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A 0.19e- rms Read Noise 16.7Mpixel Stacked
Quanta Image Sensor With 1.1µm-Pitch

Backside Illuminated Pixels
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Abstract— This letter reports a 16.7 Mpixel, 3D-stacked
backside illuminated Quanta Image Sensor (QIS) with
1.1 µm-pitch pixels which achieves 0.19 e- rms array read
noise and 0.12 e- rms best single-pixel read noise under
room temperature operation. The accurate photon-counting
capability enables superior imaging performance under
ultra-low-light conditions. The sensor supports program-
mable analog-to-digital convertor (ADC) resolution from
1-14 bits and video frame rates up to 40 fps with 4096 ×

4096 resolution and 600 mW power consumption.

Index Terms— Photon-counting, low-light imaging,
CMOS image sensor, quanta image sensor.

I. INTRODUCTION

T
HE read noise reduction in CMOS image sensors (CIS)

is an active research and development topic in recent

years because of its prominent impact in low-light imag-

ing performance for professional and consumer applications.

By reducing the noise to low enough levels for accurate

counting of every photoelectron, the highest possible signal-

to-noise ratio (SNR) under photon-limited imaging conditions

can be realized. From previous studies [1]–[3], the input-

referred read noise needs to be 0.45 e- rms or lower to enable

some basic photoelectron counting capabilities and read noise

of <0.15 e- rms is needed for accurate photoelectron counting

with <0.1% bit error rate (BER).

Process and design improvements are being made to reduce

the read noise by suppressing the temporal noise from in-pixel

source followers (SF) [4]–[9] or increasing the conversion

gain of the pixel output node [10]–[13]. As a result of these

improvements, sub-electron read noise has been reported in

multiple studies. This provides a foundation for the devel-

opment of a CIS-based Quanta Image Sensor (CIS-QIS), a

next-generation image sensor with photon-counting pixels that

supports high-speed and low-power operation with high pixel

resolution [14]. A 1Mpix QIS was reported in 2017 with
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sub-0.3 e- rms input-referred read noise and accurate photon-

counting capabilities [15]. Compared to other conventional

high-sensitivity detectors such as single-photon avalanche

diode (SPAD) [16]–[18], CIS-QIS eliminates the needs of

electron multiplication and its associated negative effects, and

usually provides higher pixel resolution with smaller pixel

sizes, higher quantum efficiency, substantially higher full-

well capacity, and lower dark count rate with lower power

consumption and better manufacturability.

II. SENSOR ARCHITECTURE

This letter reports a CIS-QIS designed and manufactured

in a commercial 45 nm/ 65 nm stacked backside illuminated

(BSI) CIS process. The sensor architecture is illustrated in

Figure 2. It consists of 4096 × 4096 1.1 µm-pitch pixels on

the pixel substrate (top). The readout circuits are fabricated

on the ISP substrate (bottom). The two wafers are bonded

and connected through high-density wafer-wafer connectors.

A cluster-parallel readout architecture is implemented on

the bottom substrate to reduce the parasitic resistance and

capacitance introduced by large pixel array and long pixel

output columns [14], [15]. Improved readout speed and power

efficiency are realized with this architecture.

On the top substrate, the active pixel array is sectioned

into 128 × 128 clusters (1024 pixels per cluster), and each

cluster is connected to a corresponding readout cluster unit on

the bottom substrate. On the bottom substrate, each readout

cluster contains a programmable-gain amplifier (PGA) with

1x to 8x analog gain, a single-slope analog-to-digital con-

verter (SSADC) with 1-14 bit programmable bit depth, and

a correlated multiple sampling (CMS) signal processor with

programmable number of CMS cycles [4], [6], [19], [20].

The 128 × 128 clusters function in parallel and the output

data is carried off-chip by 28 pairs of LVDS lanes with up

to 1.2 Gbps/lane throughput rate. The bottom substrate also

contains a temperature sensor, a phase-locked loop (PLL),

a counter, and a ramp generator. The pixel structure is shown

in Figure 2. The pixel structure contains a transfer gate (TG),

a reset transistor, a source follower, and a row select (RS)

transistor. The pump-gate architecture with a vertical storage

well (SW) and a distal floating diffusion (FD) is implemented

to improve the conversion gain and reduce the input-referred

read noise [21]. A buried-channel SF [22]–[24] is used to
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Fig. 1. A photon-counting histogram from a pixel with 0.12 e- rms
read noise and 2.3 e-/pixel average signal level showing a distinctly
discrete numbers of photoelectrons. The sensor data closely matches
the theoretical Poisson-Gaussian model.

Fig. 2. Sensor architecture and block diagrams of a pixel and a readout
cluster.

reduce the temporal noise associated with the Si-SiO2 interface

trapping events. The backside deep trench isolation (B-DTI)

is implemented in the pixels to improve inter-pixel isolation.

