
A 1 PB/s File System to Checkpoint
Three Million MPI Tasks

∗

Raghunath
Rajachandrasekar

The Ohio State University
rajachan@cse.ohio-

state.edu

Adam Moody
Lawrence Livermore
National Laboratory

moody20@llnl.gov

Kathryn Mohror
Lawrence Livermore
National Laboratory
kathryn@llnl.gov

Dhabaleswar K.
(DK) Panda

The Ohio State University
panda@cse.ohio-

state.edu

ABSTRACT

With the massive scale of high-performance computing sys-
tems, long-running scientific parallel applications periodi-
cally save the state of their execution to files called check-
points to recover from system failures. Checkpoints are
stored on external parallel file systems, but limited band-
width makes this a time-consuming operation. Multilevel
checkpointing systems, like the Scalable Checkpoint/Restart
(SCR) library, alleviate this bottleneck by caching check-
points in storage located close to the compute nodes. How-
ever, most large scale systems do not provide file storage on
compute nodes, preventing the use of SCR.

We have implemented a novel user-space file system that
stores data in main memory and transparently spills over to
other storage, like local flash memory or the parallel file
system, as needed. This technique extends the reach of
libraries like SCR to systems where they otherwise could
not be used. Furthermore, we expose file contents for Re-
mote Direct Memory Access, allowing external tools to copy
checkpoints to the parallel file system in the background
with reduced CPU interruption. Our file system scales lin-
early with node count and delivers a 1 PB/s throughput at
three million MPI processes, which is 20x faster than the
system RAM disk and 1000x faster than the parallel file
system.

Categories and Subject Descriptors

C.4 [PERFORMANCE OF SYSTEMS]: Fault toler-
ance; D.4.3 [File Systems Management]: Distributed file
systems; D.4.5 [Reliability]: Checkpoint/restart

Keywords

HPC, Multilevel Checkpointing, File Systems, Persistent-
Memory, SSD, RDMA, Fault-Tolerance

∗This article has been authored by Lawrence Liver-
more National Security, LLC under Contract #DE-AC52-
07NA27344 with the U.S. Department of Energy.

Copyright 2013 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
HPDC’13, June 17–21, 2013, New York, NY, USA.
Copyright 2013 ACM 978-1-4503-1910-2/13/06 ...$10.00.

1. INTRODUCTION
In high-performance computing (HPC), tightly-coupled,

parallel applications run in lock-step over thousands to mil-
lions of processor cores. These applications simulate physi-
cal phenomena such as hurricanes or the effect of aging on
the nuclear weapons stockpile. The results of these simula-
tions are important and time-critical, e.g., we want to know
the path of the hurricane before it makes landfall. Thus,
these applications are run on the fastest supercomputers in
the world at the largest scales possible. However, due to the
increased component count, large-scale executions are more
prone to experience faults, with Mean Times Between Fail-
ures (MTBF) on the order of hours or days due to hardware
breakdowns and soft errors [12, 17, 24, 25, 28].

HPC applications survive failures by saving their state in
files called checkpoints on stable storage, usually a globally-
accessible parallel file system. When a fault occurs, the ap-
plication rolls back to a previously saved checkpoint and
restarts its execution. Although parallel file systems are
optimized for concurrent access by large scale applications,
checkpointing overhead can still dominate application run
times, where a single checkpoint can take on the order of
tens of minutes [14, 22]. A 2005 study by Los Alamos Na-
tional Laboratory shows that about 60% of an HPC ap-
plication’s wall-clock time was spent in checkpoint/restart
alone [21]. Similarly, a study from Sandia National Labo-
ratories predicts that a 168-hour job on 100,000 nodes with
a node MTBF of 5 years will spend only 35% of its time
in compute work and the rest of its time in checkpointing
activities [11]. On current HPC systems, checkpointing uti-
lizes 75-80% of the I/O traffic [1, 20]. On future systems,
checkpointing activities are predicted to dominate compute
time and overwhelm file system resources [10, 18].

Multilevel checkpointing systems are a recent optimiza-
tion to this problem and reduce I/O times significantly [7,
18]. They utilize node-local storage for low-overhead, fre-
quent checkpointing, and only write a select few checkpoints
to the parallel file system. Node-local storage is appealing
because it scales with the size of the application; as more
compute nodes are used, more storage is available. Unfor-
tunately, node-local storage is a scarce resource. While a
handful of HPC systems have storage devices such as SSDs
on all compute nodes, most systems only have main memory,
and some of those do not provide any file system interface
to this memory, e.g., RAM disk. Additionally, to use an
in-memory file system, an application must dedicate suffi-
cient memory to store checkpoints, which may not always
be feasible or desirable.

We address these problems with a new in-memory file
system called CRUISE: Checkpoint Restart in User SpacE.
CRUISE is optimized for use with multilevel checkpointing li-
braries to provide low-overhead, scalable file storage on sys-
tems that provide some form of memory that persists beyond
the life of a process, such as System V IPC shared memory.
CRUISE supports a minimal set of POSIX semantics such
that its use is transparent when checkpointing HPC appli-
cations. An application specifies a bound on memory usage,
and if its checkpoint files are too large to fit within this limit,
CRUISE stores what it can in memory and then spills-over
the remaining bytes in slower but larger storage, such as an
SSD or the parallel file system. Finally, CRUISE supports Re-
mote Direct Memory Access (RDMA) semantics that allow
a remote server process to directly read files from a compute
node’s memory.

