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ABSTRACT to track user location in such systems has typically been limited

The ubiquity of 802.11 devices and networks enables anyone to [0 Service prﬁvitljers that afre Iggall;r/] b%und to p;otect oufr privacy.
track our every move with alarming ease. Each 802.11 device In contrast, the low cost of 802.11 hardware and ease of access to

transmits a globally unique and persistent MAC address and thus "etWork monitoring software—all that is required for someone to
is trivially identifiable. In response, recent research has proposed!0caté others nearby and eavesdrop on their traffic—erzje

replacing such identifiers with pseudonyms (i.e., temporary, un- oneto track users. Fur’ghermore, although the popglar press raised
linkable names). In this paper, we demonstrate that pseudonyms"’“’va're_neSS about tracking threats posed by emerging wireless tech-
are insufficient to prevent tracking of 802.11 devices because nologies, such as RFID[13], no S.UCh campaign has begn waged to
plicit identifiers or identifying characteristics of 802.11 traffic, can educate users about 802.11 devices and networks, which pose the

identify many users with high accuracy. For example, even with- samhe trtl)reatmday_ f . K bodied i

out unique names and addresses, we estimate that an adversary caRT e best practices for securing 802.11 networks, embodied in
identify 64% of users with 90% accuracy when they spend a day the 8_02'_11' standard:DLG], pro_wde user au_thentl_catlon, service au-
at a busy hot spot. We present an automated procedure based Oﬂwntlcatlon, data confidentiality, and data integrity. However, they

four previously unrecognized implicit identifiers that can identify o nk(_)t provide anonyl/mi_ty_, a pr_opl)erty eslfential tzo pr%\’em Ioczztion
users in three real 802.11 traces even when pseudonyms and enlfacking. For example, it is trivial to track an 802.11 device today

cryption are employed. We find that the majority of users can be since each device advertises a.globally 'unique and per.sigtentll\./IAC
identified using our techniques, but our ability to identify users is address with every frame that it tr_ansmlts. To mask t.h's identifier,
not uniform; some users are not easily identifiable. Nonetheless, researcher_s have proposed applpsgudonym@,@] (ie., tem-

we show that even a single implicit identifier is sufficient to distin- PO"ary, unlinkable names) by having users periodically change the
guish many users. Therefore, we argue that design considerationd/AC a@dresses of their 802.11 devices. . -
beyond eliminating explicit identifiers (i.e., unique names and ad- __'" this paper, we demonstrate that pseudonyms are insufficient

dresses), must be addressed in order to prevent user tracking if® Provide anonymity in 802.11. Even without a unique address,
wireless networks. characteristics of users’ 802.11 traffic can identify them implicitly

) . . and track them with high accuracy. An example of suchiran
Categories and Subject Descriptors:

=Ll . . plicit identifier is the IP address of a service that a user frequently
C.2.1 Computer-Communication Networks: Network Architecture accesses, such as his or her email server. In a population of sev-

and Design eral hundred users, this address might be unique to one individual;
General Terms: Measurement, Security thus, the mere observation of this IP address would indicate the
Keywords: privacy, anonymity, wireless, 802.11 presence of that user. Of course, in a wireless network that em-
ploys link-layer encryption, IP addresses would not be visible to
1. INTRODUCTION an eavesdropper. However, other implicit identifiers would remain

) ) ) ] ) and these identifiers can be used in combination to identify users
The alarming ease with which third parties can track our ev- accurately.

ery move has drawn the concern of the popular medial[1, 2], the = This paper quantifies how well a passive adversary can track
United States governmerif [22.140], and technical standards bod-ysers with four implicit identifiers visible to commodity hardware.
ies [T7]. The fear is that we are sacrificing dacation privacy We thereby place sower boundon how accurately users can be
due to the ubiquity of wireless devices that disclose our locations, jgentified implicitly, as more implicit identifiers and more capable
identities, or both. Though this fear has focused on large scale 5qyersaries exist in practice. We make the following contributions:
wireless systems, such as cellular phone networks, the capability
e We identify four previously unrecognized implicit identifiers:
network destinations, network names advertised in 802.11
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republish, to post on servers or to redistribute to listguiees prior specific procedure allows us to quantify how much information im-
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Copyright 2007 ACM 978-1-59593-681-3/07/0009 ...$5.00. several hundred users in three empirical 802.11 traces.



e Our evaluation shows that users emit highly discriminating only user at SIGCOMM to do so. Thus, this server’s address is an
implicitidentifiers, and, thus, even a small sample of network implicit identifier, and knowledge of it enables us to link the user’s
traffic can identify them more than half (56%) of the time in  sessions together.
public networks, on average. Moreover, we will almost never ~ Now suppose that the network employed link-layer encryption
mistake them as the source of other network traffic (1% of the scheme, such as WPA, that obscures network addresses. Even then
time). Since adversaries will obtain multiple traffic samples we could link this user's sessions together by employing the fact
from a user over time, this high accuracy in traffic classi- that, of the 341 users that sent 802.11 broadcast packets, this was
fication enables them to track many users with even higher the only one that sent broadcast packets of sizes 239, 245, and 257
accuracy in common wireless networks. For example, an ad- bytes and did so repeatedly throughout the entire conference. Fur-
versary can identify 64% of users with 90% accuracy when thermore, the identical 802.11 capabilities advertised in each ses-
they spend a day at a busy hot spot that serves 25 concurrentsion’s management frames improves our confidence of this link-
users each hour. age because these capabilities differentiate different 802.11 cards

and drivers. Prior research has shown that peer-to-peer file shar

ing traffic can be detected through encryptibnl[42]. Thus, even if
seudonyms and link-layer encryption were employed, we could
till implicate someone in Cambridge.

e To our knowledge, we are the first to show with empirical
evidence that design considerations beyond eliminating ex-
plicit identifiers, such as unique names and addresses, mus

be addressed to protect anonymity in wireless networks. o N )
Implicit identifiers are exposed by design flaws. These exam-

In Sectior[® we illustrate the power of implicit identifiers with  ples illustrate three shortcomings of the 802.11 protocol beyond
several real examples. Sectldn 3 covers related work. Sédtion 4 ex-exposing explicit identifiers, none of which is trivially fixed. These
plains our experimental methodology. Sec{idn 5 describes our em-shortcomings afflict not only 802.11 but many wireless protocols,
pirical 802.11 traces. Sectifh 6 analyzes how well 802.11 users canincluding Bluetooth and ZigBee.
be identified using each implicit identifier individually. Sect[dn 7 Identifying information exposed at higher layers of the network
examines how accurately an adversary can track people using thesgtack is not adequately maskdehr example, even with encryption,
implicit identifiers in public, home, and enterprise networks. We packet sizes can be identifying. Padding, decoy transmissions, and

conclude in Sectiofl 8. delays may hide information exposed by size and timing channels,
but increase overhead. For example, 8ual. [34] found that 8 to
2. THEIMPLICIT IDENTIFIER PROBLEM 16 KB of padding is required to hide the identity of web objects.

