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80 million tiny images: a large dataset for

non-parametric object and scene recognition
Antonio Torralba, Rob Fergus and William T. Freeman

Abstract— With the advent of the Internet, billions of images
are now freely available online and constitute a dense sampling
of the visual world. Using a variety of non-parametric methods,
we explore this world with the aid of a large dataset of 79,302,017
images collected from the Web. Motivated by psychophysical
results showing the remarkable tolerance of the human visual
system to degradations in image resolution, the images in the
dataset are stored as 32 × 32 color images. Each image is
loosely labeled with one of the 75,062 non-abstract nouns in
English, as listed in the Wordnet lexical database. Hence the
image database gives a comprehensive coverage of all object
categories and scenes. The semantic information from Wordnet
can be used in conjunction with nearest-neighbor methods to
perform object classification over a range of semantic levels
minimizing the effects of labeling noise. For certain classes that
are particularly prevalent in the dataset, such as people, we are
able to demonstrate a recognition performance comparable to
class-specific Viola-Jones style detectors.

Index Terms— Object recognition, tiny images, large datasets,
Internet images, nearest-neighbor methods.

I. INTRODUCTION

With overwhelming amounts of data, many problems can be

solved without the need for sophisticated algorithms. One exam-

ple in the textual domain is Google’s “Did you mean?” tool which

corrects errors in search queries, not through a complex parsing

of the query but by memorizing billions of query-answer pairs

and suggesting the one closest to the users query. In this paper,

we explore a visual analog to this tool by using a large dataset

of 79 million images and nearest-neighbor matching schemes.

When very many images are available, simple image indexing

techniques can be used to retrieve images with similar object

arrangements to the query image. If we have a big enough

database then we can find, with high probability, images visually

close to a query image, containing similar scenes with similar

objects arranged in similar spatial configurations. If the images

in the retrieval set are partially labeled, then we can propagate

the labels to the query image, so performing classification.

Nearest-neighbor methods have been used in a variety of com-

puter vision problems, primarily for interest point matching [5],

[19], [28]. They have also been used for global image matching

(e.g. estimation of human pose [36]), character recognition [4],

and object recognition [5], [34]. A number of recent papers have

used large datasets of images in conjunction with purely non-

parametric methods for computer vision and graphics applications

[22], [39].

Finding images within large collections is the focus of the

content based image retrieval (CBIR) community. Their emphasis
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on really large datasets means that the chosen image represen-

tation is often relatively simple, e.g. color [17], wavelets [42]

or crude segmentations [9]. This enables very fast retrieval of

images similar to the query, for example the Cortina system

[33] demonstrates real-time retrieval from a 10 million image

collection, using a combination of texture and edge histogram

features. See Datta et al. for a survey of such methods [12].

The key question that we address in this paper is: How big

does the image dataset need to be to robustly perform recognition

using simple nearest-neighbor schemes? In fact, it is unclear that

the size of the dataset required is at all practical since there are an

effectively infinite number of possible images the visual system

can be confronted with. What gives us hope is that the visual

world is very regular in that real world pictures occupy only a

relatively small portion of the space of possible images.

Studying the space occupied by natural images is hard due to

the high dimensionality of the images. One way of simplifying

this task is by lowering the resolution of the images. When we

look at the images in Fig. 6, we can recognize the scene and its

constituent objects. Interestingly though, these pictures have only

32 × 32 color pixels (the entire image is just a vector of 3072

dimensions with 8 bits per dimension), yet at this resolution, the

images already seem to contain most of the relevant information

needed to support reliable recognition.

An important benefit of working with tiny images is that it

becomes practical to store and manipulate datasets orders of

magnitude bigger than those typically used in computer vision.

Correspondingly, we introduce, and make available to researchers,

a dataset of 79 million unique 32 × 32 color images gathered

from the Internet. Each image is loosely labeled with one of

75,062 English nouns, so the dataset covers a very large number of

visual object classes. This is in contrast to existing datasets which

provide a sparse selection of object classes. In this paper we will

study the impact on having very large datasets in combination

with simple techniques for recognizing several common object

and scene classes at different levels of categorization.

The paper is divided in three parts. In Section 2 we establish

the minimal resolution required for scene and object recognition.

In Sections 3 and 4 we introduce our dataset of 79 million images

and explore some of its properties. In Section 5 we attempt

scene and object recognition using a variety of nearest-neighbor

methods. We measure performance at a number of semantic

levels, obtaining impressive results for certain object classes.