In this paper, we make the following contributions:

• Thorough discussion and evaluation of design alterna-
tives for our in-memory file system

• Detailed description of the design and architecture of
CRUISE

• A new mechanism for honoring memory usage bounds,
namely, spill-over

• Interfaces to allow external asynchronous data-transfer
libraries to interact with CRUISE

• Large-scale performance and scalability evaluation of
CRUISE

2. DESIGN GOALS AND BACKGROUND
In this section, we list our design goals and present back-

ground on the checkpointing library and the I/O workload
characteristics for which we designed CRUISE.

2.1 Design Goals for CRUISE
We were guided by several goals when architecting CRUISE.

First, we wanted to provide a file system on machines that
have no local storage other than memory. Second, we wanted
a framework to support spill-over for checkpoints that are
too large to fit in the available local storage. Third, we
wanted to enable remote access to checkpoint data using
RDMA. Remote access to data stored in compute node mem-
ory enables it to be copied to slower, more resilient storage in
the background. Fourth, we wanted to develop a file system
that could perform near memory speeds to allow for low
checkpointing overhead. Finally, we wanted to implement
these capabilities with methods that are portable across a
range of HPC platforms. In particular our initial target sys-
tems are Linux clusters and IBM Blue Gene/Q systems.

2.2 The SCR Library
We developed CRUISE to extend the capabilities of the

Scalable Checkpoint/Restart (SCR) library [26].1 SCR is a
multilevel checkpointing system that enables MPI applica-
tions to attain high bandwidth for checkpoint and restart
I/O [18]. SCR achieves this by saving checkpoints to node-
local storage instead of the parallel file system. It can use
any available file storage, e.g., RAM disks, magnetic hard-
drives, or SSDs. SCR caches recent checkpoints, and dis-
cards an older checkpoint with each newly saved one. SCR
applies redundancy schemes to the cache, so it can recover

1Although we developed CRUISE to support SCR, it is gen-
erally applicable to any multilevel checkpointing library.

checkpoint files even if a failure disables a small portion of
the system. It periodically flushes a cached checkpoint to
the parallel file system in order to withstand catastrophic
failures.

SCR’s design is based on two key properties. First, a
job only needs its most recent checkpoint—as soon as the
job writes the next checkpoint, a previous checkpoint can
be deleted. Second, the majority of failures only disable
a small portion of the system, leaving most of the system
intact. For example, the results obtained in [18] showed
that 85% of failures disabled less than 1% of the compute
nodes on the clusters in question.

2.3 Checkpoint/Restart I/O Characteristics
Checkpoint/restart I/O workloads have certain character-

istics that allow us to optimize our design and implementa-
tion of CRUISE. In this work, we only consider application-
level checkpointing, where the application explicitly writes
its data to files. This differs from system-level checkpointing
in which the entirety of the application’s memory is saved by
an external agent. Application-level checkpointing is typi-
cally more efficient, because only the data that is needed for
restart is saved, instead of the entire memory. Here, we de-
tail the characteristics of typical application-level checkpoint
I/O workloads.
A single file per process. Many applications save state
in a unique file per process. This checkpointing style is a
natural fit for multilevel checkpointing libraries. In fact,
SCR imposes the additional constraint that a process may
not read files written by another process. As such, there
is no need to share files between processes, so storage can
be private to each process, which eliminates inter-process
consistency and reduces the need for locking.
Dense files. In general, POSIX allows for sparse files in
which small amounts of data are scattered at distant offsets
within the file. For example, a process could create a file,
write a byte, and then seek to an offset later in the file to
write more data, leaving a hole. File systems may then opti-
mize for this case by tracking the locations and sizes of holes
to avoid consuming space on the storage device. However,
checkpoints typically consist of a large volume of data that
is written sequentially to a file. Thus, it will suffice to sup-
port non-sequential writes in CRUISE without incurring the
overhead of tracking these holes to optimize data placement.
Write-once-read-rarely files. A checkpoint file is not
modified once written, and it is only read during a restart
after a failure, which is assumed to be a rare event relative
to the number of checkpoints taken. This property makes
it feasible to access file data by external methods such as
RDMA without concern for file consistency. Once written,
the file contents do not change.
Temporal nature of checkpoint data. Since an appli-
cation restarts from its most recent checkpoint, older check-
points can be discarded as newer checkpoints are written.
SCR records its own metadata to track checkpoint times, so
we need not track POSIX file timestamps in CRUISE. Also,
SCR only stores a few checkpoints at a time, so CRUISEuses
small fixed-sized arrays to record file metadata.
Globally coordinated operation. Typically, parallel ap-
plication processes coordinate with each other to ensure that
all message passing activity has completed before saving
a checkpoint. This coordination means that all processes
block until the checkpointing operation is complete, and

when a failure occurs, all processes are restarted at the same
time. This means that CRUISE can clear all locks when the
file system is remounted.

Although, we designed CRUISE to take advantage of the
above characteristics, it can be extended to handle other
variants. In particular, with slight modification, it is also
applicable to uncoordinated checkpointing.

3. DESIGN ALTERNATIVES
Logically, CRUISE requires two layers of software: the first

layer intercepts POSIX calls made by the application or
checkpoint library, and the second layer interacts with the
storage media to manage file data. We considered several de-
sign alternatives for each layer that differ in imposed over-
heads, performance, portability, and capability to support
our design goals.

3.1 Intercepting Application I/O
With CRUISE, our objective is to transparently intercept

existing application I/O routines such as read(), write(),
fread(), and fwrite(), and metadata operations such as
open(), close(), and lseek(). We considered two op-
tions for implementing the interception layer: FUSE and
I/O wrappers.