The performance penalty due to this overhead would be especially
g acute in wireless networks due to shared nature of the medium.
Identifying information during service discovery is not masked.

How significantly do implicit identifiers erode location privacy?
Consider the seemingly innocuous trace of 802.11 traffic collecte
at the 2004 SIGCOMM conference, now anonymized and archived : g !
for public use[[3l]. Interestingly, hashing real MAC addresses to 802-11 service discovery can not be encrypted since no shared key
pseudonyms is also the best practice for anonymizing traces such€XiSt prior to association. This raises the more general problem
as this. Unfortunately, implicit identifiers remain and they are suf- ©f how two devices can discover each other in a private manner,
ficient to identify many SIGCOMM attendees. For example: which is expensive to solvel[4]. This problem arises not only when

. . . ) . . searching for access points, but also when clients want to locate
Implicit identifiers can |_dent|fy us uniquely. One particular at- devices in ad hoc mode, such as when using a Microsoft Zune to
tendee’s laptop transmitted reguest for thfe network names “MIT,” ghare music or a Nintendo DS to play games with friends.
“StataCenter,” and “roofnet,” identifying him or her as someone |gentifying information exposed by variations in implementation
probably from Cambridge, MA. This occurred because the default 5,4 configuration is not maskeBach 802.11 implementation typ-
behavior of a Windows laptop is to actlvely searc_h for the user's ically supports different 802.11 features (e.g., supported rabek) a
preferred networks by name, or Service Set Identifier (SSID). The a5 different timing characteristics. This problem is difficult to
SSID “therobertmorris” perhaps identifies this person uniquely [26]. gove due to the inherent ambiguity of human specifications and
A second attendee requested “University of Washington” and “djw.” manufacturers’ and network implementers’ desire for flexibility to
The last SSID is unique in the SIGCOM_M trace and suggests_ that jeet differing constraints.
this person may be University of Washington Professor David J.  gajancing the costs involved in rectifying these shortcomings
Wetherall, one of our coauthors. More distressingly, Wil [39], \ith the incentives necessary for deployment is itself a challenge.
an online database of 802.11 networks observed around the world,Nonetheless, rectifying these flaws at the protocol level is impor-
shows that there is only one “djw” network in the entire Seattle (ant 5o that users need not limit their activities in order to protect
area. Wigle happens to locate this network within 192 feet of David heir |ocation privacy. By measuring the magnitude with which
Wetherall's home. each flaw contributes to the implicit identifier problem, our study
Implicit identifiers remain even when counter measures are em- provides insight into the proper trade-offs to make when correcting
ployed. Another SIGCOMM attendee transferred 512MB of data these design flaws in future wireless protocols. In the short term,
via BitTorrent (this user contacted hosts on the typical BitTorrent our study may give guidance to individuals that are willing to pro-
port, 6881). A request for the SSID “roofnel”[32] from the same actively hide their identity in existing wireless networks.

MAC address suggests that this user is from Cambridge, MA. Sup-  In the remainder of this paper, we examine how these shortcom-
pose that this user had been more stealthy and changed his or heings impact the location privacy of a large number of users in differ-
MAC address periodically. In this particular case, since the user ent 802.11 networks and demonstrate that the examples described
had not requested the SSID during the time he or she had beenin this section are not isolated anomalies.

downloading, the MAC address used in the SSID request would

have been different from the one used in BitTorrent packets. There-

fore, we would not be able to use the MAC address to explicitly link 3. RELATED WORK

“roofnet” to this poor network etiquette. However, the user doesac- The challenge of hiding a user’s identity has been examined in
cess the same SSH and IMAP server nearly every hour and was thehree different contexts: location privacy, identity hiding designs,



and the study of other implicit identifiers. In this section, we de- [33]. The timing and sizes of Web transfers often uniquely identify
scribe the previous work in each of these areas. websites, even when transmitted over encrypted charlddls][8, 34].
Finally, there has been a large body of research in identifying appli-
cant attention, most notably in the RFID]13] and pervasive com- cation_s from implicit identifiers i_n encryp?ed traffl'_9]_ _ 4_2’
puting [4] fields. The concern is that location-aware applications, 43]. .le.e many of these techniques Wh'.Ch succeed in classifying
which use GPS and other positioning technologies, might reveal 2PPlications accurately, we use a Bayesian approach.

this information in undesirable ways. However, location privacy

is threatened even by devices that do not explicitly track location. 4, EXPERIMENTAL SETUP

Since 802.11 users usually associate with access points that are 1ess rg section describes the evaluation criteria we use to determine
than tens of meters away, knowing the access point that a user is asp g,y ell several implicit identifiers can be used to track users.
sociated with gives away a coarse estimate of his location, such as ) ] _

his home or workplace. Moreover, systems that can employ multi- The Adver_sar_y. Strong adversa_rles, such as service providers and
ple monitoring locations can use wireless signal strength to obtain /arge monitoring networks, obviously pose a large threat to our lo-
an even more accurate estimate of a user’s localibi [6, 35]. An Cation privacy. However, _the significance of the threat posed by
added complication is that wireless devices are rapidly becoming 802.11 is thaenyonethat wishes to track users candoso.
integral parts of our daily lives. A resulting trend, which is evident ~ Therefore, we consider an adversary that runs readily available
from examining databases of access point locatiors [39], is the in- Monitoring software, such dcpdunp [37], on one or more lap-
creasing availability of service, which is increasing the number of tOPS OF on less conspicuous commodity 802.11 devices [3]. We
location tracking opportunities. Unfortunately, identifying individ- further restrict adversaries by assuming that their devices listen

ual users is often trivial since the 802.11 devices that they use arePassively. That is, they never transmits 802.11 frames, not even
uniquely named by their MAC addresses. to associate with a network. This means that the advecsarynot

) . ) . be detectedby other radios. The adversary deploys monitoring de-
Identity Hiding. Pseudonyms are widely used in systems, such ;cas in one or more locations in order to observe 802.11 traffic

as the GSM cellular phone network [15] to hide user identities. om nearby users. By considering a weak adversary, we place a
Gruteseet al.[14] and Jiangt al.[18] proposed using pseudonyms  |over hound on the accuracy with which users can be tracked, as

within 802.11 networks, and Stajaroal. [41] proposed a similar stronger adversaries would be strictly more successful.
mechanism for Bluetooth. Using pseudonyms is a necessary first

step to make tracking in these networks more difficult. However, 1he Environments. An adversary’s tracking accuracy will depend
we show that it is insufficient to protect location privacy because ©On the 802.11 networks he or she is monitoring. Since implicit

implicit identifierscan be sufficient to track users in many real sce- identifiers are not perfectly identifying, it will be more difficult to
narios. distinguish users in more populous networks. In addition, different

networks employ different levels of security, making some implicit
identifiers invisible to an adversary. We consider the three domi-
nant forms of wireless deployments today: public networks, home
networks, and enterprise networks.

