eV with a standard deviation 

of 15 meV. For the Proj-PCM case, the projection material 

was modelled as a parallel resistor with a single temperature 

coefficient (Fig. 13).  Because of the parallel current path with 

weaker temperature dependence, the Proj-PCM crossbar 

outperforms the PCM one. More importantly, it is impossible 

to compensate for ambient temperature variations at a crossbar 

array level with PCM due to the significant variations in the 

activation energy values (Fig. 14b). Proj-PCM devices, on the 

other hand, with their state/device-independent temperature 

dependence of electrical transport are much more amenable to 

such a compensation scheme. In addition to the simulation 

studies, we experimentally emulated 2000 matrix-vector 

multiplications employing 12 Proj-PCM devices arranged in a 

4×3 virtual crossbar configuration. An equivalent experiment 

was repeated under temperature variations spanning from 25 

to 55oC. The column currents were translated to �̂�𝑖 and plotted 

against the exact result 𝑏𝑖  for constant and varying 

temperature (Fig. 15 & 16, respectively). The precision loss in 

the latter case was recovered by the compensation scheme. 

IV. PATTERN CLASSIFICATION 

A single-layer neural network was experimentally 

emulated using 30 physical Proj-PCM devices arranged in a 

10×3 crossbar (Fig. 17b). The network was trained to classify 

3×3 pixel images to 3 classes [12]. It consists of 9 input nodes 

in which the pixel values are fed in, mapped as read voltages, 

while a 10th input neuron serves as bias. Being a single layer 

network, the input and output neurons are directly connected, 

with the conductance of each of the 30 fully connected devices 

corresponding to the synaptic weight. The dot-product of the 

weights and inputs is calculated at each output neuron, which 

in our case is the column read current. Fig. 17a is a schematic 

representation of this network next to the training set, which 

consists of 3 images, the numbers 4, 1 and 0. The network was 

trained offline using the back-propagation algorithm. The 

resulting weights were mapped to conductance values and the 

ranges adjusted to match the dynamic range of the Proj-PCM 

devices (Fig. 17c). The classification accuracy was obtained 

on 2 test sets of 27 images under 2 scenarios of noise at the 

input neurons: 1) analogue noise introduced as a Gaussian 

distribution of pixel colors between 0 and 1 in the grayscale, 

and 2) digital noise that had one pixel of each original image 

flipped (Fig 18a). For the Gaussian noise a standard deviation 

value of 0.2 was chosen for the experiment (Fig. 17d). In both 

scenarios the classification accuracy was 100% at room and 

elevated temperature, even without the need to apply the 

temperature compensation method (Fig 18b & c). 

V. CONCLUSIONS 

We have conclusively shown 8-bit precise and low-power 

(60 nW) in-memory multiplication using Proj-PCM devices. 

We demonstrated scalar and matrix-vector multiplication with 

8-bit precision, along with a method that corrects for the 

temperature variations and recovers the constant temperature 

precision. We also successfully implemented a single-layer 

neural network with 30 hardware Proj-PCM devices capable 

of errorless pattern classification at elevated temperatures. The 

8-bit precision requires highly accurate conductance tuning as 

well as low-offset/low-noise analog circuitry, lest one of those 

factors become the actual limit on effective precision. Future 

work will aim at decreasing the absolute device conductance 

and enlarging the conductance window for easier integration 

in large neuromorphic crossbars, which should be achievable 

through material engineering and device scaling. 
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Fig. 1. (a) Schematic 3D view of a lateral Proj-PCM device. 
The bi-layer stack is encapsulated by SiO2 and 2 pads connect 
it to a characterization setup. (b) SEM image of a device during 
fabrication. Different active-area dimensions within the noted 

width/length range were fabricated and characterized. 

 
Fig. 3. Cross sectional STEM studies on the active area of a programmed 
cell. The color-coded and in-scale schematic explains the components of 
the device. High resolution images were obtained at the 5 marked areas 
(i-v) revealing the size and the location of the amorphous volume. In the 
left and right interface images the transition from ordered to disordered 
atomic configuration is clearly shown. FFT analysis points out that the 
characteristic spectra of the crystalline phase (discrete points: i,v) and the 
amorphous phase (ring-shaped pattern: iii) coexist at the interfaces (ii,iv). 

Fig. 2. (a) Programming curve of a Proj-PCM device. Higher 
voltage amplitudes increase the amorphous volume. (b) Any 
desired conductance state within the dynamic range can be 
achieved using iterative programing.  