3.1.1 FUSE-based File System

A natural choice for intercepting application I/O in user-
space is to use the Filesystem in User Space (FUSE) mod-
ule [3]. A file system implementation that uses FUSE can
act as an intermediary between the application and the ac-
tual underlying file system, e.g., a parallel file system.

The FUSE module is available with all mainstream Linux
kernels starting from version 2.4.x. The kernel module works
with a user-space library to provide an intuitive interface for
implementing a file system with minimal effort and coding.
Given that a FUSE file system can be mounted just as any
other, it is straight-forward to intercept application I/O op-
erations transparently. However, a significant drawback is
that FUSE is not available on all HPC systems. Some HPC
systems do not run Linux, and some do not load the neces-
sary kernel module.

Another problem is relatively poor performance for check-
pointing workloads. First, because I/O data traverses be-
tween user-space and kernel-space multiple times, FUSE can
introduce a significant amount of overhead on top of any
overhead added by the file system implementation. Second,
the use of FUSE implies a large number of small I/O requests
for writing checkpoints. By default, FUSE limits writes to
4 KB units. Although the unit size can be optionally in-
creased to 128 KB, that is relatively small for checkpoint
workloads that can have file sizes on the order of hundreds
of megabytes per process. When FUSE is used in such work-
loads, many I/O requests are generated at the Virtual File
System (VFS) layer leading to several context switches be-
tween the application and the kernel.

We quantified the overhead incurred by FUSE using a
dummy file system that simply intercepts I/O operations
from an application and passes the data to the underlying file
system, a kernel-provided RAM disk in this experiment. Di-
rect I/O was used to isolate the effects of the VFS cache. For
these runs, we measured the write() throughput of a single
process that wrote a 50 MB file to both native RAM disk,
and to the dummy FUSE mounted atop the RAM disk. We

Location Throughput (MB/s)
NFS 84.50
HDD 97.43
Parallel FS 764.18
SSD 1026.39
RAM disk 8555.26
Memory 15097.85

Table 1: I/O throughput for the storage hierarchy
on the OSU-RI system described in Section 7.1

found that the bandwidth achieved by FUSE was 80 MB/s,
while the bandwidth of RAM disk was 1,610 MB/s. Due to
the large overheads of using FUSE, the FUSE file system
only gets approximately 5% of the performance of writing
to RAM disk directly.

3.1.2 Linker-Assisted I/O Call Wrappers

The other alternative we considered for intercepting ap-
plication I/O was to use a set of wrapper functions around
the native POSIX I/O operations. The GNU Linker (ld)
supports intercepting standard I/O library calls with user-
space wrappers. This can be done statically during link-
time, or dynamically at run time using LD_PRELOAD. This
method works without significant overhead because all con-
trol remains completely in user-space without data move-
ment to and from the kernel. The difficulty is that a signifi-
cant amount of work is involved to write wrappers for all of
the POSIX I/O routines that an application might use.

Two goals for CRUISE are portability and low overhead for
checkpoint workloads, so in spite of the additional work re-
quired to write linker-assisted wrapper functions, we opted
for this method due to its better performance and portabil-
ity.

3.2 In-Memory File Storage
Table 1 illustrates the I/O throughput of different levels

in the storage hierarchy. We show the performance for sev-
eral stable storage options: the Network File System (NFS),
spinning magnetic hard-disk (HDD), parallel file system,
and solid-state disk (SSD). We also show the performance of
two memory storage options, RAM disk and shared mem-
ory via a memory-to-memory copy operation (Memory). Of
course, the memory-based storage options far out-perform
stable storage. A key design goal of CRUISE is to store ap-
plication checkpoint files in memory to improve performance
and, more importantly, to serve as a local file system on HPC
systems that provide no other form of local storage. Here,
we discuss three options that we considered for in-memory
storage, RAM disk, a RAM disk-backed memory map, and
a persistent memory segment.

3.2.1 Kernel-Provided RAM disk

RAM disk is a kernel-provided virtual file system backed
by the volatile physical memory on a node. RAM disk can be
mounted like any other file system, and the data stored in it
persists for the lifetime of the mount. The kernel manages
the memory allocated to RAM disk, enabling persistence
beyond the lifetime of user-space processes but not across
node reboots or crashes. RAM disk also provides standard
file system interfaces and is fully POSIX-compliant, making
it a natural choice for in-memory data storage.

However, by comparing the RAM disk to the memory copy
performance in Table 1, it is evident that RAM disk does not

fully utilize the throughput offered by the physical memory
subsystem. Another drawback with RAM disk is that one
can not directly access file contents with RDMA.

3.2.2 A RAM disk-Backed Memory-Map

The drawbacks regarding performance and RDMA capa-
bility could be addressed by memory mapping a file residing
in RAM disk. This approach could fully utilize the band-
width offered by the physical memory subsystem simply
by copying checkpoint data from application buffers to the
memory-mapped region using memcpy(). Once the check-
point is written to the memory-map, it can be synchronized
with the backing RAM disk file using msync(). Then one
can simply read the normal RAM disk file during recovery.

However, given that the file backing the memory-map re-
sides in the memory reserved for RAM disk, the checkpoint
data occupies twice the amount of space. Moreover, there
are difficulties involved with tracking consistency between
the memory-mapped region and the backing RAM disk file.

3.2.3 Byte-Addressable Persistent Memory Segment

The third approach we considered was to directly store the
checkpoint data in physical memory. Our target systems all
provide a mechanism to acquire a fixed-size segment of byte-
addressable memory which can persist beyond the lifetime of
the process that creates it. This includes systems such as the
recent IBM Blue Gene/Q that provides so-called persistent
memory, and all Linux clusters that provide System V IPC
shared memory segments.