II. LOW DIMENSIONAL IMAGE REPRESENTATIONS

A number of approaches exist for computing the gist of a

image, a global low-dimensional representation that captures the

scene and its constituent objects [18], [32], [24]. We show that

very low-resolution 32×32 color images can be used in this

role, containing enough information for scene recognition, object
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Fig. 1. a) Human performance on scene recognition as a function of resolution. The green and black curves show the performance on color and gray-scale
images respectively. For color 32 × 32 images the performance only drops by 7% relative to full resolution, despite having 1/64th of the pixels. b) Car
detection task on the PASCAL 2006 test dataset. The colored dots show the performance of four human subjects classifying tiny versions of the test data.
The ROC curves of the best vision algorithms (running on full resolution images) are shown for comparison. All lie below the performance of humans on
the tiny images, which rely on none of the high-resolution cues exploited by the computer vision algorithms. c) Humans can correctly recognize and segment
objects at very low resolutions, even when the objects in isolation can not be recognized (d).

detection and segmentation (even when the objects occupy just a

few pixels in the image).

A. Scene recognition

Studies on face perception [1], [21] have shown that only 16×

16 pixels are needed for robust face recognition. This remarkable

performance is also found in a scene recognition task [31].

We evaluate the scene recognition performance of humans as

the image resolution is decreased. We used a dataset of 15 scenes

that was taken from [14], [24], [32]. Each image was shown at

one of 5 possible resolutions (82, 162, 322, 642 and 2562 pixels)

and the participant task was to assign the low-resolution picture

to one of the 15 different scene categories (bedroom, suburban,

industrial, kitchen, living room, coast, forest, highway, inside

city, mountain, open country, street, tall buildings, office, and

store)1. Fig. 1(a) shows human performance on this task when

presented with grayscale and color images2 of varying resolution.

For grayscale images, humans need around 64× 64 pixels. When

the images are in color, humans need only 32 × 32 pixels to

achieve more than 80% recognition rate. Below this resolution the

performance rapidly decreases. Therefore, humans need around

3000 dimensions of either color or grayscale data to perform

this task. In the next section we show that 32 × 32 color images

also preserve a great amount of local information and that many

objects can still be recognized even when they occupy just a few

pixels.

1Experimental details: 6 participants classified 585 color images as be-
longing to one of the 15 scene categories from [14], [24], [32]. Images
were presented at 5 possible resolutions (82, 162, 322, 642 and 2562). Each
image was shown at 5 possible sizes using bicubic interpolation to reduce
pixelation effects which impair recognition. Interpolation was applied to the
low-resolution image with 8 bits per pixel and color channel. Images were
not repeated across conditions. 6 additional participants performed the same
experiment but with gray scale images.

2100% recognition rate can not be achieved in this dataset as there is no
perfect separation between the 15 categories.

B. Object recognition

Recently, the PASCAL object recognition challenge evaluated

a large number of algorithms in a detection task for several object

categories [13]. Fig. 1(b) shows the performances (ROC curves) of

the best performing algorithms in the car classification task (i.e.

is there a car present in the image?). These algorithms require

access to relatively high resolution images. We studied the ability

of human participants to perform the same detection task but using

very low-resolution images. Human participants were shown

color images from the test set scaled to have 32 pixels on the

smallest axis, preserving their aspect ratio. Fig. 1(b) shows some

examples of tiny PASCAL images. Each participant classified

between 200 and 400 images selected randomly. Fig. 1(b) shows

the performances of four human observers that participated in

the experiment. Although around 10% of cars are missed, the

performance is still very good, significantly outperforming the

computer vision algorithms using full resolution images. This

shows that even though the images are very small, they contain

sufficient information for accurate recognition.

Fig. 1(c) shows some representative 322 images segmented by

human subjects. Despite the low resolution, sufficient informa-

tion remains for reliable segmentation (more than 80% of the

segmented objects are correctly recognized), although any further

decrease in resolution dramatically affects segmentation perfor-

mance. Fig. 1(d) shows crops of some of the smallest objects

correctly recognized when shown within the scene. Note that in

isolation, the objects cannot be identified since the resolution is

so low, hence the recognition of these objects within the scene is

almost entirely based on context.

Clearly, not all visual tasks can be solved using such low

resolution images. But the experiments in this section suggest that

32×32 color images are the minimum viable size for recognition

tasks – the focus of the paper.

III. A LARGE DATASET OF 32 × 32 IMAGES

As discussed in the previous sections, 32×32 color images con-

tain the information needed to perform a number of challenging
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Fig. 2. Statistics of our database of tiny images. a) A histogram of images per keyword collected. Around 10% of keywords have very few images. b)
Performance of the search various engines (evaluated on hand-labeled ground truth). c) Accuracy of the labels attached at each image as a function of the
depth in the Wordnet tree (deeper corresponds to more specific words). d) Accuracy of labeling for different nodes of a portion of the Wordnet tree.

recognition tasks. One important advantage of very low resolution

images is that it becomes practical to work with millions of

images. In this section we will describe a dataset of 108 tiny

images.

