A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply

> K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa

Tokyo Institute of Technology, Japan

2009/6/18, VLSI Circuits, Kyoto

Outline of Presentation

Motivation

- Supply voltage scaling
- Jitter degradation
- Low-voltage VCO's issues
- The proposed Dual-Conduction topology

 Low-power and Low-phase noise
 with a very low supply voltage
- Measurement results
- Conclusions

Supply Voltage Roadmap

The voltage scaling is required again. Low-voltage circuit design is challenging.

With the same power consumption, LC-VCO has much smaller jitter performance.

Clock Generation with Low Vdd

- Lowering of supply voltage is required to realize high-speed and low-active-power circuits.
- Jitter will become larger according to the voltage scaling.
- Ring-VCO become infeasible due to too large jitter or too large power consumption.
- To reduce the power consumption of the clock generator, use of LC-VCOs is an unavoidable way in such the low-voltage condition.

Low-Voltage LC-VCO

- Transformer-Feedback VCO can operate with a low supply voltage.
- 0.5V and 0.35V VCOs are reported.

[1] K. Kwok, and H. C. Luong, JSSC 2005

- Class-C VCO archives 196dBc/Hz of FoM.
- Startup is an issue of Class-C VCO under the low-voltage condition.

[2] A. Mazzanti, and P. Andreani, JSSC 2008

Summary of This Work

- Sub-0.5V LSI
- A Dual-Conduction topology is proposed for Class-C VCO in this work.
- It is modified to work with a very low supply voltage.
- 0.2V VCO is realized by using a 0.18μm
 CMOS process with 114μW of power consumption.

Class-C VCO[2]

Condition for Class-C Operation

Issue of Class-C VCO for Low Vdd

so conduction angle cannot be reduced.

Dual-Conduction Current Waveform

Analytical Comparison

Single Conduction (conventional)

Dual Conduction (proposed)

Vod=0.05V (Φ0=0.4π) PN: -106dBc/Hz-1MHz Pdc: 168μW FoM: 188dBc/Hz

Vod1=0.12V (Φ1=0.2π)

Vod2=0V (Φ2=0.5π) PN: -109dBc/Hz-1MHz Pdc: 162μW FoM: 191dBc/Hz

(*) Vdd=0.2V, A=0.15V, Vth=0.5V, f0=5GHz, Q=10

Chip Micrograph

- 0.18µm CMOS process
- 670µm x 440µm for core area

Phase Noise Measurement

Performance Comparison

	[2]	[1]		This work	
Technology	0.13μm CMOS	0.18μm CMOS	0.18μm CMOS	0.18μm CMOS	
Vdd [V]	1.0	0.5	0.35	0.3	0.2
PDC [mW]	1.3	0.57	1.46	0.159	0.114
fo [GHz]	4.9	3.8	1.4	4.5	4.5
Phase noise [dBc/Hz]	-130 @3MHz	-119 @1MHz	-129 @1MHz	-109 @1MHz	-104 @1MHz
FoM [dBc/Hz]	196	193	190	190	187
Topology	Class-C (single)	Transformer feedback		Class-C (dual)	

[1] K. Kwok, et al., JSSC 2005 [2] A. Mazzanti, et al., JSSC 2008

Conclusion

- A 0.2V LC-VCO is realized by using a dualconduction Class-C topology, which has a smaller conduction angle than the conventional Class-C VCO under the low supply voltage condition.
- The significance of this work is improvement of FoM for the low-voltage oscillators.
- A low-jitter and low-power clock generator can be realized.
- Bias generation is a remaining issue.