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Abstract. Sorting permutations by transpositions is an important prob-
lem in genome rearrangements. A transposition is a rearrangement op-
eration in which a segment is cut out of the permutation and pasted in
a different location. The complexity of this problem is still open and it
has been a ten-year-old open problem to improve the best known 1.5-
approximation algorithm. In this paper we provide a 1.375-approximation
algorithm for sorting by transpositions. The algorithm is based on a new
upper bound on the diameter of 3-permutations. In addition, we present
some new results regarding the transposition diameter: We improve the
lower bound for the transposition diameter of the symmetric group, and
determine the exact transposition diameter of 2-permutations and simple
permutations.

1 Introduction

When estimating the evolutionary distance between two organisms using ge-
nomic data one wishes to reconstruct the sequence of evolutionary events that
transformed one genome into the other. In the 1980’s, evidence was found that
some species have essentially the same set of genes, but that their gene order
differs [17,13]. This suggests that global rearrangement events, such as reversals
and transpositions of genome segments, can be used to trace the evolutionary
path between genomes. As opposed to local point mutations (i.e., insertions,
deletions, and substitutions of nucleotides) global rearrangements are rare and
may therefore provide more accurate and robust clues to the evolution.

In the last decade, a large body of work was devoted to genome rearrangement
problems. Genomes are represented by permutations, with the genes appearing
as elements. Circular genomes (such as bacterial and mitochondrial genomes) are
represented by circular permutations. The basic task is, given two permutations,
to find a shortest sequence of rearrangement operations that transforms one
permutation into the other. Assuming that one of the permutations is the identity
permutation, the problem is to find the shortest way of sorting a permutation
using a given rearrangement operation, or set of operations. For more background
on genome rearrangements the reader is referred to [18-20].



The problem of sorting permutations by reversals has been studied exten-
sively. It was shown to be NP-hard [8], and several approximation algorithms
have been suggested [4,7,9]. On the other hand, for signed permutations (every
element of the permutation has a sign, 4+ or -, which represents the direction
of the gene) a polynomial algorithm for sorting by reversals was first given by
Hannenhalli and Pevzner [11]. Subsequent work improved the running time of
the algorithm, and simplified the underlying theory [14, 6, 3, 21].

There has been significantly less progress on the problem of sorting by trans-
positions. A transposition is a rearrangement operation, in which a segment is
cut out of the permutation, and pasted in a different location. The complexity of
sorting by transpositions is still open. It was first studied by Bafna and Pevzner
[5], who devised a 1.5-approximation algorithm, which runs in quadratic time.
The algorithm was simplified by Christie [9] and further by Hartman [12], which
also proved that the analogous problem for circular permutations is equivalent.
Eriksson et al. [10] provided an algorithm that sorts any given permutation on n
elements by at most 2n/3 transpositions, but has no approximation guarantee.

The transposition diameter of the symmetric group S, is unknown. Bafna
and Pevzner [5] proved an upper bound of %n, which was improved to %n by the
algorithm of Eriksson et al. [10]. A lower bound of | 251 ] +1 (for circular permu-
tations) is given in [9, 10, 16], where it was conjectured to be the transposition
diameter, except for n = 13 and n = 15.

In this paper we study the problem of sorting permutations by transposi-
tions. We begin with some results regarding the transposition diameter. We
prove a lower bound of | %] 4+ 1 on the transposition diameter of the symmet-
ric group of circular permutations, which shows that the conjecture of [9, 10,
16] is not accurate. Next, we deal with three subsets of the symmetric group
(that have been considered in the genome rearrangement literature): simple per-
mutations, 2-permutations, and 3-permutations. We show that the diameter for
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2-permutations is § (for circular permutations of size n), and for simple per-
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on the diameter of 3-permutations. Then we derive our main result: A 1.375-
approximation algorithm for sorting by transpositions, improving on the ten-
year-old 1.5 ratio.

mutations is |4 ]. We prove an upper bound of 11{&J + {3

Our main result, like many other results in genome rearrangements, is based
on a rigorous case analysis. However, since the number of cases is huge, we
developed a computer program that systematically generates the proof. Each
case in the proof is discrete and consists of a few elementary steps that can
be verified by hand and thus it is a proof in the conventional mathematical
sense. Since it is not practical to manually verify the proof as a whole, we have
written a verification program, which takes the proof as an input and verifies
that each elementary step in the proof is correct. The proof, along with the
program, is presented in a user-friendly web interface [1]. A well-known example
of a computer assisted proof is that of the Four Color Theorem [2] (see [22] for
a list of other proofs).