Current experiments in object recognition typically use 102-104

images spread over a few different classes; the largest available

dataset being one with 256 classes[20]. Other fields, such as

speech, routinely use 106 data points for training, since they have

found that large training sets are vital for achieving low errors

rates in testing [2]. As the visual world is far more complex than

the aural one, it would seem natural to use very large set of

training images. Motivated by this, and the ability of humans to

recognize objects and scenes in 32×32 images, we have collected

a database of nearly 108 such images.

A. Collection procedure

We use Wordnet [15] likely to have any kind of visual consis-

tency. We do this by extracting all non-abstract nouns from the

database, 75,062 of them in total. In contrast to existing object

recognition datasets which use a sparse selection of classes, by

collecting images for all nouns, we have a dense coverage of all

visual forms.

We selected 7 independent image search engines: Altavista,

Ask, Flickr, Cydral, Google, Picsearch and Webshots (others have

outputs correlated with these). We automatically download all

the images provided by each engine for all 75,846 non-abstract

nouns. Running over 8 months, this method gathered 97,245,098

images in total. Once intra-word duplicates and uniform images

(images with zero variance) are removed, this number is reduced

to 79,302,017 images from 75,062 words (around 1% of the

keywords had no images). Storing this number of images at full

resolution is impractical on the standard hardware used in our

experiments so we down-sampled the images to 32 × 32 as they

were gathered3. The dataset fits onto a single hard disk, occupying

760Gb in total. The dataset may be downloaded from http:
\\people.csail.mit.edu\torralba\tinyimages.

Fig. 2(a) shows a histogram of the number of images per class.

Around 10% of the query words are obscure so no images can be

found on the Internet, but for the majority of words a reasonable

number of images are found. We place an upper limit of 3000

images/word to keep the total collection time to a reasonable level.

Although the gathered dataset is very large, it is not necessarily

representative of all natural images. Images on the Internet have

their own biases (e.g. objects tend to be centered and fairly large

in the image). However, web images define an interesting visual

world for developing computer vision applications [16], [37].

B. Characterization of labeling noise

Despite a number of recent efforts for image annotation [35],

[43], collecting images from the web provides a powerful mech-

anism to build large image databases orders of magnitude larger

than is possible with manual methods. However, the images

gathered by the engines are loosely labeled in that the visual

content is often unrelated to the query word (for example, see

Fig. 10). In this section we characterize the noise present in the

labels. Among other factors, the accuracy of the labels depend on

the engine used, and the specificity of the term used for querying.

In Fig. 2(b) we quantify the labeling noise using 3526 hand-

labeled images selected by randomly sampling images out of the

first 250 images returned by each online search engine for each

word. A recall-precision curve is plotted for each search engine in

which the horizontal axis represents the rank in which the image

was returned and the vertical axis is the percentage of images that

corresponded to the query. Accuracy drops after the 100th image

and then stabilizes at around 44% correct on average.

3Further comments: (i) Wordnet is a lexical dictionary, meaning that it gives
the semantic relations between words in addition to the information usually
given in a dictionary.; (ii) The tiny database is not just about objects. It is
about everything that can be indexed with Wordnet and this includes scene-
level classes such as streets, beaches, mountains, as well as category-level
classes and more specific objects such as US Presidents, astronomical objects
and Abyssinian cats.; (iii) At present we do not remove inter-word duplicates
since identifying them in our dataset is non-trivial.
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The accuracy of online searchers also varies depending on

which terms were used for the query. Fig. 2(c) shows that the

noise varies for different levels of the Wordnet tree, being more

accurate when getting close to the leaves of the tree. Fig. 2(d)

shows a subset of the Wordnet tree used to build our dataset (the

full tree contains >40,000 leaves). The number and color at each

node corresponds to the percentage of images correctly assigned

to the leaves of each node. The more specific are the terms, the

more likely are the images to correspond to the query.

Various methods exist for cleaning up the data by removing

images visually unrelated to the query word. Berg and Forsyth

[7] have shown a variety of effective methods for doing this with

images of animals gathered from the web. Berg et al. [6] showed

how text and visual cues could be used to cluster faces of people

from cluttered news feeds. Fergus et al. [16] have shown the use

of a variety of approaches for improving Internet image search

engines. Li et al. [26] show further approaches to decreasing label

noise. However, due to the extreme size of our dataset, it is not

practical to employ these methods. In Section 5, we show that

reasonable recognition performances can be achieved despite the

high labeling noise.