III. CHARACTERIZATION RESULTS

A. Read Noise and Dark Performance

The total input-referred temporal noise (read noise) of the

sensor was characterized with PGA 8x gain with different

numbers of CMS cycles and 70 µsec integration time under

multiple temperatures. The conversion gain of the pixels at the

output of the SF is 340 µV/e measured by the photon transfer

curve methodology [25]. Under room temperature (25 ◦C) with

one CMS cycle, the measured read noise is 0.29 e- rms at the

peak of the noise distribution and 0.31 e- rms at the median.

With CMS 8, the read noise is further reduced to 0.19 e- rms

at the peak and 0.22 e- rms at the median. The results of CMS

16 do not show significant reduction over CMS 8, which is

likely due to increased low-frequency noise from the SFs and

the accumulated FD dark current during the extended CMS

sampling time. For similar reasons, the noise reduction ratio

from the CMS operation is lower than the theoretical values

given by σ/
√

N , where σ is the noise level with CMS 1 and

N is the number of CMS cycles. At −20 ◦C, the read noise

is further reduced to 0.17 e- rms at the peak and 0.20 e- rms

at the median with CMS 8. This noise reduction is likely a

result of reduced thermal noise from the SFs and less FD

Fig. 3. (a) Read noise distributions with PGA 8x gain and CMS 1, 4,
8 under 25 ◦C and −20 ◦C. (b) Average read noise with 1-16 CMS cycles
under −20 ◦C, 0 ◦C, and 25 ◦C.

dark current accumulated during the CMS sampling time.

A small number of pixels with excessively high noise are

present, and the signal distributions of these high-noise pixels

exhibit a trimodal signature that is often linked to random

telegraph signal (RTS) caused by interface traps in the pixel

SFs. The amount of these high-noise pixels (>10 e- rms) is

found to be less than 1ppm with CMS1 and room temperature

operation.

Besides the ultra-low total temporal noise, low dark signal

non-uniformity (DSNU) (0.1 e- rms), excellent row temporal

noise (0.02 e- rms) and column temporal noise (0.02 e- rms)

are also demonstrated with the sensor under 25 ◦C and CMS

1 operation. The overall noise performance is significantly

improved compared to [15] as results of an improved buried-

channel SF design and the addition of on-chip low-noise ADC

and CMS circuitry.

The photon-counting capability of the sensor is demon-

strated with the photon-counting histogram (PCH) method-

ology [26]. The PCH from one pixel with CMS 8 at room

temperature is shown in Figure 1. This sensor signal dis-

tribution closely matches the Poisson-Gaussian distribution

with 0.12 e- rms read noise and 2.3 e-/pixel/frame average

signal. In this example, The ultra-low read noise results in

fully separated peaks in the PCH. To our knowledge, this is

the lowest read noise ever demonstrated with CMOS active

pixels.

B. Photon Response Performance

The light response of the sensor was characterized with the

photon transfer curve. The 1.1 µm pixels show a linear full

well capacity (FWC) of 1500 e-, which is currently limited by

the photodiode capacity and expected to be further improved
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Fig. 4. Sample images under 0.01 lux and 1636 lux illumination levels.

in the future wafer splits with optimized photodiode implant

conditions. The measured quantum efficiency (QE) of the

sensor has peak values of 64%, 75%, and 64% for red, green,

and blue respectively.

C. Imaging Demonstration

The sample images from both high-light (1636 lux) and low-

light (0.01 lux) conditions are shown in Figure 4. The 1636

lux image was captured with 1x PGA gain, CMS 1, f/5.6 lens

and 30msec integration time. This image was processed with

a standard color image processing pipeline with demosaicing,

white balancing, and color correction. The 0.01 lux image was

captured with 8x PGA gain, CMS 1, 600 msec integration

and f/1.4 lens with an average signal level as low as 1.6

photoelectrons per pixel. The image on the top was processed

with a standard image processing pipeline, while the image on

the bottom was generated with a neural network-based color

pipeline with joint demosaicing and denoising optimized for

QIS in ultra-low light imaging [27].

TABLE I

SENSOR PERFORMANCE SUMMARY

IV. CONCLUSION

This letter reports a 16.7 Mpixel QIS with 1.1 µm-pitch

pixels fabricated in a 45/65 nm stacked BSI CIS process.

This sensor achieves 0.19 e- rms array read noise and 0.12

e- rms best single-pixel read noise under room temperature

operation. The superior imaging performance under ultra-low-

light conditions is demonstrated with accurate photon-counting

capabilities. A summary of the sensor performance is shown in

Table I. The excellent low-light performance makes the sensor

ideal for a variety of imaging applications including scientific,

security, defense, medical, consumer, and cellphone.
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