2 Preliminaries

Let 1 = (m1 ... m,) be a permutation on n elements. Define a segment A
in ™ as a sequence of consecutive elements m;,..., 7 (k > ). Two segments
A=m,...,m; and B = 7j,...,m are contiguousif j =k+1lori=101+1. A
transposition T on m is an exchange of two disjoint contiguous segments. If the
segments are A = 7;,...,mj—1 and B = mj, ..., m;_1, then the result of applying
T on 7, denoted 7 -7, is (w1 ... W1 M ... M1 T ... Tj_1 Tk ... Ty) (nOte
that the end segments can be empty if i =1 or k — 1 = n).

The problem of finding a shortest sequence of transpositions, which trans-
forms a permutation into the identity permutation, is called sorting by transpo-
sitions. The transposition distance of a permutation 7, denoted by d(r), is the
length of the shortest sorting sequence.

The problem of sorting linear permutations of size n is equivalent to sorting
circular permutations of size n + 1 [12]. Many of the following definitions, as
well as the presentation of the algorithm, are more clear for circular permuta-
tions. Therefore we present our results for circular permutations and, due to the
equivalence, they are true also for linear ones. In a circular permutation there is
an element 0, and the equivalent linear permutation can be obtained by simply
removing this element.

Breakpoint Graph. The breakpoint graph [5] is a graph representation of a per-
mutation, which is classical in the genome rearrangements literature. In this
graph every element of the permutation is represented by a left and a right ver-
tex. As defined below, every vertex is connected to one black and one gray edge.
The intuitive idea is that the black edges describe the order in the permutation
and the gray edges describe the order in the identity permutation. Through-
out the paper all permutations are circular and therefore, for both indices and
elements, we identify n and 0.

Definition 1 Let 7 = (mg ... mp—1) be a permutation. The breakpoint graph
G(7) is a edge-colored graph on 2n wvertices {lo,70,l1,71,--,ln—1,Tn—1}. For
every 0 < i < n —1, connect r; and l;11 by a gray edge, and for every m;,
connect lr, and rr,_, by a black edge, denoted by b;.

It is convenient to draw the breakpoint graph on a circle, such that black edges
are on the circumference and gray edges are chords (see Figure 1(a)).

Cycles. Since the degree of each vertex is exactly 2, the graph uniquely decom-
poses into cycles. Denote the number of cycles in G(r) by ¢(m). The length of a
cycle is the number of black edges it contains. A k-cycle is a cycle of length k,
and it is odd if k is odd. The number of odd cycles is denoted by cyqq(7), and
let Acoqa(m,7) = Codd(T - T) — Coaa(m). Bafna and Pevzner proved the following
useful lemma:

Lemma 1 (Bafna and Pevzner [5]) For all permutations m and transpositions
T, Acoqa(m, 7) € {—2,0,2}.
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Fig. 1. (a) The circular breakpoint graph of the permutation 7 = (054 3 6 2 1). Black
edges are represented as thick lines on the circumference, and gray edges are chords.
The three cycles are (b1 bs bg), (b2 ba), and (bs bo). (b) The circular breakpoint graph
of 7 after applying a transposition on black edges bo, b2 and bs.

Let n(r) denote the number of black edges in G(7). The maximum number
of cycles is obtained iff 7 is the identity permutation. In that case, there are n(r)
cycles, and all of them are odd (in particular, they are all of length 1). Starting
with 7 with ¢,q4 0dd cycles, Lemma 1 implies the following lower bound on d(r):

Theorem 2 (Bafna and Pevzner [5]) For all permutations m, d(m) > (n(n) —
Codd(’lr))/Q,

By definition, every transposition must cut three black edges. The transpo-
sition that cuts black edges b;,b; and by is said to apply on these edges (see
Figure 1). If these black edges are in cycle C, then the transposition is said to
apply on C. A transposition 7 is a k-mowve if Acoqq(m,7) = k. A cycle is called
oriented if there is a 2-move that is applied on three of its black edges; otherwise,
it is unoriented.