Public networks, such as hot spots or metro-area netwirks [27],
are typically unencrypted at the link-layer. Although many public
. ! : networks employ access control—for example, to allow access to
ing the clock skew exposed by TCP timestamps. We introduce new oy 4 provider’s customers—most do so via authentication above
implicit identifiers that are useful in identifying users and, in con-  ha link-layer (e.g., through a web page) and by using MAC address
trgst to TCP timestar_nps,_ three of our ide_ntifiers are still visible in filtering thereafter. Very few use 802.11i-compliant protocols that
wireless networks using link-layer encryption. Moreover, Kobho 556 enable encryption. Hence, identifying features at the network,
al. note that one limitation of their work is that an adversary can not link, and physical layers would be visible to an eavesdropper in
passively obtain timestamps from devices running the most preva- g,ch an environment. Unfortunately, this is the most common type
lent operating system, Windows XP. For example, in two of our ot harnyork today due to the challenge of secure key distribution.
empirical traces, only 32% and 15% of the users sent TCP times-  jome and small business networks are small, but detecting when

tamps. All our identifiers have much at least 55% coverage. gpecific users are present is increasingly challenging due to the
Padmanabhan and Yarig [29] explored fingerprinting users with pigh gensity of access points in urban aréas [5]. In addition, these

“clickprints,” or the paths that users take through a website. Their jatvorks are more likely to employ link-layer encryption, such

techniques rely on data from many user sessions collected at ac4q \WEP or WPA, because the set of authorized users is typically

tual web servers. Our techniques can be employed passively byynqwn and is small. In cases where link-layer encryption is em-
anyone with a wireless card without even associating to a network. ployed, an eavesdropper will not be able to view the payloads of

These three research efforts compliment ours, since the procedurgyaia packets. However, features that are derived from frame sizes
we develop for identifying users enables an adversary to use thesg,, timing, which are not masked by encryption, or from 802.11

implicit |dent|f|e.rs in cqmblnatlon with ours, yle!dlng 8Ven More  management frames, which are always sent in the clear, remain
accurate user fingerprints. None of these previous efforts offer a ;giple

formal method to combine multiple pieces of evidence. Moreover, — gina)ly security conscious enterprise networks are likely to em-
to our knowledge, we are the first to evaluate the how well users |, jink-layer encryption. Moreover, if the only authorized de-
are identified by implicit identifiers observed in empirical wireless ;i-as on the network are provided by the company, there will be

data. less diversity in the behavior of wireless cards. For example, Intel

Imp_licit identifiers also reveal identity in ot_her contexts. Security corporation issues similar corporate laptops to its employees. We
tools likenmap [12] andpOf [28] leverage differences in network  qnsiger a enterprise network where only one type of wireless card

stack behaviors to determine a device’s operating system. Key- 4nq configuration is in use, so users can not be identified by differ-
stroke dynamics have been shown to accurately identify Uselrs [24,0yces in device implementation. However, features derived from

Location Privacy. Location privacy has recently received signifi-

Implicit Identifiers. Fingerprinting devices using implicit identi-
fiers is not a new concept. For example, Franklial. [L1]] showed
that it is possible to fingerprint device drivers using the timing of
802.11 probes. In contrast, our work attempts to pin down actual
user identities rather than selecting among a few dozen drivers.
Kohnoet al.[21]] showed that devices could be fingerprinted us-



the networks that users visit or the applications and services theyd. WIRELESS TRACES
run remain visible. We evaluate the implicit identifiers of users in three 802.11 traces.
The Monitoring Scenario. We assume that users use different We consideisi gconmm a 4 day trace taken from one monitoring
pseudonyms during each wireless session in each of these environpoint at the 2004 SIGCOMM conference [3Wk sd, a trace of all
ments, as Gruteset al. [14] propose. As a result, explicit iden- ~ 802.11 traffic in U.C. San Diego’s computer science building on
tifiers can not link their sessions together. Sessions can vary in November 17, 2006 [10], anaipt , a 19 day trace monitoring all
length, so we assume that every hour, each user will have a differ- networks in an apartment building, which we collected. All traces
ent pseudonym. We defindraffic sampleo be one user's network ~ were collected with cpdunp-like tools and only contain informa-
traffic observed during one hour. tion that can be collected using standard wireless cards in monitor
Although it is possible for users to change their MAC addresses mode. Theucsd trace is the union of observations from multiple
more frequently, this is unlikely to be very useful in practice be- monitoring points. IP and MAC addresses are anonymized but are
cause other features, such as received signal strength, can linkconsistent throughout each trace (i.e., there is a unique one-to-one
pseudonyms together at these timescalds 6, 35]. Moreover, changmapping between addresses and anonymized labels). Link-layer
ing a device’s MAC address forces a device to re-associate with encryption (i.e., WEP or WPA) was not employed in either the
the access point and, thus, disrupts active connections. In addi-si gcommorucsd network and neither trace recorded application
tion, it may require users to revisit a web page to re-authenticate packet payloads. In our analysis, we show that implicit identifiers
themselves, since MAC addresses are tied to user accounts in manyemain even when we emulate link layer encryption and that we
public networks. Users are unlikely to tolerate these annoyancesdo not need packet payloads to identify users accuratelyaphe
multiple times per session. trace only recorded broadcast management packets due to privacy
Of course, the ability to link traffic samples together does not concerns; hence, we only use it to study the one implicit identifier
help an adversary detect a user’s presence unless the adversary #at is extracted from these packets.
also able to link at least one sample to that user’s identity. In Sec- We distinguish unique users by their MAC address since it is not
tion[2, we showed that identity can sometimes be revealed by cor- currently common practice to change it. To simulate the effect of
relating implicit identifiers with out-of-band information, such as using pseudonyms, we assume that every user has a different MAC
that provided by the Wiglé[39] location database. However, if the address each hour. Hence, we have one sample per user for each
adversary knows the user he wishes to track, he can likely obtain ahour that they are active. To simulate the training samples collected
few traffic samples known to come from that user’s device. For ex- by an adversary, we split each trace into two temporally contiguous
ample, an adversary could obtain such samples by physically track-parts. Samples from the first part are used as training samples and
ing a person for a short time. We assume the adversary is able tothe remainder are validation samples. We choose a training period
obtain this set ofraining sampleseither before, during, or after ~ in each trace long enough to profile a large number of users. For
the monitoring period. Our results show that on average, only 1 to the si gconmtrace, the training period covers the time until the
3 training samples are sufficient to track users with each implicit end of the first full day of the conference. For thesd trace, the
identifier (see Sectiof 6.2.3). The monitor itself collects samples training period covers the time until just before noon. We skip one

that the adversary wants to test, which we validation samples hour between the training and validation periods so user activities
at the end of the training period are less likely to carry over to the

validation period. For thapt trace, the training period covers the
first 5 days. We consider a user to be present during an hour if and
only if she sends at least one data or 802.11 probe packets during
thattime; i.e., if the user is actively using or searching for a wireless
network]

Table[d shows the relevant statistics about each trace. Note that
since can we only compute accuracy for users that were present in
both the training and validation data, those are the only users that
Question 1 Did this traffic sample come from us&r? we profile. Therefore, results in this paper refer to ‘Profiled Users’
as the total user count and not ‘Total Users.