IV. STATISTICS OF VERY LOW RESOLUTION IMAGES

Despite 32× 32 being very low resolution, each image lives in

a space of 3072 dimensions. This is a very large space — if each

dimension has 8 bits, there are a total of 107400 possible images.

This is a huge number, especially if we consider that a human in

a 100 years only gets to see 1011 frames (at 30 frames/second).

However, natural images only correspond to a tiny fraction of this

space (most of the images correspond to white noise), and it is

natural to investigate the size of that fraction. A number of studies

[10], [25] have been devoted to characterize the space of natural

images by studying the statistics of small image patches. However,

low-resolution scenes are quite different to patches extracted by

randomly cropping small patches from images.

Given a similarity measure, the question that we want to answer

is: how many images are needed so that, for any given query

image, we can always find a neighbor with the same class label?

Note that we are concerned solely with recognition performance,

not with issues of intrinsic dimensionality or the like as explored

in other studies of large collection of image patches [10], [25].

In this section, we explore how the probability of finding images

with a similar label nearby increases with the size of the dataset.

In turn, this tells us how big the dataset needs to be to give a

robust recognition performance.

A. Distribution of neighbors as a function of dataset size

As a first step, we use the sum of squared differences (SSD)

to compare two images. We will define later other similarity

measures that incorporate invariances to translations and scaling.

The SSD between two images I1 and I2 (normalized to have zero

mean and unit norm)4 is:

D2
ssd =

X
x,y,c

(I1(x, y, c) − I2(x, y, c))2 (1)

Computing similarities among 7.9 × 107 images is computa-

tionally expensive. To improve speed, we index the images using

4Normalization of each image is performed by transforming the image into
a vector concatenating the three color channels. The normalization does not
change image color, only the overall luminance.

the first 19 principal components of the 7.9 × 107 images (19

is the maximum number of components per image such that the

entire index structure can be held in memory). The 1/f2 property

of the power spectrum of natural images means that the distance

between two images can be approximated using few principal

components (alternative representations using wavelets [42] could

also be used in place of the PCA representation). We compute

the approximate distance D̂2

ssd = 2 − 2
PC

n=1
v1(n)v2(n), where

vi(n) is the nth principal component coefficient for the ith image

(normalized so that
P

n vi(n)2 = 1), and C is the number of

components used to approximate the distance. We define SN as

the set of N exact nearest neighbors and ŜM as the set of M

approximate nearest neighbors.

Fig. 3(a) shows the probability that an image, of index i, from

the set SN is also inside ŜM : P (i ∈ ŜM |i ∈ SN ). The plot

corresponds to N = 50. For the experiments in this section, we

used 200 images randomly sampled from the datasets and for

which we computed the exact distances to all the 7.9×107 images.

Many images on the web appear multiple times. For the plots in

these figures, we have removed manually all the image pairs that

were duplicates.

Fig. 3(b) shows the number of approximate neighbors (M) that

need to be considered as a function of the desired number of exact

neighbors (N) in order to have a probability of 0.8 of finding

N exact neighbors. As the dataset becomes larger, we need to

collect more approximate nearest neighbors in order to have the

same probability of including the first N exact neighbors.

For the experiments in this paper, we use the following proce-

dure. First, we find the closest 16,000 images per image. From

Fig. 3(a) we know that more than 80% of the exact neighbors

will be part of this approximate neighbor set. Then, within the

set of 16,000 images, we compute the exact distances to provide

the final rankings of neighbors. Exhaustive search, used in all

our experiments, takes 30 seconds per image using the principle

components method. This can be dramatically improved through

the use of a kd-tree to 0.3 seconds per query, if fast retrieval

performance is needed. The memory overhead of the kd-tree

means that only 17 of the 19 PCA components can be used.

Devising efficient indexing methods for large image databases

[30], [19], [40] is a very important topic of active research but it

is not the focus of this paper.

Fig. 4 shows several plots measuring various properties as the

size of the dataset is increased. The plots use the normalized

correlation ρ between images (note that D2
ssd = 2(1 − ρ)). In

Fig. 4(a), we show the probability that the nearest neighbor has

a normalized correlation exceeding a certain value. Each curve

corresponds to a different dataset size. Fig. 4(b) shows a vertical

section through Fig. 4(a) at the correlations 0.8 and 0.9, plotting

the probability of finding a neighbor as the number of images in

the dataset grows. From Fig. 4(b) we see that a third of the images

in the dataset are expected to have a neighbor with correlation

> 0.8.

In Fig. 4(c) we explore how the plots shown in Fig. 4(a) & (b)

relate to recognition performance. Three human subjects labeled

pairs of images as belonging to the same visual class or not

(pairs of images that correspond to duplicate images are removed).