Throughout the paper, we use the term permutation also when referring to
the breakpoint graph of the permutation (as will be clear from the context). For
example, when we say that 7 contains an oriented cycle, we mean that G(r)
contains an oriented cycle.

Simple Permutations. A k-cycle in the breakpoint graph is called short if k < 3;
otherwise, it is called long. A breakpoint graph is simple if it contains only short
cycles. A permutation 7 is simple if G(7) is simple, and is a 2-permutation (resp.
3-permutation) if G(m) contains only 2-cycles (3-cycles).

A common technique in genome rearrangement literature is to transform
permutations with long cycles into simple permutations. This transformation
consists of inserting new elements into the permutations and thereby splitting
the long cycles. The reader is referred to [12] for a thorough description. If 7 is
the permutation attained by inserting elements into 7 then d(mw) < d(7), since
inserting new elements only can result in a permutation that requires more moves
to be sorted. Such a transformation is called safe if it maintains the lower bound
of Theorem 2, i.e., if n(7) — coqa(m) = n(7) — Coqa (7).



Lemma 3 (Lin and Xue [15]) Every permutation can be transformed safely into
a simple one.

Note that the transformation only maintains the lower bound, not the exact
distance®. We say that permutation 7 is equivalent to permutation 7 if n(mw) —
Codd(ﬂ') = n(ﬁ') — Codd(ﬁ').

Lemma 4 (Hannenhalli and Pevzner [11]) Let 7 be a simple permutation that
18 equivalent to w, then every sorting of © mimics a sorting of m with the same
number of operations.

The 1.375-approximation given in this paper first transforms the given per-
mutation 7 into an equivalent simple permutation 7, then it finds a sorting se-
quence for 7, and, finally, the sorting of & is mimicked on 7. Therefore, through-
out most of the paper we will be concerned with simple permutations and short
cycles.

Configurations and Components. Given a cyclic sequence of elements i1, ..., ik,
an arc is an interval in the cyclic order, i.e., a set of contiguous elements in
the sequence. The pair (i;,4;) (j # ) defines two disjoint arcs: i;,...,4;—1 and
i1,...,%5—1. Similarly, a triplet defines a partition of the cyclic sequence into
three disjoint arcs. We say that two pairs of black edges (a,b) and (¢, d) are
intersecting if a and b belong to different arcs defined by the pair (¢, d). A pair
of black edges intersects with cycle C, if it intersects with a pair of black edges
that belong to C. Cycles C' and D intersect if there is a pair of black edges in C
that intersect with D (see Figure 2c). Two triplets of black edges are interleaving
if each of the edges of one triple belongs to a different arc of the second triple.
Two 3-cycles are interleaving if their edges interleave (see Figure 2e).

A configuration of cycles is a subgraph of the breakpoint graph that is induced
by one or more cycles. There are only two possible configurations of a 3-cycle in
a breakpoint graph, which are shown in Figure 2 (a and b). It is easy to verify
that the 3-cycle in (a) is oriented, and (b) is unoriented. A configuration A is
a sub-configuration of a configuration B if the cycles in A form a subset of the
cycles in B. A configuration A is connected if for any two cycles ¢; and ¢ of A
there are cycles ca, ..., cp—1 such that, for each i € [1,k — 1], ¢; intersects with
cit1- A component is a maximal connected configuration in a breakpoint graph.
The size of configurations and components is the number of cycles they contain,
and are said to be unoriented if all their cycles are unoriented. They are called
small if their size is at most 8; otherwise they are big.

In a configuration, an open gate is a pair of black edges of a 2-cycle or an
unoriented 3-cycle that does not intersect with another cycle. The following is
an important lemma by Bafna and Pevzner.

Lemma 5 (Bafna and Pevzner [5]) Every open gate intersects with some other
cycle in the breakpoint graph.

3 Unlike in the problem of sorting by reversals [11], in which the analogous transfor-
mation maintains the exact distance.
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(a) (b) (c) (d) (e)
Fig. 2. Configurations of 3-cycles. (a) An oriented 3-cycle. (b) An unoriented 3-cycle.
(c) Intersecting 3-cycles. (d) Non-intersecting 3-cycles. (e) Interleaving 3-cycles.