  
Fig. 4. (a) Normalized resistance versus voltage for different programmed states 
in PCM and Proj-PCM, showing the strong field dependence of PCM, and its 
weakening in Proj-PCM. Proj-PCM has consistently an Ohmic behavior over a 
wider range in the low-field regime, i.e. during read. (b) Current-voltage 
characteristics of PCM. (c) Current-voltage characteristics of Proj-PCM. 

 
Fig. 5. Resistance drift of 6 resistance states in Proj-
PCM. The drift coefficient ν𝑅 is determined by a power-
law fit and shows a 50-fold reduction in Proj-PCM 

compared to PCM (inset). 

Fig. 8. (a) Scalar multiplication result β̂ obtained by the read current using Ohm’s law against ξ 
which is mapped in read voltage values, for Proj-PCM conductance states between Gmin (3.8 μS) 

and Gmax (4.9 μS). (b) Scalar multiplication result β̂ computed using the Proj-PCM against both 8-
bit fixed point arithmetic and the exact result β . (c) Error distribution of the 20000 scalar 
multiplication results for the Proj-PCM compared with the 8-bit fixed point arithmetic. 
 

Fig. 6. Normalized spectral density of the 
read-current noise in the crystalline phase 
and in a programmed state for PCM and 
Proj-PCM, where it is 104 times lower. 

 
Fig. 9. Distribution of power per scalar 
multiply operation. Energy is calculated 
assuming 100 ns read time provided by 
an integrated readout circuit.  

Fig. 7. (a) Normalized resistance versus temperature for different annealed states in PCM and 
Proj-PCM. (b) The exponential temperature dependence of resistance in PCM is fitted by an 
Arrhenius equation 𝑅(𝑇) = 𝑅∗exp (𝐸α/𝑘𝐵𝑇). Activation energy 𝐸α is determined by the slope. 
(c) The temperature dependence of Proj-PCM can be described by a simple linear approximation 𝑅(𝑇) = ρ[1 + α𝑝(𝛵 − 𝛵0)]. Temperature coefficient of resistance α𝑝 is extracted via linear fit. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Fig. 17. (a & b) A set of 30 Proj-PCM cells make up a 10×3 crossbar 
that serves as a neural network that is trained on a set of 3 images. (c) 
Training weights are mapped to conductance values and ranged to 
match the dynamic range of the devices. (d) The latter affects the 

classification accuracy in the Gaussian noise scenario. 

Fig. 14. (a) Simulations of the temperature effect on a 
matrix-vector multiplication in a 256x256 crossbar. (b) 
The inapplicability of a crossbar array level 
compensation scheme in PCM due to significant 
variations in the activation energy values, compared to 
Proj-PCM. For each case we used the corresponding 

compensation equation 𝑓(𝑇), as described in Fig. 12. 

 
Fig. 11. (a) The effect of temperature in the experiment of Fig 8b. 
The temperature compensation model is used to correct read current 
and recover precision loss. (b) Error distribution for the temperature 
compensated Proj-PCM compared with 8-bit fixed point arithmetic. 

Fig. 13. Resistance network model 
of the amorphous PCM in parallel 
with the projection layer. Based on 
experimental data, Eα was normally 

distributed, while αp was the same. 

Fig. 15. 2000 experimental 4×3 matrix-

vector multiplication results �̂�𝑖 computed 
with Proj-PCM against the exact result 𝑏𝑖 and the 8-bit fixed point arithmetic. 

Fig. 10. Scalar multiplication 

result β̂  in PCM and Proj-PCM 
against exact result β. Drift and 

1/f noise in PCM cause errors.  

Fig. 16. 2000 experimental 4×3 matrix-
vector multiplications at various 
elevated temperatures. Precision loss is 
recovered by the compensation scheme. 

  
Fig. 18. Classification of 27 images in 2 scenarios of noise at the 
input neurons. (a) Analogue noise was introduced as a Gaussian 
distribution of pixel colors between 0 and 1 in the grayscale (σ = 
0.2) whereas the set for digital noise had one pixel of each original 
image flipped. (b & c) In both scenarios the classification accuracy 
was 100% at room and elevated temperatures, without the need to 
apply the temperature compensation scheme. 

Fig. 12. Temperature compensation 
procedure in a crossbar that 
comprises Proj-PCM devices. 
Column current is corrected by the 
compensation equation: 𝑓(𝑇) = 1 +α𝑝(𝛵 − 𝛵0), in which temperature is 

the only required input. 
 