The plot shows the probability that two images are labeled as

belonging to the same class as a function of image similarity.

As the normalized correlation exceeds 0.8, the probability of

belonging to the same class grows rapidly. Hence a simple K-
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nearest-neighbor approach might be effective with our size of

dataset. We will explore this further in Section V.

B. Image similarity metrics

We can improve recognition performance using better measures

of image similarity. We now introduce two additional similarity

measures between a pair of normalized images I1 and I2, that

incorporate invariances to simple spatial transformations.

• In order to incorporate invariance to small translations,

scaling and image mirror, we define the similarity measure:

D2
warp = min

θ

X
x,y,c

(I1(x, y, c) − Tθ[I2(x, y, c)])2 (2)

In this expression, we minimize the similarity by transform-

ing I2 (horizontal mirror; translations and scaling up to 10

pixel shifts) to give the minimum SSD. The transformation

parameters θ are optimized by gradient descent [29].

• We allow for additional distortion in the images by shifting

every pixel individually within a 5 by 5 window to give

minimum SSD. This registration can be performed with

more complex representations than pixels (e.g., Berg and

Malik [5]). In our case, the minimum can be found by

exhaustive evaluation of all shifts, only possible due to the

low resolution of the images.

D2
shift = min

|Dx,y|≤w

X
x,y,c

(I1(x, y, c) − Î2(x + Dx, y + Dy, c))2

(3)

In order to get better matches, we initialize I2 with the

warping parameters obtained after optimization of Dwarp,

Î2 = Tθ[I2].

Fig. 5 shows a pair of images being matched using the 3 metrics

and shows the resulting neighbor images transformed by the

optimal parameters that minimize each similarity measure. The

figure shows two candidate neighbors: one matching the target
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NeighborTarget Warping Pixel shifting Dssd Dshifta) b)

Fig. 5. a) Image matching using distance metrics Dssd, Dwarp and Dshift. Top row: after transforming each neighbor by the optimal transformation; the
sunglasses always results in a poor match. However, for the car example on the bottom row, the matched image approximates the pose of the target car. b)
Sibling sets from 79,302,017 images, found with distance metrics Dssd, and Dshift. Dshift provides better matches than Dssd.

7,900Target 790,000 79,000,000

Fig. 6. As we increase the size of the dataset from 105 to the 108 images, the quality of the retrieved set increases dramatically. However, note that we need
to increase the size of the dataset logarithmically in order to have an effect. These results are obtained using Dshift as a similarity measure between images.

semantic category and another one that corresponds to a wrong

match. For Dwarp and Dshift we show the closest manipulated

image to the target. Dwarp looks for the best translation, scaling

and horizontal mirror of the candidate neighbor in order to match

the target. Dshift further optimizes the warping provided by Dwarp

by allowing pixels to move in order to minimize the distance with

the target.

Fig. 5(b) shows two examples of query images and the retrieved

neighbors (sibling set), out of 79,302,017 images, using Dssd and

Dshift. For speed we use the same low dimensional approximation

as described in the previous section by evaluating Dwarp and

Dshift only on the first 16,000 candidates. This is a good indexing

scheme for Dwarp, but it results in slightly decrease of performance

for Dshift which would require more neighbors to be considered.

Despite this, both measures provide good matches, but Dshift

returns closer images at the semantic level. This observation will

be quantified in Section V. Fig. 6 shows examples of query images

and sets of neighboring images, from our dataset of 79,302,017

images, found using Dshift.

V. RECOGNITION

A. Wordnet voting scheme

We now attempt to use our dataset for object and scene

recognition. While an existing computer vision algorithm could

be adapted to work on 32× 32 images, we prefer to use a simple

nearest-neighbor scheme based on one of the distance metrics

Dssd, Dwarp or Dshift. Instead of relying on the complexity of

the matching scheme, we let the data to do the work for us:

the hope is that there will always be images close to a given
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Fig. 7. This figure shows two examples. (a) Query image. (b) First 16 of 80 neighbors found using Dshift. (c) Ground truth Wordnet branch describing
the content of the query image at multiple semantic levels. (d) Sub-tree formed by accumulating branches from all 80 neighbors. The number in each node
denotes the accumulated votes. The red branch shows the nodes with the most votes. Note that this branch substantially agrees with the branch for vise and
for person in the first and second examples respectively.

query image with some semantic connection to it. The goal of

this section is to show that the performance achieved can match

that of sophisticated algorithms which use much smaller training

sets.

An additional factor in our dataset is the labeling noise. To cope

with this we propose a voting scheme based around the Wordnet

semantic hierarchy. Wordnet [15] provides semantic relationships

between the 75,062 nouns for which we have collected images.