A configuration not containing open gates is referred to as a full configuration.
For example, the configuration in 2(e) is full, whereas 2(c) has two open gates.

Sequence of Transpositions. An (x,y)-sequence of transpositions on a simple
permutation (for > y) is a sequence of x transpositions, such that at least y of
them are 2-moves and that leaves a simple permutation at the end. For example,
a 0-move followed by two consecutive 2-moves (which is called a (0, 2, 2)-sequence
in previous papers [9,12]) is a (3, 2)-sequence. A configuration (or component or
permutation) has a (z,y)-sequence, if it is possible to apply such a sequence on
its cycles.

The following result is the basis of the previous 1.5-approximation algorithms
and will be used throughout the paper.

Lemma 6 (Christie [9] and Hartman [12]) For every permutation (except for
the identity permutation) there exists either a 2-move or a (3,2)-sequence.

Corollary 7 For every permutation that has an oriented cycle and contains at
least three 3-cycles there exists a (4,3)-sequence.

Transposition Diameter. The transposition diameter, TD(n), of the symmetric
group is the maximum value of d(m) taken over all permutations of n elements,
i.e., TD(n) £ max, d(x) . Similarly, the transposition diameter of simple per-
mutations TDS, 2-permutations TD2, and 3-permutations TD3, is the longest
distance for any such permutation to the identity. 4

3 Transposition Diameter Results

In this section, we first provide a lower bound on the transposition diameter.
Then, we determine the exact transposition diameter of 2-permutations and sim-
ple permutations, and find an upper bound for the diameter of 3-permutations.
Recall that throughout the paper by permutations we mean circular permuta-
tions. However, sorting linear permutations of size n is equivalent to sorting
circular permutations of size n + 1 [12]. Therefore all bounds can be applied
directly to linear permutations by replacing n with n + 1.

4 The term diameter is somehow misleading for subsets of the symmetric group which
are not a sub-group. However, we will stick to this term for the sake of consistency.



Previous works [10,9,16] on the transposition diameter have conjectured®
that the most distant permutation is the reversed permutation (0 n —1 ... 1).
That is, it was believed that the transposition diameter is L"T_lj + 1. However,
the theorem below, which is proved in the full version of the paper, disproves
this conjecture. Although the improvement of the bound is minor, we believe
that this result is important since lower bounds on transposition problems are
quite rare and hard to obtain.

The proofs of the following theorems are given in the full version of the paper.

Theorem 8 TD(n) > [5]|+ 1.

For linear permutations of size n the lower bound is given by [2EL| + 1.

Theorem 9 TD2(n) = 5.

Theorem 10 TDS(n) = L%J

3.1 Diameter for 3-permutations

The main result given in this section is an upper bound for the diameter of 3-
permutations, which is the basis of the 1.375-approximation algorithm for sorting
by transpositions (Section 4). This result, like many other results in genome
rearrangements, is based on a rigorous case analysis. However, since the number
of cases is huge, we developed a computer program that systematically analyzes
all the cases. Below we describe the case analysis.

Our goal is to show that every 3-permutation with at least 8 cycles has an

(z,y)-sequence such that < 11 and % < %. Such a sequence is referred to as an

%—sequence. By Corollary 7, we need only consider unoriented configurations,
since a (4,3)-sequence is an %—sequences. Thus, in the sequel, when we say
configurations we refer to unoriented configurations. The case analysis is done
in two steps. In the first step, below, all big components are shown to have an
%—sequence. In the second step, which is described ion the full version of the
paper, we consider permutations with at least 8 cycles such that all components

are small and prove that also these permutations have an %—sequence.

Analysis of Unoriented Configurations The enumeration over all compo-
nents starts from the basic building blocks: connected configurations consisting
of two unoriented cycles. There are only two such configurations, the unori-
ented interleaving pair (Figure 2e) and the unoriented intersecting pair (Figure
2c). From these two configurations it is possible to build any other unoriented
connected configuration by successively adding new unoriented cycles to the con-
figuration. Adding a cycle to a configuration is done by inserting its black edges
somewhere in the configuration. If it is possible to create a configuration B by
adding a cycle to a configuration A, then B is said to be an extension of A. For

® [10] conjectured that this was the case with exceptions for n = 14 and n = 16.



example, both the unoriented interleaving and intersecting pair are extensions
of the configuration of only one unoriented 3-cycle.