Evaluation Criteria. There are a number of questions an adver-
sary may wish to answer with these validation samples. Who was
present? When was usér present? Which samples came from
userU? Essential to answering all these questions is the ability to
classify samples by the user who generated them. In other words,
given a validation sample, the adversary needs to answer the fol-
lowing question for one or more usdrs

Sectior6 evaluates how well an adversary can answer this question

with each of our implicit identifiers. 6. IMPLICIT IDENTIFIERS

To demonstrate how well implicit identifiers can be used for  |n this section, we describe four novel implicit identifiers and
tracking, we also evaluate the accuracy in answering the following: evaluate how much information each one reveals. Our results show
that (1) many implicit identifiers are effective at distinguishing in-
dividual users and others are effective at distinguishing groups of
users; (2) a non-trivial fraction of users are trackable using ary on
highly discriminating identifier; (3) on average, only 1 to 3 train-

. S _ ing samples are required to leverage each implicit identifier to its
This question is distinct from Questibh 1 because an adversary cang || effect: and (4) at least one implicit identifier that we examine
observe many traffic samples at any given time, any one of which accurately identifies users over multiple weeks.

may be from the target uséf. In addition, a single affirmative
answer to Questiod 1 does not necessitate a affirmative answer to'We ignore samples that only contain other 802.11 management

Questior 2 because an adversary may want to be more certain bylf@mes, such as power management polls. Including samples with
obtaining multiple positive samples. Sectldn 7 details the interac- Engssei g?gﬁ;’] Vv\cglrjll(?oggt %ﬂ?rﬁg'azlydgﬂgreg?hteh%Sr?]%rgftgf”tsé't%? of
tion between these questions and evaluates how many users cam,gers” in theucsd workload. This is because many devices ob-
be tracked with high accuracy in each of the 802.11 networks de- served in theicsd trace were never actively using the network; we
scribed above. ignore these idle devices.

Question 2 Was uselU here today?




si gcomm ucsd apt
training validation| training validation| training validation
Duration (hours) 37 54 10 11 119 345
Total Samples 1974 3391 587 1240 638 1473
Frames Per Sample (median) 289 284 1227 1128 57 92
Total Users 377 412 225 371 97 196
Profiled Users 337 337 153 153 39 39
Samples Per Profiled User (mean) 5.5 9.1 3.1 4.7 14.7 32.2
Users Per Hour (mean) 53 64 59 113 5 4

Table I—Summary of relevant workload statistics and parameters. The duraponts only hours with at least one active user.

6.1 Identifying Traffic Characteristics Application Port Number of Sizes
wireless driver or O NA 14

Network Destinations. We first considenetdests, the set of IP DHCP 67 14

<address, port pairs in a traffic sample, excluding pairs that are sunrpc 111 1

known to be common to all users, such as the address of the local NetBIOS 138 7

network’s DHCP server. There are several reasons to believe that groove-dpp 1211 1

this set is relatively unique to each user. It is well known that the Microsoft Office v.X | 2222 1

popularity of web sites has a Zipf distributidr [9], so many sites are FileMaker Pro 5003 7

visited by a small number of users. In fact, in thegconmand X Windows 6000 1

ucsd training data, eackcaddress, port pair is visited by 1.15  Tapje 2—A list of the most unique broadcast packets observed in
and 1.20 users on average, respectively. §étef sites that a user  thesi gcommtrace. The third column shows the number of packet
visits is even more likely to be unique. In addition, users are likely sizes that were emitted by at most 2 users.

to visit some of the same sites repeatedly over time. For example,

a user generally has only one email server and a set of bookmarked

sites they check often [36]. . . . often contain naming information. For example, in our traces, we
An adversary could obtain network addresses in any wireless gbserved many Windows machines broadcasting NetBIOS naming

network that does not enable link layer encryption. Even if users advertisements and applications such as FileMaker and Microsoft
sent all their traffic through VPNs, the case for several users in Office advertising themselves.

thesi gcommtrace, the IP addresses of the VPN servers would be  Since these packets vary in length, their sizes can reveal infor-
revealing. No application or network level confidentiality mecha- mation about their content even if the content itself is encrypted.
nisms, such as SSL or IPSec, would mask this identifier either.  packet sizes alone appear to distinguish users almost as well as

SSID Probes.Next we considessids, the set of SSIDs in 802.11  <application, size- tuples. For example, in thei gcommtrace,
probes observed in a traffic sample. Windows XP and OS X add there are only 16% more unique tuples than unique sizes. [Thble 2
the SSID of a network to a preferred networks list when the client lists the most unique broadcast packet sizes we observed and the
first associates with the network. To simplify future associations, @pplication port that generated them. Broadcast packets are sent
subsequent attempts to discoesry network will try to locate this to a known broadcast MAC address; thus, an adversary can distin-
network by transmitting the SSID in a probe request. As we ob- 9uish them from other traffic even if link encryption is employed
served in Sectiof]2, SSID names can be distinguidhitgaddi- and the adversary is not granted network privileges. This set would
tion, probes are never encrypted because active probing must be€main identifying even when user behavior changes because most
able to occur before association and key agreement. broadcast packets are emitted automatically.

There are two practical issues that limit the usessitis as an Two types of broadcast packets, standard DHCP requests and
implicit identifier. First, the preferred networks list changes each PoOwer management beacons, are common to all users, since a de-
time a user adds a network, and thus a prof”e may degrade overVice must send a DHCP request in order to Ob.tain an IP address
time. Second, clients transmit the SSIDs on their preferred net- and sends power management beacons when in low power mode.
works lists only when attempting to discover service. Therefore, Thus, we do notinclude these packets’ sizes irbitest set. These
clients may not probe for distinguishing SSIDs very often. While Packets have distinct sizes (336 and 36 payload bytes, respectively)
this is true, our results show that when distinguishing SSIDs are SO they can be filtered even when link-layer encryption is enabled.

probed for, they can often uniquely identify a user. Since all users MAC Protocol Fields. Finally, we considefields, the specific

in the monitoring area are likely to use the SSIDs of the networks combination of 802.11 protocol fields visible in the MAC header
being monitored, these SSIDs are not distinguishing and we do notthat distinguish a user’s wireless card, driver, and configuration.
include them in thessids set. The fields included are the ‘more fragments, ‘retry, ‘power man-