The downside of this method is that it requires implemen-
tation of memory allocation and management, data place-
ment, garbage collection, and other such file system activi-
ties. In short, the difficulty lies in implementing the numer-
ous functions and semantics of a POSIX-like file system.

The advantages are the fine-grained management of the
data and access to the entire bandwidth of the memory de-
vice. Additionally, we expect this approach to work with fu-
ture byte-addressable Non-Volatile Memory (NVM) or Stor-
age Class Memory (SCM) architectures.

Although the use of a byte-addressable memory segment
requires significant implementation effort to perform the ac-
tivities of a file system, we chose this method for CRUISE for
its portability and performance.

3.3 Limitations of the Kernel Buffer Cache
One could argue that the buffer cache maintained in the

kernel is a viable alternative that satisfies most of the de-
sign goals for CRUISE. The benefits of using the buffer cache
include fast writes, asynchronous flush of data to a local or
remote file system, and dynamic management of application
and file system memory.

However, the potential pitfalls of using the buffer cache
in a multilevel checkpointing system outweigh these bene-
fits. One, with multilevel checkpointing, there are situations
wherein a cached checkpoint need not be persisted to stable
storage. The kernel, however, cannot make this distinction
and may unnecessarily flush all data in the buffer cache to
the underlying storage system. Two, using the buffer cache
involves copies between user and kernel space, reducing write
throughput. Three, using the buffer cache does not permit
direct access to data for the RDMA capability, which is de-
sirable for asynchronous checkpoint staging. And four, we
lose control over when data is moved from the compute node

Figure 1: Architecture of CRUISE

to the remote file system. With an in-memory file system
like CRUISE, we can orchestrate data movement such that it
does not impact the performance of large-scale HPC appli-
cations with file system noise. CRUISE is an initial proof-
of-concept system intended to work with byte-addressable
NVM architectures that cannot be serviced by the buffer
cache.

4. ARCHITECTURE AND DESIGN
In this section, we present our design of CRUISE. We begin

with a high-level overview. We follow with details on sim-
plifications we made to support checkpoint files, and our ap-
proaches for lock management, spill-over, and RDMA sup-
port.

4.1 The Role of CRUISE
In Figure 1, we show a high-level view of the interactions

between components in SCR and CRUISE. On the left, we
show the current state-of-the-art with SCR, and on the right,
we show SCR with CRUISE. In both cases, all compute nodes
can access a parallel file system. Additionally, each compute
node has some type of node-local storage media such as a
spinning disk, a flash memory device, or a RAM disk.

In the SCR-only case, the MPI application writes its check-
points directly to node-local storage, and it invokes the SCR
library to apply cross-node redundancy schemes to tolerate
lost checkpoints due to node failures. For the highest level
of resiliency, SCR writes a selected subset of the checkpoints
to the parallel file system. By using SCR, the application in-
curs a lower overhead for checkpointing but maintains high
resiliency. However, SCR cannot be employed on clusters
with insufficient node-local storage.

In the SCR-CRUISE case, checkpoints are directed to CRUISE.
All application I/O operations are intercepted by the CRUISE li-
brary. File names prefixed with a special mount name are

processed by CRUISE, while operations for other file names
are passed to the standard POSIX routines. CRUISE man-
ages file data in a pre-allocated persistent memory region.
Upon exhausting this resource, CRUISE transparently spills
remaining file data to node-local storage or the parallel file
system. This configuration enables applications to use SCR
on systems where there is only memory or where node-local
storage is otherwise limited.

As an additional optimization, CRUISE can expose the file
contents stored in memory to remote direct memory access.
When SCR determines that a checkpoint set should be writ-
ten to the parallel file system, an asynchronous file-transfer
agent running on a dedicated I/O node can extract this data
via RDMA using an CRUISE API that lists the memory ad-
dresses of the blocks of the files.

4.2 Data Structures
The CRUISE file system is maintained in a large block of

persistent memory. The size of this block can be specified
at compile time or run time. So long as the node does not
crash, this memory persists beyond the life of the process
that creates it so that a subsequent process may access the
checkpoints after the original process has failed. When a
subsequent process mounts CRUISE, the base virtual address
of the block may be different. Thus, internally all data struc-
tures are referenced using byte offsets from the start of the
block. The memory block does not persist data through
node failure or reboot. In those cases, a new persistent mem-
ory block is allocated, and SCR restores any lost files by way
of its redundancy schemes.

Figure 2 illustrates the format of the memory block. The
block is divided into two main regions: a metadata region
that tracks what files are stored in the file system, and the
data region that contains the actual file contents. The data
region is further divided into fixed-size blocks, called data-
chunks. Although not drawn to scale in Figure 2, the mem-
ory consumed by the metadata region only accounts for a
small fraction of the total size of the block.

We assume that a CRUISE file system only contains a few
checkpoints at a time, which simplifies the design of the
required data structures. As discussed in Section 2.2, SCR
deletes older node-local checkpoints once a new checkpoint
has been written, freeing up space for newer checkpoints to
be stored. Thus, we are safe to assume a small number of
files exist at any time.

Because CRUISE handles a limited number of files for each
process, we design our metadata structures to use small,
fixed-size arrays. Each file is then assigned an internal FileID
value, which is used as an index into these arrays. CRUISE

manages the allocation and deallocation of FileIDs using the
free_fid_stack. When a new file is created, CRUISE pops
the next available FileID from the stack. When a file is
deleted, its associated FileID is pushed back onto the stack.
For each file, we record the file name in the File List array,
and we record the file size and the list of data-chunks asso-
ciated with the file in an array of File Metadata structures.
The FileID is the index for both arrays.
CRUISE adds the name of a newly created file to the File

List in its appropriate position, and sets a flag to indicate
that this position is in use. For metadata operations that
only provide the file name, such as open(), rename(), and
unlink(), CRUISE scans the File List for a matching name
to discover the FileID, which can then be used to index into

the array of File Metadata structures. For calls which re-
turn a POSIX file descriptor, like open(), we associate a
mapping from the file descriptor to the FileID so that sub-
sequent calls involving the file descriptor can index directly
to the associated element in the File List and File Metadata
structure arrays.