For simplicity, we reduce the initial graph-structured relationships

between words to a tree-structured one by taking the most

common meaning of each word. The result is a large semantic tree

whose nodes consist of the 75,062 nouns and their hypernyms,

with all the leaves being nouns Fig. 7(c) shows the unique branch

of this tree belonging to the nouns “vise” and “chemist”. Other

work making use of Wordnet includes Hoogs and Collins [23]

who use it to assist with image segmentation. While not using

Wordnet explicitly, Barnard et al. [3] and Carbonetto et al. [8]

learn models using both textual and visual cues.

Given the large number of classes in our dataset (75,062)

and their highly specific nature, it is not practical or desirable

classify each of the classes separately. Instead, using the Wordnet

hierarchy, we can perform classification at a variety of different

semantic levels. So instead of just trying to recognize the noun

“yellowfin tuna”, we may also perform recognition at the level

of “tuna” or “fish” or “animal”. This is in contrast to current

approaches to recognition that only consider a single, manually

imposed, semantic meaning of an object or scene.

If classification is performed at some intermediate semantic

level, for example using the noun “person”, we need not only

consider images gathered from the Internet using “person”. Using

the Wordnet hierarchy tree, we can also draw on all images

belonging to nouns whose hypernyms include “person” (for

example, “arithmetician”). Hence, we can massively increase the

number of images in our training set at higher semantic levels.

Near the top of the tree, however, the nouns are so generic

(e.g. “object”) that the child images recruited in this manner have

little visual consistency, so despite their extra numbers may be of

little use in classification 5.

Our classification scheme uses the Wordnet tree in the follow-

ing way. Given a query image, the neighbors are found using

some similarity measure (typically Dshift) . Each neighbor in turn

votes for its branch within the Wordnet tree. Votes from the entire

sibling set are accumulated across a range of semantic levels,

with the effects of the labeling noise being averaged out over

many neighbors. Classification may be performed by assigning

the query image the label with the most votes at the desired

height (i.e. semantic level) within the tree, the number of votes

acting as a measure of confidence in the decision. In Fig. 7(a)

we show two examples of this procedure, showing how precise

classifications can be made despite significant labeling noise and

spurious siblings. Using this scheme we now address the task of

classifying images of people.

B. Person detection

In this experiment, our goal is to label an image as containing

a person or not, a task with many applications on the web and

elsewhere. A standard approach would be to use a face detector

but this has the drawback that the face has to be large enough to

be detected, and must generally be facing the camera. While these

limitations could be overcome by running multiple detectors, each

tuned to different view (e.g. profile faces, head and shoulders,

torso), we adopt a different approach.

As many images on the web contain pictures of people, a large

fraction (23%) of the 79 million images in our dataset have people

in them. Thus for this class we are able to reliably find a highly

consistent set of neighbors, as shown in Fig. 8. Note that most

of the neighbors match not just the category but also the location

and size of the body in the image, which varies considerably in

the examples.

To classify an image as containing people or not, we use

the scheme introduced in Section V-A, collecting votes from

5The use of Wordnet tree in this manner implicitly assumes that semantic
and visual consistency are tightly correlated. While this might be the case for
certain nouns (for example, “poodle” and “dachshund”), it is not clear how true
this is in general. To explore this issue, we constructed an interactive poster
that may be viewed at: http:\\people.csail.mit.edu\torralba\
tinyimages.
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Fig. 8. Some examples of test images belonging to the “person” node of the Wordnet tree, organized according to body size. Each pair shows the query
image and the 25 closest neighbors out of 79 million images using Dshift with 32 × 32 images. Note that the sibling sets contain people in similar poses,
with similar clothing to the query images.
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Fig. 9. (a) Examples showing the fraction of the image occupied by the head. (b)–(d): ROC curves for people detection (not localization) in images drawn
randomly from the dataset of 79 million as a function of (b) head size; (c) similarity metrics and (d) dataset size using Dshift.

the 80 nearest neighbors. Note that the Wordnet tree allows us

make use of hundreds of other words that are also related to

“person” (e.g. artist, politician, kid, taxi driver, etc.). To evaluate

performance, we used two different sets of test images. The first

consisted of a random sampling of images from the dataset. The

second consisted of images returned by Altavista using the query

“person”.

1) Evaluation using randomly drawn images: 1125 images

were randomly drawn from the dataset of 79 million (Fig. 8

shows 6 of them, along with some of their sibling set). For

evaluation purposes, any people within the 1125 images were

manually segmented6.