Broadcast Packet Sizeswe now considebcast, the setof 802.11 ~ agement,” and ‘order,’ bits in the header, the authentication algo-
broadcast packet sizes in each traffic sample. Many applicationsfithms offered, and the supported transmission rates. Some card
broadcast packets to advertise their existence to other machines o¢onfigurations can be more or less likely to emit different values

the local network. Due to the nature of this function, these packets in €ach of these fields, so they can distinguish users with different
wireless cards. Although this identifier is unlikely to distinguish

2 ) . users uniquely, it can be combined with others to add more evi-
A recent patch[[23] to Windows XP allows a user to disable ac- . ; :

tive probing, but it remains enabled by default because disabling it dence. Moreover, many of these f|e|ds_ar<_a e}vaua'b_le n any 802.11

would break association in networks where the access point doesPacket, so they can almost always assist in identification. Further-

not announce itself. In addition, revealing probes or beacons aremore, the likelihood of any particular field combination is unlikely

still required for devices to discover each other in ad hoc mode.  to change for a user unless she obtains a new wireless device or




driver; thus,fields should remain identifying over long time peri- fields

ods. =
6.2 Evaluating User Distinctiveness o]
To show much information each identifier reveals, we now eval- § <
uate how accurately an adversary can answer Quddtion 1 (see Sec- S
tion[d) using each implicit identifier. 1
(=}
g

6.2.1 Methodology

We construct a classifi&r;; for each uset’ in our traces. Given
a traffic samples, Cy returns “Yes” if it believes the sample came
from userU and “No” otherwise. We use a naive Bayes classi-
fier due to its effectiveness in application traffic classification [25,

Classifier threshold T

Figure 1—Mean TPR and FPR as the classifier threshoid var-

142,[43]. More sophisticated classifiers exist, but this simple one led forfields.
is sufficient to demonstrate that implicit identifiers are a problem.
Specifically, from each traffic sample, we extract a vector of fea- fields
tures (fi,..., fm). In our case;n < 4, one feature per im- o
plicit identifier present in the sample. Each of our features has -
a different source, so we assume that they are independent. For N
each featuref;, we estimate the posterior probability distribution = °
Pr(s hasf;|sis fromU] and the prior probability distribution ERCI
Pr[shasf;] from training data. We are interested in § < |
Pr[sisfromUl|s hasfi,..., fm] = s °
Q
©
[1" (Pr[s hasfi|s is from U]) - Pr[s is from U] £ o
m . : o
[1" Pr[s hasf;] g+ | | | ———
We classify a sample as being frabhif and only if this value is 00 02 04 06 08 10

greater than a threshold. We also estimate the prior
Pr[s is from U] from training data, though this could also be based
on a priori knowledge of how frequently the adversary believes his
target will be present.

Classifier threshold T

Figure 2—CCDF of classifier threshold®' that achieve FPR =
0.01 for different users

Feature Generation. To compute these probabilities, we must

convert each of our implicit identifiers into a categorical or real-

valued feature. We treat tliields identifier as a categorical feature  Accuracy has two components: (1) the true positive rate (TPR),
by having each field combination represent a different value. Each or the fraction of validation samples that uééigenerates that we

of the other three identifiers is defined asedof discreteclements correctly classify, and (2) the false positive rate (FPR), or the frac-
e.g.,netdests is a set of network addresses. The following proce- tion of validation samples that usér does not generate that we
dure describes how this set is converted into a real-valued featureincorrectly classify. The former tells us how oftéfis traffic will

that measures how similar it is to the target user’s expected set.  identify her, while the later tells us how often we will mistalie

We first construct a profile seBro filer;, comprising all the el- as the source of other traffic. We measure accuracy with TPR and
ements in the union of all training samples for user To obtain FPR instead of just precision (i.e., the fraction of all samples clas-
a numeric value from the set of elements from a sampl€ets, sified correctly) because the vast majority of samples are negative

we use a weighted version of the Jaccard similarity infek [38] of (i.e., not from the target user). Hence, classifiers that mark arlarge
the profile and the sample sets. The Jaccard index of two sets com4{raction samples as negative would score higher in precision even

putesJ(X,Y) = gaﬂ However, some elements in each set if they marked the same fraction of true positives incorrectly.

are more discriminating than others (i.e., those that we observe inTrainable Users. When evaluating each identifier, we consider
fewer users’ traffic). Hence, we weight each elemeby w(e), only those users that have at least one training sample that contain
the inverse of the number of users that accessed it. We learn these, since we can't build profiles for those with no such samples. Ta-
weights from the training data. Hence, given the praftie fileu, ble[d shows the number of profiled users that exhibit each feature
the feature we compute for samplés: in the training period. Each implicit identifier is exhibited by a dif-

) _ wle) ferent subset of users. In both workloads, each implicit identifier is
e€Profiley NSets . exhibited by a majority of profiled users. The fraction of users that

ZeEProfileUuSets w(e) exhibited thessids feature is lower in theicsd workload (55%

vs 81%) because fewer users sent SSID probes to search for a net-

This value quantifies how similar the set seen in the sample is to the h X
user's profile. Since this procedure computes a real-valued feature VO'K- This may be because mangsd users already established a

we estimate the probability distributions using a density estimator, "9 preference for the UCSD network, having used it previously.

We use the default estimator in the R statistical package [30], which S 9conmusers were all new to the SIGCOMM network and ini-
uses multiple Gaussian kernels. tiated broader searches for their preferred networks beforeiassoc

tion.

6.2.2 Accuracy Metrics Classifier Thresholds. We evaluate each classifier across several
Implicit identifiers are not perfectly identifying. Therefore, to  thresholdsI” in order to determine the trade-off between TPR and
evaluate Questiofll 1, we quantify tlaecuracyof our classifier. FPR. AsST increases, FPR and TPR decrease because the classifier

featurey (s) =
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Figure 3—Classification accuracy using each feature. The top two graphs sleomehn achieved TPR for (a) FPR = 0.01 and (b) FPR
=0.1. The line above each bar show the maximum expected TPR giverfieztclassifier on that feature. The bottom two graphs show a
CCDF of the achieved TPR @i gconmusers for (¢) FPR = 0.01 and (d) FPR = 0.1.