The File Metadata structure is logically similar to an inode
in traditional POSIX file systems, but it does not keep all of
the metadata kept in inodes. The File Metadata structure
simply holds information pertaining to the size of the file,
the number of data-chunks allocated to the file, and the list
of data-chunks that constitute the file.

Finally, the free_chunk_stack manages the allocation and
deallocation of data-chunks. The size and number of data-
chunks are fixed when the file system is created. Each data-
chunk is assigned a ChunkID value. The free_chunk_stack

tracks ChunkIDs that are available to be assigned to a file.
When a file requires a new data-chunk, CRUISE pops a value
from the stack and records the ChunkID in the File Meta-
data structure. When a chunk is freed, e.g., after an un-

link() operation, CRUISE pushes the corresponding ChunkID
back on the stack.

4.3 Spill Over Capability
Some HPC applications use most of the memory available

on each compute node, and some also save a significant frac-
tion of that memory during a checkpoint. In such cases, the
memory block allocated to CRUISE may be too small to store
the checkpoints from the processes running on the node. For
this reason, we designed CRUISE to transparently spill over
to secondary storage, such as a local SSD or the parallel file
system.

During initialization, a fixed-amount of space on the spill-
over device is reserved in the form of a file. As with the
memory block, the user specifies the location and size of
this file. The file is logically fragmented into a pool of data-
chunks, and the allocation of these chunks is managed by
the free_spillover_stack, which is kept in the persistent
memory block. For each chunk allocated to a file, the File
Metadata structure also records a field to indicate whether
the chunk is in the memory or the spill-over device. When
allocating a new chunk for a file, CRUISE allocates a chunk
from the spill-over storage only when there are no remaining
free chunks in memory.

4.4 Simplifications
We made simplifications over POSIX semantics in CRUISE

for directories, permissions, and time stamps.
CRUISE does not support directories. However, CRUISE

maintains the illusion of a directory structure by using the
entire path as the file name. This support is sufficient for
SCR and simplifies the implementation of the file system.
When files are transferred from CRUISE to the parallel file
system, the directory structure can be recreated since the
full paths are stored.
CRUISE does not support file permissions. Since compute

nodes on HPC systems are not shared by multiple users
at the same time, there is no need for administering file
permissions or access rights. All files stored within CRUISE

can only be accessed by the user who initiated the parallel
application. SCR restores normal file permissions when files
are transferred from CRUISE to the parallel file system.
CRUISE does not track time stamps. SCR manages infor-

Figure 2: Data Layout of CRUISE on the Persistent Memory Block

mation about which checkpoints are most recent and which
can be deleted to make room for new checkpoint files, so time
stamps are not required. Typically, versioning mechanisms
tend to be a mere sequential numbering of checkpoints, in
the order in which they were saved. Updating time stamps
on file creation, modification, or access incurs unnecessary
overhead, so we remove this feature from CRUISE.

4.5 Lock Management
For some flexibility between performance and portability,

the persistent memory block may either be shared by all
processes running on a compute node, or there may be a
private block for each process. The patterns of checkpoint
I/O supported by SCR do not require shared-file access be-
tween MPI processes; in fact, SCR prohibits it. Given this,
we can assume that no two processes will access the same
data-chunk, nor will they update the same File Metadata
structure. However when using a single shared block, multi-
ple processes interact with the stacks that manage the free
FileIDs and data-chunks. When operating in this mode, the
push and pop operations must be guarded by exclusive locks.

Since stack operations are on the critical path, we need a
light-weight locking mechanism. We considered two poten-
tial mechanisms for locking common data structures. One
option is to use System V IPC semaphores and the other
is to use Pthread spin-locks. Semaphores provide a locking
scheme with a high-degree of fairness, and processes sleep
while waiting to acquire the lock, freeing up compute re-
sources. However, the locking and unlocking routines are
heavy-weight in terms of the latency incurred. Spin-locks,
on the other hand, provide a low-latency locking solution,
but they may lack fairness and can lead to wasteful busy-
waiting.

When using SCR, all processes in the parallel job synchro-
nize for the checkpoint operation to complete before starting
additional computation. This synchronization ensures some
degree of fairness between processes across checkpoints. Fur-
thermore, in the case of HPC applications, busy-waiting on
a lock does not reduce performance since users do not over-
subscribe the compute resources. Thus, we elected to use
spin-locks in CRUISE to protect the stack operations.

4.6 Remote Direct Memory Access
RDMA allows a process on a remote node to access the

memory of another node, without involving a process on the
target node. The main advantage of RDMA is the zero-copy
communication capability provided by high-performance in-
terconnects such as InfiniBand. This allows the transfer of

data directly to and from a remote process’ memory, bypass-
ing kernel buffers. This minimizes the overheads caused by
context switching and CPU involvement.

Several researchers have studied the benefits of RDMA-
based asynchronous data movement mechanisms [4, 5, 23].
An I/O server process can pull checkpoint data from a com-
pute node’s memory without requiring involvement from the
application processes, and then write the data to slower stor-
age in the background. This reduces the time for which an
application is blocked while writing data to stable storage.