Fig. 9(b) shows the classification performance as the size of

the person in the image varies. When the person is large in the

image, the performance is significantly better than when it is

small. This occurs for two reasons: first, when the person is large,

the picture become more constrained, and hence finding good

matches becomes easier. Second, the weak labels associated with

each image in our dataset typically refer to the largest object in

the image. Fig. 9(c)&(d) show precision-recall curves for different

similarly measures and varying dataset size respectively, with the

full 79 million images and Dshift yielding the best performance.

6The images and segmentations are available at: http://labelme.
csail.mit.edu/browseLabelMe/static_web_tinyimages_
testset.html

2) Evaluation using Altavista images: Our approach can also

be used to improve the quality of Internet image search engines.

We gathered 1018 images from Altavista image search using the

keyword “person”. Each image was classified using the approach

described in Section V-A. The set of 1018 images was then

re-ordered according to the confidence of each classification.

Fig. 10(a) shows the initial Altavista ranking while Fig. 10(b)

shows the re-ordered set, showing a significant improvement in

quality.

To quantify the improvement in performance, the Altavista

images were manually annotated with bounding boxes around any

people present. Out of the 1018 images, 544 contained people,

and of these, 173 images contained people occupying more than

20% of the image.

Fig. 10 shows the precision-recall curves for the people de-

tection task. Fig. 10(c) shows the performance for all Altavista

images while Fig. 10(d) shows the performance on the subset

where people occupy at least 20% of the image. Note that the

raw Altavista performance is the same irrespective of the persons’

size (in both plots, by 5% recall the precision is at the level

of chance). This illustrates the difference between indexing an

image using non visual vs. visual cues. Fig. 10 also shows the

results obtained when running a frontal face detector (an OpenCV

implementation of Viola and Jones boosted cascade [27], [41]).

We run the face detector on the original high-resolution images.
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Fig. 10. (a) The first 70 images returned by Altavista when using the query “person” (out of 1018 total). (b) The first 70 images after re-ordering using
our Wordnet voting scheme with the 79,000,000 tiny images. (c) Comparison of the performance of the initial Altavista ranking with the re-ordered images
using the Wordnet voting scheme and also a Viola & Jones-style frontal face detector. (c) shows the recall-precision curves for all 1018 images gathered from
Altavista, and (d) shows curves for the subset of 173 images where people occupy at least 20% of the image.

Note that the performance of our approach working on 32 × 32

images is comparable to that of the dedicated face detector on

high resolution images. For comparison, Fig. 10 also shows the

results obtained when running the face detector on low-resolution

images (we downsampled each image so that the smallest axis has

32 pixels, we then upsampled the images again to the original

resolution using bicubic interpolation. The upsampling operation

was to allow the detector to have sufficient resolution to be able

to scan the image.). The performance of the OpenCV detector

drops dramatically with low-resolution images.

C. Person localization

While the previous section was concerned with an object

detection task, we now address the more challenging problem

of object localization. Even though the tiny image dataset has not

been labeled with the location of objects in the images, we can use

the weakly labeled (i.e. only a single label is provided for each

image) dataset to localize objects. Much the recent work in object

recognition uses explicit models that labels regions of images

as being object/background. In contrast, we use the tiny image

dataset to localize without learning an explicit object model. It is

important to emphasize that this operation is performed without

manual labeling of images: all the information comes from the

loose text label associated with each image.

The idea is to extract multiple putative crops of the high

resolution query image (Fig. 11(a)–(c)). For each crop, we resize

it to 32 × 32 pixels and query the tiny image database to obtain

it’s siblings set (Fig. 11(d)). When a crop contains a person, we

expect the sibling set to also contain people. Hence, the most

prototypical crops should get have a higher number of votes for

the person class. To reduce the number of crops that need to

be evaluated, we first segment the image using normalized cuts

[11], producing around 10 segments (segmentation is performed

on the high resolution image). Then, all possible combinations

of contiguous segments are considered, giving a set of putative

crops for evaluation. Fig. 11 shows an example of this procedure.

Fig. 11(d) shows the best scoring bounding box for images from

the Altavista test set.

D. Scene recognition

Many web images correspond to full scenes, not individual

objects. In Fig. 12, we attempt to classify the 1125 randomly

drawn images (containing objects as well as scenes) into “city”,

“river”, “field” and “mountain” by counting the votes at the

corresponding node of the Wordnet tree. Scene classification for

the 32x32 images performs surprisingly well, exploiting the large,

weakly labeled database.
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Fig. 12. Scene classification using the randomly drawn 1125 image test set.
Note that the classification is “mountain” vs all classes present in the test set
(which includes many kinds of objects), not “mountain” vs “field”, “city”,
“river” only. Each quadrant shows some examples of high scoring images
for that particular scene category, along with an ROC curve (yellow = 7,900
image training set; red = 790,000 images; blue = 79,000,000 images).