Fraction of users trainable can identify samples from the average user in both workloads about
Sl gcomm ucsd 60% of the time for FPR = 0.01. The line above each bar indicates
netdests 0.89 0.84 the maximum expected TPR that a perfect classifier would achieve
ssids 0.81 0.55 on that implicit identifier—i.e., a classifier that always classifies a
bcast 0.70 0.65 sample correctly if it has that implicit identifier, but guesses ran-
fields 1.00 1.00 domly otherwise. This line is below 1.0 because some validation
Table 3—The fraction of profiled users that we could train using samples do not contain a particular implicit identifier and, hence,
each feature. even a perfect classifier on this identifier would not do better than

random guessing on those samples. For example, many samples
) ) ) ) have no SSID probes and, thus, are missings#ies identifier.

requires more evidence that a user is present in order to answer Figure[3(a) shows that the average user sometimes emits an im-
positively. This is exemplified in FiguEé 1 for the classifier using the plicit identifier that is highly distinguishingnetdests, ssids, and
fields featu_re. We assume that an adversary desires a target FPRyy-45t all achieve moderate TPRs (about 60%, 18%, and 30%, re-
such as 1 in 100, and chooses a thresﬁblkiasgd on t_hat target. spectively) even for a very low FPR (1%). The lower TPRdsids
Ideally, the target FPR would be low. Due to variance in each User's i aypected, since users usually only emit distinguishing SSIDs
training data, an adversary may need to use different thresholds tohen they are searching for a network. Indeed, the theoretical max-
achieve the same FPR for different users. This is exemplified in j,m TPR achievable by a perfect classifier is only about 40%.
Figure[2, which shows a complementary cumulative distribution ajsq. as expectedields is not able to identify many samples on its
function (CCDF) of thresholds that achieve FPR = 0.01 for each oy since it only distinguishes wireless cards and drivers.
user’s classifier using thields feature. An adversary would train Figure[3(b) shows that the TPR féields improves to 40% and
a different classifier for each user that he is tracking. In practice, ggo, when FPR = 0.1, for thei gcornmanducsd workloads, re-
an adversary would have to seldCwithout a priori knowledge of gpectively. Thus, théields identifier is good at classifying users
the FPR achieved on the validation data. In Sedfioh 7.1, we show iyt groups, and can aid in identifying users in those cases when
that an adversary can selécto achieve a desired FPR without this 5 unique identifier is observed. This is expected, sfietes only
knowledge when using multiple features in combination. distinguishes wireless cards and divers. The TPR of the other three
6.2.3 Results features improves much less dramatically when we increase the al-

] o o ~ lowable FPR from 0.01 to 0.1. This is because most of the other
~ Inorder to examine the characteristics of each individual implicit )it identifiers either uniquely identify a user, or are not identi-
identifier, we now focus on the TPR achieved for different FPR fying at all. Thus, the TPR gains observed when we increase FPR
targets using each identifier in isolation. are mostly due to less conservative random guessing on the remain-
Mean Accuracy. Figure[3(a) and (b) shows the mean TPR achiev- ing samples.
able with each implicit identifier in isolation for FPR = 0.01 and  This effect can be seen in Figutk 4, which shows the variation in
FPR = 0.1, respectively. For example, when ugieddests, we mean TPR and FPR across classification thresholdsifgcomm
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Figure 6—Accuracy over time. Normalized mean TPR on each
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day in theapt trace for FPR =0.01. Each TPR value is normalized
Mean false positive rate to the mean TPR for the entire period, evaluated over the users
present during that day. The mean TPR for the entire period over

! ; 0
Figure 4—The mean achieved TPR and FPR $orgcommusers all profiled users is 42%.

as we vary the classification threshdldusing each feature alone.
Thex = y line shows how well random guessing would perform.
bly because these identifiers are generated without user interaction

and, thus, are nearly always identical when emitted. Artifacts near

the right hand side of each graph, such as large confidence intervals,
are mostly due to small sample sizes for those points. We conclude
that an adversary can build a more accurate classifier with more

samples, but needs very few to build one that is useful.

users. The: = y line shows how well random guessing is expected
to perform. The TPR of all the features except fizlds grows
roughly linearly toward 1.0 after the initial spike, which is the effect
that progressively less conservative random guessing would have.
For all features, users in thecsd workload are slightly more ~ Accuracy Over Time. One concern is that the accuracyssids
identifiable than those in thei gcommtrace. This is probably may degrade over time since a user’s preferred networks list can
because there are more total users inghgconmmworkload and, change. Figurg]l6 shows how the mean TPR varies over two weeks
thus, a higher likelihood that two users exhibit the same traits. We in theapt trace, the only trace of that duration, fixing FPR = 0.01.
examine the effect population size has on tracking in SeEfidn 7.2. Each value is normalized by the mean TPR for the entire period.
Even after two weeks, normalized values are close to 1, which sug-

Variation Across Users. Accuracy for some users is better than gests that the SSIDs that users emit are relatively stable over time.

others. Thus, Figulld 3(c) and (d) shows a CCDF of achieved TPR
over all users in thei gcommworkload, for FPR = 0.01 and FPR
= 0.1, respectively. For example, considetdests when FPR = 7. WHEN CAN WE BE TRACKED?
0.01. In this case, 65% of users achieve a TPR of at least 50%. In this section, we evaluate how accurately an adversary can an-
Each of the first three implicit identifiers distinguishes some users swer Questiof]1 and Questigh 2 in each of the wireless environ-
very often. Figur&l3(c) shows that 65%, 11%, 24% of users have ments described in Sectibh 4. The previous section evaluated how
samples that are identified at least half of the time with an FPR of well an adversary could use implicit identifiers independently to de-
only 0.01 usingietdests, ssids, andbcast, respectively. This im- termine whether a sample came from a given user, but in practice,
plies that a non-trivial number of users are trackable even if only an adversary would not be restricted to using identifiers in isolation.
one of these features is available. Without link-layer encryption, public networks reveal features
Nonetheless, when FPR = 0.1, 12%, 53%, and 29% of users both at the link and network layers. In contrast, home networks that
have a TPR of at most 0.1 as well usingtdests, bcast, and employ encryption reveal only link-layer features. Encrypted en-
ssids, respectively (see Figufd 3(d)). This means that our clas- terprise networks comprised of homogeneous devices might reveal
sifier does not perform any better than random guessing on theseonly link-layer features that vary due to application and user behav-
users. These users are simply not identifiable. For example, forior; features that vary due to driver- and card-level differences p
the netdests feature, this means that these users only visited pop- vide no useful information since they would not vary. Therefore,
ular destinations during the training period or did not revisit any we evaluate each environment with the following features visible
site in the subsequent days. This result also implies that the meanto an adversary:
TPR shown in FigurEl3(a) and (b) actually underestimates the TPR

for the users that are identifiable at all, since this fraction of non- e Public network:netdests, ssids, fields, bcast.
identifiable users drags the mean down. We conclude that there is ] ]

a large variation in user distinctiveness. e Home networkssids, fields, bcast.

Training Sample Sensitivity. To explore the variability in clas- e Enterprise networkssids, bcast.

sifier accuracy for different users, we examine whether users ob-

served more often during the training period are more identifiable.  Since measurements from these environments can be difficult to
Figure[® shows the mean TPR achieved for FPR = 0.01 for sets of obtain due to legal and ethical restrictions, we use our analysis of
si gconmusers with different numbers of training samples. The thesi gconmtrace to estimate answers to these questions. In all
error bars show 95% confidence intervals, which are negligible for three scenarios, we consider users with devices that will have a

most points. different pseudonym each hour of the day as in our analysis in the
Figure[® shows that the mean TPR noticeably increases with previous section.

more training samples faretdests andbcast. Fornetdests, TPR Many users in both thei gcommanducsd traces expose im-

stabilizes after 3 training samples. The TPRssids andfields plicit identifiers of all four types, so we conjecture that populations

does not change dramatically with more training samples, proba- in other environments are unlikely to differ substantially beyond
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Figure 5—Sensitivity to the number of training samples for each feature. The MeRnachieved for FPR = 0.01 feii gconmusers with
different numbers of training samples. The error bars indicate 95%idemce intervals.