A vast majority of the asynchronous RDMA-based data
movement libraries have two sets of components: one or
more local RDMA agents that reside on each compute node,
and smaller pool of remote RDMA agents hosted on stor-
age nodes or dedicated data-staging nodes. Typically, each
data-staging RDMA agent provides data movement services
for a small group of compute nodes rather than serving all
of them, making this a scalable solution. On receiving a re-
quest to move a particular file to the parallel file system, the
compute-node RDMA agent reads a portion of the file from
disk to its memory space, prepares it for RDMA, and then
signals the RDMA agent on the data-staging node. How-
ever, the additional memory copy to read the file data into
memory for RDMA incurs a significant overhead.

Given that the data managed in CRUISE is already in mem-
ory, this additional memory copy operation can be avoided
by issuing in-place RDMA operations. To achieve this, we
expose an interface for discovering the memory locations of
files for efficient RDMA access in CRUISE. The local agent
can then communicate the memory locations to the remote
agent. This method eliminates the additional memory copies
and enables the remote agent to access the files without fur-
ther interaction with the local agent.

Figure 3 illustrates the protocol for the interface, which
works by the following description: (1) On initialization, the
local and remote RDMA agents establish a network connec-
tion for RDMA transfers. (2) The local RDMA agent uses
the function get_data_region() exposed by CRUISE to get
the starting address of the memory region in which CRUISE

stores its data chunks, and the size of this memory region.
The local RDMA agent then registers the memory region
for RDMA operations. (3) Following this, the local RDMA
agent sleeps until it receives a request from SCR to flush a
checkpoint file to the parallel file system.

(4) On receiving a request from SCR, the local agent in-
vokes get_chunk_meta_list() exposed by CRUISE, which re-
turns a list of metadata information about each data chunk
in the file. This includes the logical ChunkID, the memory

Figure 3: Protocol to RDMA files out of CRUISE

address of the chunk if it is in memory, the offset of the
chunk if it is in a spill-over file, and a flag to indicate if the
chunk is located inside the memory region or the spill-over
file. If a chunk has been spilled-over to an SSD, the local
agent issues a read() to copy that particular chunk to its ad-
dress space before initiating an RDMA transfer. (5) Then,
the local agent sends a control message to the remote agent
with the information about the memory addresses to trans-
fer. (6) The remote process reads the data chunks directly
from the data region managed by CRUISE, without involving
the local RDMA agent or the application processes.

(7) After the data has been read from the list of addresses,
the remote agent sends a control message to the local agent
informing it that it is safe for these buffers to be replaced
for subsequent transfers. (8) The remote agent writes the
data it receives into the parallel file system. Note that it is
the duty of the remote agent to pipeline the loop of steps
(5)-(8) to make optimum use of the network bandwidth and
to overlap the communication and I/O phases. (9) When
the file transfer is complete, the local agent informs SCR to
complete the transfer protocol.

5. IMPLEMENTATION OF CRUISE
Here, we illustrate the implementation of the CRUISE file

system by detailing initialization and two representative op-
erations: the open() metadata operation and the write()

data operation.

5.1 Initializing the File System
To initialize CRUISE, a process must mount CRUISE with

a particular prefix by calling a user-space API routine. At
mount time, CRUISE creates and attaches to the persistent
memory block. It initializes pointers to the different data
structures within this block, and it clears any locks which
may have been held by previous processes. If the block was
newly created, it initializes the various resource stacks. Once
CRUISE has been mounted at some prefix, e.g., /tmp/ckpt,
it intercepts all I/O operations for files at that prefix. For all
other files, it forwards the call to the original I/O routine.

5.2 open() Operation
Figure 4 lists pseudo-code for the open() function. When

CRUISE intercepts any file system call, it first checks to see
if the operation should be served by CRUISE or if it should

1: open(const char *path, int flags, ...)
2: if path matches CRUISE mount prefix then

3: lookup corresponding FileID
4: if path not in File List then

5: pop new FileID from free_fid_stack

6: if out of FileIDs then

7: return EMFILE
8: end if

9: insert path in File List at FileID
10: initialize File Metadata for FileID
11: end if

12: return FileID + RLIMIT_NOFILE

13: else

14: return __real_open(path, flags, ...)

15: end if

Figure 4: Pseudo-code for open() function wrapper

1: write(int fd, const void *buf, size t count)
2: if fd more than RLIMIT_NOFILE then

3: FileID = fd - RLIMIT_NOFILE

4: get File Metadata for FileID
5: compute number of additional data-chunks

required to accommodate the write
6: if additional data-chunks needed then

7: pop data-chunks from free_chunk_stack

8: if out of memory data-chunks then

9: pop data-chunks from
the free_spillover_stack

10: end if

11: store new ChunkIDs in File Metadata
12: end if

13: copy data to chunks
14: update file size in File Metadata
15: return number bytes written
16: else

17: return __real_write(fd, buf, count)

18: end if

Figure 5: Pseudo-code for write() function wrapper

be passed to the underlying file system. In open(), CRUISE
compares the path argument to the prefix at which it was
mounted. CRUISE intercepts the call if the file prefix matches
the mount point; otherwise it invokes the real open().

When CRUISE intercepts open(), it scans the File List to
lookup the FileID for a file name matching the path argu-
ment. If it is not found, CRUISE allocates a new FileID from
the free_fid_stack, adds the file to the File List, and ini-
tializes its corresponding File Metadata structure. As a file
descriptor, CRUISE returns the internal FileID plus a con-
stant RLIMIT_NOFILE. RLIMITs are system specific limits
imposed on different types of resources, including the max-
imum number of open file descriptors for a process. The
CRUISE variable RLIMIT_NOFILE specifies a value one greater
than the maximum file descriptor the system would ever
return. CRUISE differentiates its own file descriptors from
system file descriptors by comparing them to this value.