Consider a full configuration C' and let A be a sub-configuration of C. Then
C can be constructed by a series of extensions of A. In particular, this means
that A can be extended into configuration B, that also is a sub-configuration
of C. If A has an open gate then there is such extension B that is closing the
open gate (since by definition, C' has no open gates), i.e., the pair of black
edges constituting the open gate in A intersects with a pair of black edges in
B. Otherwise, there is an extension B with at most one open gate that is also a
sub-configuration of C.

From the discussion above it follows that there are two types of extensions
that are sufficient for building any component. These sufficient extensions are
(1) extensions closing open gates and (2) extensions of full configurations, such
that the extended configuration has at most one open gate. We refer to config-
urations that are realizable through a series of sufficient extensions from either
the unoriented interleaving pair or the unoriented intersecting pair as sufficient
configurations. Note that in particular, this means that every sufficient configu-
ration has at most two open gates.

The following lemma is proved by our computerized case analysis:

. . : 11
Lemma 11 Every unoriented sufficient configuration of 9 cycles has an 3 -

sequence.

By definition every big component has a sufficient configuration of size 9. There-
fore the above lemma states that if a permutation contains a big component
then there is an %—sequence.

One way of proving Lemma 11 would be to give a sorting for each of the
sufficient configurations of 9 cycles. Such a case analysis would be too time
consuming even for a computer. Instead, we utilize the notion of sufficiency and
the fact that a sorting sequence for a configuration is also a sub-sorting for every
extension of it. In Figure 3 we describe the case analysis which intuitively can
be thought of as a breadth first search. When performing the analysis it turns
out that no configuration of 10 cycles is added to the queue. This means that

all sufficient configurations of 9 cycles have an %—sequence.

1. Initiate a queue of configurations to contain the unoriented interleaving pair
and the unoriented intersecting pair.
2. While the queue is non-empty do:
(a) Remove the first configuration, A, from the queue.
(b) For each sufficient extension B of A do:
i. If B does not have an lgl—sequence add it to the queue.
ii. Otherwise give the sorting sequence for B.

Fig. 3. A brief description of the case analysis.
It should be stressed that the program itself is not a proof of the lemma. The

proof is the case analysis which is the output of the program. Although each
separate case can be verified by hand it is not an appealing thought to verify



80.000 such cases. To remedy this, the case analysis is presented in a user-friendly
web interface [1] facilitating a general understanding of its correctness. Moreover,
to affirm the correctness we have written a small verification program. This
program verifies the proof by verifying (1) that every given sorting is a correct
sorting and (2) that all sufficient extensions are considered. Thus the proof as a
whole can be checked by verifying the correctness of this small program.

To complete the analysis we now consider small components. Small compo-
nents that do not have an %—sequence are called bad small components. Our
computerized enumeration found that there are only five such components. The
second step of the case analysis, which is described in the full version of the
paper, is to show that permutations with at least 8 cycles that contain only bad

small components have an %—sequence.

Lemma 12 Let m be a permutation with at least 8 cycles that contains only bad
small components. Then, © has an %—sequence.

The conclusion of the case analysis in this section is the corollary below. It
follows from Lemmas 11 and 12 and is the basis of the % = 1.375 approximation
algorithm.

Corollary 13 FEvery 3-permutation with at least 8 cycles has an %—sequence.

The Diameter for 3-permutations Here we present an upper bound on
the diameter for 3-permutations (the proof is given in the full version). In 3-
permutations of size n the number of cycles is ¢ = n/3. Let g(c) = 11[c/8] + 3(c
mod 8)/2| and define f as follows:

a [gle)+1ifec mod8=1
fle) = {g(C) otherwise (1)

Note that f(8!/ + r) = 111 4+ f(r). This function gives the upper bound on the
diameter for 3-permutations.