FPR vs TPR % users with FPR error < _0.01
o median error  90th percentile error
o Public 97% 82%
8 o Home 80% 64%
2 Enterprise 79% 68%
o < P Table 4—Stability of classifier threshold across different valida-
2 o "= Public tion sub-samples. The percentage of users that have FPR errors that
S o - - Home are less than 0.01 away from the target FPR of 0.01.
o o — Enterprise
= ---ox=y
o
° T T T T T T
00 02 04 06 08 10 one training sample with each of the four features in our training
Mean false positive rate sets, we can evaluate the accuracyatiprofiled users, not just a
fraction, as was the case when using individual features (see Ta-
Figure 7—Classification accuracy for Questi@h 1 sf gconm ble[d).
users where in typical public, home, and enterprise networks. Figure[T shows how accurately we can answer QueEdion 1 for
the average user when varying the threstiblich each of our three
environments. Figulld 8 shows the CCDF of TPR achieved for users
FPR =0.01 in public, home, and enterprise networks for several FPR = 0.01.
y 3 _ When more features are visible, classification accuracy is better.
A Dol In public networks, user samples are identified 56% of the time
g s —— Enterprise with a very low FPR (1%), on average. This TPR is slightly lower
[ than that observed fanetdests in Figure[3(a) because here we
ENR are considering all users, not only the 89% that exhihitetdlests
g 3 in their training samples. The average TPR in home and enterprise
3 networks is 31% and 26%, respectively, when FPR = 0.01. Figure 8
g s shows that when FPR = 0.01, 63%, 31%, and 27% of users are
o identifiable at least 50% of the time in public, home, and enterprise
° \ \ \ \ w networks, respectively. As expected, users are more identifiable in
00 02 04 06 08 10 environments with more features.

True positive rate Selecting the Classifier ThresholdAs mentioned in Sectidn 6.2.2,
an adversary would have to select a classifier thresRadachieve
Figure 8—CCDF of TPR for Questiofl1 i§i gconmusers were a desired target FPR. In practice, he would have to select the thresh-
in a typical public, home, or enterprise network for FPR =0.01.  old without knowing a priori the resulting FPR of the validation
data. Instead, an adversary would have to chodBéteat achieves
a target FPR irprevioussamples he has collected (e.g., as part of
the identifiers available. The population sizes will differ, however, training). Therefore, in order to achieve the desired accuracy, the
so we vary the population size in our experiments. Enterprise net- adversary requires that tf chosen in this manner achieves ap-
works may be more homogeneous, but the identifiers we considerproximately the FPR target in yet unknown validation data.
vary due to user behavior and the applications that theyssids To test whether this requirement is met, we ran the following ex-
will remain distinguishing as long as users visit other networks with periment on thesi gconmworkload: An adversary selects that
their devices, anticast will remain distinguishing as long as lap-  achieves FPR = 0.01 on a random 20% subsample of the valida-
tops run Windows and use or search for different names, since ation data and tests whether the saifi@chieves a similar FPR in
large number of broadcast packets are due to NetBIOS. a different random 20% subsample. We perform 10 trials of this
. . experiment per user and measure the absolute FPR errors, i.e., the
7.1 Q1: Did this Sample come from User U? dif?erence bgtween the achieved FPR and the target FPR.[Jable 4
First, we evaluate how well an adversary can answer Quddtion 1shows the number of users that have median and 90th percentile
using features in combination. Since all profiled users had at leasterrors that are less than 0.01 away from the target FPR. 79-97%



of users in all scenarios have errors less than 0.01 away from the Max correlated FPs per user
target most of the time. This suggests that an adversary would be
able to select” that achieves an FPR very close to a desired target
in most circumstances.

7.2 Q2: Was User U here today?

Now we consider Questidd 2. We consider an adversary that
wants to accurately detect the presence of a user during a particular
8 hour work day. In this section, we answer the following two ques-
tions: (1) How many users can be detected with high confidence? )
(2) How often does a user have to be active in order to be detected? T T T T T T 1

7.2.1 Methodology

Accuracy Estimation. Consider an environment witihV users
present each hour during an eight hour day. USeoperates a  Figure 9—Limited dependence in trd gcommtrace. CDF of the
laptop duringactive different hours this day and thus an adversary maximum number of false positives (FPs) generated by any one
obtainsactive samples fronl/. The adversary also obtains up to  user for each user.
N samples each hour from the other users.

Suppose an adversary would like to determine whetiieis
present during this day with a TPR of at 1ed3P Rt4rg.: and an Temporal Correlation
FPR of no more that#' PRiqrge:. In sectio 621, it was shown i
that an adversary could use features in combination to answer
whether a particular traffic sample came frémwith a moderate
TPR {pro1) and a very low FPR fprg1), on average. Unfortu-
nately, even a very lowfpro: could result in the misclassification
of a sample because during an eight hour day, there would be up
to 8 N opportunities to do so. Therefore, to boost the adversary’s
accuracy, he could answer Quesfidn 2 affirmatively only when mul-
tiple samples are classified as being froin

Specifically, suppose the adversary only answers Quédstion 2 af-
firmatively when at least one sample frdmiief different hours
is classified as front/. That is, he believe#’ is present during Pr[pos|recent pos] / Pr[pos]
at leasthelie f different hours. If we assume that the observations
made during each hour are independent, wtigs active during at Figure 10—Limited dependence in thei gconmtrace. CDF of
leastactive > belief hours, how much more likely a true or false positive is given that one was

. observed recently.
TPRtarget 2 PI‘[X 2 bellef],

X

Frac. users with max <
00 02 04 06 08 1.0

—— sigcomm (day 2)

Max FPs from single source

X

Frac. users with ratio <=
00 02 04 06 08 1.0

—— False positives
True positives

i T T T T
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whereX is a binomial random variable with parameters- active
andp = tprq:. In addition, Q is active, then the false positive rate will be high regardless of
. the number of hours that the adversary samples. This concern is
FPRiarger < Pr[Y’ > belicf], mitigated by two factors that add rando)r/nnesspto the sampling pro-
whereY is a binomial random variable with parameters- 8 and cess: 1) users enter and depart from the environment and 2) user
p < 1—(1— fprg1)N, the probability that at least 1 sample not ~ behavior is variable to begin with. Consider our classifier on all
from U during one hour is misclassified. We show below that the features using a classification thresh@ld= 0.5. Figurel® shows,
independence assumption is not unreasonable. for each user that exhibits any false positives during the second full
In order for an adversary to answer Quesfibn 2 Wit R, 4, day of thesi gconmtrace, the maximum number of false positives
and F'PRiarq4et, he would determine if there exists a threshdld that are contributed by any other single user. From this cumula-
for U’s classifier that would satisfy these constraints. In the pro- tive distribution function (CDF), we see that for 60% of users, no
cess, he would also determine the minimum number of hours that Single other user is responsible for more than 1 false positive, and
U would have to be activea¢tive). For example, when all four ~ for over 95%, no single user is responsible for more than 3 false
features are avai|ab|e, we show that quite a few users can be de.pOSitiVes. Therefore, most of the time the two factors mentioned
tected when they are active for several hours even if an adversaryPrevent a large number of false positives from being correlated to

desires 99% accuracy (i.6°P Riarget > 99% andF P Riqrger < a single user. In addition, since the user set is relatively static at
1%). a conference, there is likely to be more churn in the population of

most other environments, further reducing the dependence.