5.3 write() Operation
Figure 5 shows the pseudo-code for the write() function.

CRUISE first compares the value of fd to RLIMIT_NOFILE to
determine whether fd is a CRUISE or system file descrip-
tor. If it is a CRUISE file descriptor, CRUISE converts fd to

a FileID by subtracting RLIMIT_NOFILE. Using the FileID,
CRUISE looks up the corresponding File Metadata structure
to obtain the current file size and list of data-chunks al-
located to the file. From the current file pointer position
and the length of the write operation, CRUISE determines
whether additional data-chunks must be allocated. If neces-
sary, it acquires new data-chunks from free_chunk_stack.
If the persistent memory block is out of data-chunks, CRUISE
allocates chunks from the secondary spill-over pool. It ap-
pends the ChunkIDs to the list of chunks in the File Meta-
data structure, and then it copies the contents of buf to the
data-chunks. CRUISE also updates any relevant metadata
such as the file size.

6. FAILURE MODEL WITH SCR
CRUISE is designed with the semantics of multilevel check-

pointing systems in mind. The core principle of multilevel
checkpointing is to use light-weight checkpoints, such as
those written to CRUISE, to handle the most common fail-
ures. Less frequent but more severe failures restart the ap-
plication from a checkpoint on the parallel file system. In
this section, we detail the integration of CRUISE with SCR.

SCR supports HPC applications that use the Message
Passing Interface (MPI). SCR directs the application to write
its files to CRUISE, and after the application completes its
checkpoint, SCR applies a redundancy scheme that protects
the data against common failure modes. The redundancy
data and SCR metadata are stored in additional files writ-
ten to CRUISE. On any process failure, SCR relies on the MPI
runtime to detect the failure and kill all remaining processes
in the parallel job. Note that processes can fail or be killed
at any point during their execution, so they may be inter-
rupted while writing a file, and they may hold locks internal
to CRUISE.

If a failure terminates a job, SCR logic in the batch script
restarts the job using spare nodes to fill in for any failed
nodes. During the initialization of the SCR library by the
new job, each process first mounts CRUISE and then invokes
a global barrier. During the mount call, CRUISE clears all
locks. The subsequent barrier ensures that locks are not
allocated again until all processes return from the mount
call. After the barrier, each process attempts to read an SCR
metadata file from CRUISE. SCR tracks the list of checkpoint
files stored in CRUISE, and it records which files are complete.
It deletes any incomplete files, and it attempts to rebuild any
missing files by way of its redundancy encoding. If SCR fails
to rebuild a checkpoint, it restores the job using a checkpoint
from the parallel file system.

Note that because CRUISE stores data in persistent mem-
ory, like System V shared memory, data is not lost due to
simple process failure. All processes in the first job can
be killed, and processes in the next job can reattach to the
memory and read the data. However, data is lost if the node
is killed or rebooted. In this case, CRUISE creates a new,
empty block of persistent memory, and SCR is responsible
for restoring missing files using its redundancy schemes.
CRUISE also relies on external mechanisms to ensure data

integrity. CRUISE relies on ECC hardware to protect file
data chunks stored in memory, and it relies on the integrity
provided by the underlying file system for data chunks stored
in spill over devices. For this latter case, we only need to
ensure that CRUISE synchronizes data to the spill over device
when the application issues a sync() call or closes a file.

7. EXPERIMENTAL EVALUATION
Here we detail our experimental evaluation of CRUISE. We

performed both single- and multi-node experiments to inves-
tigate the throughput and scalability of the file system.

7.1 Experimentation Environment
We used several HPC systems for our evaluation.
OSU-RI is a 178-node Linux cluster running RHEL 6 at

The Ohio State University. Each node has dual Intel Xeon
processors with 4 CPUs and 12GB of memory. OSU-RI also
has 16 dedicated storage nodes, each with 24 GB of memory
and a 300GB OCZ VeloDrive PCIe SSD. We used the GCC
compilers for our experiments, version 4.6.3.

Sierra and Zin are Linux clusters at Lawrence Livermore
National Laboratory that run the TOSS 2.0 operating sys-
tem, a variant of RHEL 6.2. Both of these are equipped with
Intel Xeon processors. On Sierra, each node has dual 6-core
processors and 24 GB of memory; and on Zin, each node
has dual 8-core processors and 32 GB of memory. Both
clusters use the InfiniBand QDR interconnect. The total
node counts on the clusters are 1,944 and 2,916 respectively.
We used the Intel compiler, version 11.1.

Sequoia is an IBM Blue Gene/Q system with 98,304 com-
pute nodes. Each node has 16 compute cores and 16 GB
of memory. The compute nodes run IBM’s Compute Node
Kernel and are connected with the IBM Blue Gene torus
network. We used the native IBM compiler, version 12.1.

7.2 Microbenchmark Evaluation
In this section, we give results from several experiments

to evaluate the performance of CRUISE. First, we explore
the impact of NUMA effects on intra-node scalability. Next,
we evaluate the effect of data-chunk sizes on performance.
Finally, we evaluate the spill-over capability of CRUISE. All
results presented are an average of five iterations.

7.2.1 Non-Uniform Memory Access

With the increase in the number of CPU cores and chip
density, the distance between system memory banks and
processors also increases. If the data required by a core
does not reside in its own memory bank, there is a penalty
incurred in access latency to fetch data from a remote mem-
ory bank. In order to evaluate this cost, we altered CRUISE

so that memory pages constituting the data-chunks are allo-
cated in a particular NUMA bank. Table 2 lists the outcome
of our evaluation on a single node of OSU-RI.