Theorem 14 TD3(n) < f(2) < HlﬁJ " {3MJ i1

4 The Approximation Algorithm

Now we are ready to present our main result: Algorithm Sort, which is a 1.375-
approximation algorithm for sorting by transpositions (Figure 4). Intuitively,
the algorithm sorts the permutation by repeatedly applying (11, 8)-sequences
and since % = 1.375 we get the desired approximation ratio (based on the lower
bound of Theorem 2). The following lemma, whose proof is deferred to the full

version of the paper, analyzes the time complexity of the algorithm.

Lemma 15 The time complexity of Algorithm Sort is O(n?).
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Algorithm Sort ()

Transform permutation 7 into a simple permutation # (Lemma 3).

Check if there is a (2,2)-sequence. If so, apply it.

While G(7) contains a 2-cycle, apply a 2-move (Christie [9]).

While G(#) contains at least 8 cycles apply an 1j‘l-sequence (Corollary 13).
While G(#) contains a 3-cycle, apply a (3, 2)-sequence (Lemma 6).

Mimic the sorting of 7 using the sorting of & (Lemma 4).

ok~

Fig. 4. A high-level description of the approximation algorithm Sort.

Theorem 16 Algorithm Sort is a 1.375-approzimation algorithm for sorting
permutations by transpositions, and it runs in quadratic time.

Proof. The running time is shown in Lemma 15. We now prove the approxi-
mation ratio. Depending on Step 2, there are two cases: either there is a (2,2)-
sequence or not. Let c¢3 (resp. ¢3) represent the number of 3-cycles (2-cycles) in
G(7) after Step 2.

Case 1 In Step 2 if a (2,2)-sequence exists. According to the lower bound in
Theorem 2 the best possible sorting is that using only 2-moves. Specifically this
means that 7 can not be sorted better than first applying two 2-moves and
then another c3 + co 2-moves to sort the remaining cycles. Therefore a lower
bound for any sorting of 7 is ¢3 + ¢2 + 2. The algorithm gives a sorting using
2+ % + f(cs+ %) moves; 2 moves in Step 2, c3/2 moves in Step 3 creating cp/2
3-cycles, and by the proof of Theorem 14 at most f(c3 + %) moves in Steps 4
and 5. Thus the approximation ratio of the algorithm is

2+ 3+ fles+F) _24y+fl) _ fz)+2 @)

c3+co+2 4 y+2 T x4+27

where © = c3 + % and y = %. In Table 1 the last expression of Equation 2 is
shown to be bounded from above by %.

Case 2 In Step 2 if a (2, 2)-sequence does not exist then there are ca + c3 cycles
in G(#) and at least ¢35 + co + 1 moves are required to sort 7; at least one 0-
move and by Theorem 2 at least c3 4+ co 2-moves are required. The algorithm
gives a sorting using ¢ + f(c3 + %) moves. Thus the approximation ratio of the
algorithm is

FHfea+3)  f@)t+y _ f@)

= < ) (3>

c3+co+1 r+y+1~ x+1
where again = c3+ % and y = %. In Table 1 the last expression of Equation 3
is shown to be bounded from above by %. a

5 Discussion and Open Problems

The main result of this paper is a 1.375-approximation algorithm for sorting by
transpositions. In addition, there are some new advances regarding the trans-
position diameter. The main open problems are to determine the complexity
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Table 1. Function table showing that the approximation ratio of the algorithm is
11 =1.375. In the table z = 8 + r and thus f(z) = 111+ f(r).

r | o 1 2 3 4 5 6 7
f(r) 0 2 3 4 6 7 9 10
f(x)+2 11142 111+4 11145 11146 11148 11149 110411 111412
x+2 81+2 81+3 8l+4 81+5 81+6 81+7 81+8 81+9
f(x) 111 11042 11143 11144 11146 11147 11149 111410
x+1 8l+1 81+2 81+3 8l+4 81+5 81+6 81+7 81+8

of sorting by transpositions, and to find the transposition diameter. We believe
that our results give new insights for further investigation of these problems. In
particular, our characterization of components which are ”hard-to-sort” may be
a key to better lower bounds and approximation algorithms.

Empirical evidence indicate that the upper bound given for the diameter of
3-permutations is very close to the true diameter. If this is correct, then there
are permutations at distance 1.375 times the lower bound of Theorem 2. That is,
finding a better lower bound is essential for improving the approximation ratio.
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