The second concern is that there may be temporal locality in ei-
ther true or false positive samples. For example, we might expect
that a user is much more likely to exhibit a particular feature if he
has done so in the recent past. If temporal correlation was substan-
Sial then the ratio

Dependence.The constraints above assume that the observations
made during each hour are independent. That is, the likelihood of
observing a true or false positive is not dependent on the adver-
sary’s past observations. The following analysis of $hegconmm
trace shows that there is some dependence in reality, but that th
dependence is small.

There are two primary concerns. The first concern is that our Pr[positive| positive in the last hourg
classifier may often confuse ugérwith another use€), so that if Pr[positive
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Figure 11— The number of of users detectable and the number of hours theybmastive to be detected with (a) 90% accuracy and (b)
99% accuracy. The x-axis in each graph varies the population sizetoptportion shows the number and percentage of users it is possible
to detect. The bottom portion shows a box plot of the number of hoursglwidirich they must be active to be detected. That is, the thick
line through the middle of each box indicates the median, the ends of eadebwark the middle 50% of the distribution, and the whiskers
indicate the minimum and maximum values.

would be much larger or smaller than 1. Figliré 10 shows a CDF of 10%). Consider the public networks figure. The fourth bar from
this ratio for each users’ true and false positives when2 using the left in top part shows that when there are 10 users present per
the same classifier as above. For true positives, we only considerhour, we can detect 71% of users if they are active during all 8
times during which the user is active. For false positives, we only hours when present. The box and whiskers just below that in the
consider the active 9 hours of the last 2 days of the conference sincebottom part shows that shows that most of these users do not need
false positives are obviously less likely to occur when fewer people to be active all 8 hours to be detected. Of the 71% of users that can
are present. If there was no temporal correlation, we would obtain be detected, 75% of them only need to be active for 4 hours to be
a vertical line atr = 1. We note that 60 and 70% of users’ true and detected, 50% for at most 3 hours, and 25% for at most 2 hours.

false positives are within a factor of 2 of this line, meaning thatifa  ~,usions. We make two overall conclusions. First. an adver-
true (false) positive was seen in the last two hours we are N0 more g,y .o successfully combine multiple implicit identifiers from a
than 2 tlme_s more or less Il_kely to observe another true_ posmve few samples to detect many users in common networks with high
than otherwise. Moreqver, given the small number of positives for accuracy. The majority of users can be detected with 90% accuracy
_?_ECh l]fser' much Ofl ;h's Vadl’lalIOI"I.IS protlalably due to randomness. ;e active often enough in public networks with 100 concurrent
erefore, temporal dependence is small. users or less. At least 27% of users are detectable with 90% accu-
7.2.2 Results racy in all of the networks when there are 25 concurrent users or

. less. This implies that many users can be detected with high confi-
Figure[I1 shows the number of users detectable and the numberdence in small to medium sized networks regardless of type if they

of hours they must be active_to_be detected with _(a) 90% accuracy, are active often enough. Even in large networks with 100 users,
(b) 99% accuracy. The x-axis in each graph varies the number of 12% to 52% remain detectable

users present each hour. The top half of each graph shows the num- Second, some users are detectable with very high accuracy. Even
ber of users an adversary can detect and, above each bar, the pef;

an adversary desires 99% accuracy, the fraction of detectable
centage of profiled users the number represents. The bottom half of | ..« is hetween 12% and 37% in all networks with 25 users when
each graph shows a box plot of the number of hours during which

. . S they are active often enough. Therefore, even applying existin
these users must be active to be detected. That is, the thick line y g ppiying g

o ) best network security practices will fail to protect the anonymity of
within each box shows the median number of hours a detectable yp P ymity
a non-trivial fraction of users.
user has to be active to be detected, while the ends of each box de-

K the first and third iles. The whisk Kth Indeed, several usage patterns in home and enterprise networks
';nfg maiirgjman ird quartiles. The whiskers mark the minimum make detection more likely than the overall results suggest. In

For example, part (a) shows the results if the adversary desireshome networks, very few users are likely to be active during each
’ ) hour. For example, even when monitoring all the networks in our
an accuracy of 90% (i.€7'PRiarget > 90% andF PRiarger < P g



apt trace, we only observed 4 users per hour, on average. There-11]
fore, the results closer to the left side of each graph are more rep-
resentative of home environments. Since users of a enterprise ”et'[12]
work are probably employees, they are more likely to be active for

the entire observation period. Thus, the top half of each graph is [13]
probably a good estimation of the fraction of users that an adver-

sary can detect on a typical day. (14]

8. CONCLUSIONS AND FUTURE WORK

In this paper we demonstrated that users can be tracked using
implicit identifiers traffic characteristics that remain even when
unique addresses and names are removed. Although we found thaf:6]
our technique’s ability to identify users is not uniform—some users
do not display any characteristics that distinguish themselves from [1g
others—most users can be accurately tracked. For example, the
majority of users can be tracked with 90% accuracy when active [19]
often enough in public networks with 100 concurrent users or less. [20]
Some users can be tracked with even higher accuracy. Therefore,
pseudonyms are insufficient to provide location privacy for many [21]
users in 802.11 networks.

Moreover, our results showed that even a single implicit identi- [22]
fier, such asetdests, ssids, or bcast, can be highly discriminat- 28]
ing and that an adversary needs only 1 to 3 samples of users’ traffic[24
to track them successfully, on average. Therefore, we argue that
addressing all the shortcomings outlined in Sedfbn 2 is critical to [25]
improving the anonymity of wireless protocols. We are designing (26]
mechanisms to resolve these issues in 802.11. [27]

Finally, we note that by considering a subset of all possible im- [2g]
plicit identifiers and a weak, passive adversary, our results only [29]
place a lower bound on the accuracy with which users can be tracked.
We are continuing our effort to uncover implicit identifiers exposed
in 802.11, such as those exposed by timing channels. In addition,[30]
we would like to evaluate the accuracy of our implicit identifiers
over longer time scales and across different locations, since this 311
study’s analysis is limited by the duration and location of our traces.

[15]

[32]
[33]
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