E. Automatic image annotation and dataset size

Here we examine the classification performance at a variety

of semantic levels across many different classes as we increase

the size of the database. For evaluation we use the test set

of 1125 randomly drawn tiny images, with each image being

fully segmented and annotated with the objects and regions that

compose each image. To give a distinctive test set, we only use

images for which the target object is absent or occupies at least

20% of the image pixels. Using the voting tree described in

Section V-A, we classified them using K = 80 neighbors at a

variety of semantic levels. To simplify the presentation of results,

we collapsed the Wordnet tree by hand (which had 19 levels)

down to 3 levels (see Fig. 13 for the list of categories at each

level).

In Fig. 13 we show the average ROC curve area (across words

at that level) at each of the three semantic levels for Dssd and Dshift

as the number of images in the dataset is varied. Note that (i)

the classification performance increases as the number of images

increases; (ii) Dshift outperforms Dssd; (iii) the performance drops

off as the classes become more specific. A similar effect of dataset
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Fig. 11. Localization of people in images. (a) input image, (b) Normalized-cuts segmentation, (c) three examples of candidate crops, (d) the 6 nearest
neighbors of each crop in (c), accompanied by the number of votes for the person class obtained using 80 nearest neighbors under similarity measure Dshift.
(e) Localization examples.
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size has already been shown by the language understanding

community[2].

By way of illustrating the quality of the recognition achieved

by using the 79 million weakly labeled images, we show in

Fig. 14, for categories at three semantic levels, the images

that were more confidently assigned to each class. Note that

despite the simplicity of the matching procedure presented here,

the recognition performance achieves reasonable levels even for

relatively fine levels of categorization.
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Fig. 15. Distribution of labels in image datasets. The vertical axis gives the
percentage of polygons in the two datasets containing each object category
(objects are sorted by frequency rank). The plot is in log-log axis.

VI. THE IMPORTANCE OF SOPHISTICATED METHODS FOR

RECOGNITION

The plot in Fig. 15 shows the frequency of objects in the

tiny images database (this distribution is estimated using the

hand labeled set of 1148 images). This distribution is similar to

word frequencies in text (Zipf’s law). The vertical axis shows the

percentage of annotated polygons for each object category. The

horizontal axis is the object rank (objects are sorted by frequency).

The four most frequent objects are people (29%), plant (16%), sky
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Fig. 14. Test images assigned to words, ordered by confidence. The number indicates the total number of positive examples in the test set out of the 1148
images. The color of the bounding box indicates if the image was correctly assigned (black) or not (red). The middle row shows the ROC curves for three
dataset sizes (yellow = 7,900 image training set; red = 790,000 images; blue = 79,000,000 images). The bottom row shows the corresponding precision-recall
graphs.

(9%) and building (5%). In the same plot we show the distribution

of objects in the LabelMe dataset [35]. Similar distributions are

also obtained from datasets collected by other groups [38]. As the

distribution from Fig. 15 reveals, even when collecting extremely

large databases, there will always be a large number of categories

with very few training samples available. For some classes, a large

amount of training data will be available and, as we discuss in this

paper, nearest neighbor methods can be very effective. However,

for many other classes learning will have to be performed with

small datasets (for which we need to use sophisticated object

models and transfer learning techniques).

VII. CONCLUSIONS

This paper makes the following important contributions: a) The

compilation of a dataset of 79 million 32×32 color images, each

with a weak text label and link to the original image. b) The

characterization of the manifold of 32× 32 images, showing that

Internet sized datasets (108–109) yield a reasonable density over

the manifold of natural images, at least for the purposes of object

recognition. c) Showing that simple non-parametric methods, in

conjunction with large datasets, can give reasonable performance

on object recognition tasks. For richly represented classes, such

as people, the performance is comparable to leading class-specific

detectors.

Previous usage of non-parametric approaches in recognition

have been confined to limited domains (e.g. pose recognition

[36]) compared with the more general problems tackled in this

paper, the limiting factor being the need for very large amounts

of data. The results obtained using our tiny image dataset are

an encouraging sign that the data requirements may not be

insurmountable. Indeed, search engines such as Google index

another 2–3 orders of magnitude more images, which could yield

a significant improvement in performance.

In summary, all methods in object recognition have two com-

ponents: the model and the data. The vast majority of the effort in

recent years has gone into the modeling part – seeking to develop

suitable parametric representations for recognition. In contrast,

this paper moves into other direction, exploring how the data

itself can help to solve the problem. We feel the results in this

paper warrant further exploration in this direction.
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