OSU-RI nodes have 8 processing cores; 4 cores share a
memory bank. The table shows the CRUISE bandwidth ob-
tained by allocating a shared memory block for 4 process
running on the first four CPU cores, either on the local
bank, on the remote bank, or by interleaving pages across
the two banks. The “local bank” case always delivers the
best bandwidth, the“remote bank”case always performs the
worst, and the “interleaved” case strikes a balance between
the two. The difference is most exaggerated with 4 pro-
cesses, for which local bandwidth is 8.3 GB/s compared to
only 5.7 GB/s for remote. Thus, CRUISE bandwidth drops
by more than 30% if we are not careful to allocate data-
chunk memory appropriately. To this end, we determine on
which core a process is running when it mounts CRUISE. We
use this information to determine from which NUMA bank
to allocate data chunks for this process. HPC applications

Single Memory Block N-Memory Blocks
Procs Local Remote Mixed Local Remote Mixed

(N) Bank Bank Bank Bank
1 3.74 2.63 3.09 3.74 2.63 3.09
2 6.54 4.51 5.16 6.58 4.50 5.33
3 7.84 5.28 6.33 7.84 5.29 6.33
4 8.29 5.70 6.81 8.28 5.69 6.80

Table 2: Impact of Non-Uniform Memory Access on Bandwidth (GB/s)

Figure 6: Impact of Chunk Sizes

typically pin processes to cores, so processes do not migrate
from one NUMA bank to another during the run.

7.2.2 Impact of Chunk Sizes

One important parameter that affects the performance of
CRUISE is the size of the data-chunk used to store file data.
The chunk size determines the unit of data with which a
write() or read() operation works. To study the impact
of chunk sizes, we used the same benchmark from before
in which 12 processes each write 64MB of data to a file in
CRUISE on a single node of Sierra. We then vary the chunk
size from 4KB up to 64MB. In Figure 6, the x-axis shows
the chunk size and the y-axis indicates the aggregate band-
width obtained. As the graph indicates, we see performance
benefits with larger chunk sizes. These benefits can be at-
tributed to the fact that a file of a given size requires fewer
chunks with increasing chunk sizes, which in turn leads to
fewer bookkeeping operations and fewer calls to memcpy().
However, the aggregate bandwidth obtained here saturates
that of the memory bank at 18.2GB/s when chunks larger
than 16MB are used. Although this trend might remain
the same across different system architectures, the actual
thresholds could vary. To facilitate portability, we leave the
chunk size as a tunable parameter.

In addition to having relatively larger chunks for perfor-
mance reasons, it is also beneficial when draining check-
points using RDMA as discussed in Section 4.6. One-sided
RDMA put and get operations are known to provide higher
throughput on high-performance interconnects such as In-
finiBand when transferring large data sizes.

7.2.3 Spill-over to SSD

With the next set of experiments, we use a system with lo-
cal SSD to evaluate the data spill-over capability in CRUISE.
As discussed in Section 4.3, if the file data is too large to fit
entirely in memory, CRUISE spills the extra data to secondary
storage. In such scenarios, we can theoretically estimate the
file system throughput using the following formula:

Tspillover=

sizetot

sizeMEM

TMEM
+ sizeSSD

TSSD

Where, Tspillover is the throughput with spill-over enabled;
sizetot is the total size of the checkpoint; sizeMEM is the size
of the checkpoint stored in memory; sizeSSD is the size stored
to the SSD; and TMEM and TSSD are the native throughput
of memory and the SSD device.

We developed tests to study the performance penalties
involved with saving parts of a checkpoint in memory and
the rest to an SSD. Table 3 lists seven different test scenarios
for a 512MB-per-process checkpoint. Test#1 is the ideal
scenario where 100% of the file is stored in memory, and
Test#7 is the worst-case scenario where CRUISE must store
the entire checkpoint to disk. With Tests#2-6, the size of
the file that spills to the SSD increases by a factor of two.

All of these tests were run on a single storage node of
OSU-RI that has a high-speed SSD installed. We first ran
Tests#1 and #7 to measure the native throughput of mem-
ory and the SSD on the system, and we substituted these
values into the above formula to compute the expected per-
formance of the other cases. We then limited the memory
available to CRUISE according to the test case, and conducted
the other tests to measure the actual throughput. The the-
oretical and actual results are tabulated in Table 3.

Test % in Spill Theoretical Actual
SSD Size (MB) Throughput Throughput
1 0 0 15074.17 15074.17
2 3.125 16 10349.12 10586.61
3 6.25 32 7879.33 8134.46
4 12.5 64 5333.61 5312.26
5 25 128 3240.00 3110.58
6 50 256 1815.06 2163.93
7 100 512 965.67 965.67

Table 3: CRUISE throughput (MB/s) with Spill-over

The experiment clearly shows that with an increase in
the percentage of a checkpoint that has to be spilled to the
SSD or any such secondary device, the total throughput of
the checkpointing operation reduces. For instance, in case
of Test#6, with exactly half the checkpoint spilling to the
SSD, the total throughput is reduced by almost 86%. Also,
the actual results closely match the theoretical estimates,
which validates our basic formula.

7.3 Intra-Node Scalability
In Figure 7, we show the intra-node scalability of CRUISE

compared with RAM disk and a memcpy() operation on a
single node of Sierra and Sequoia. The x-axis indicates the
number of processes on the node, and the y-axis gives the
aggregate bandwidth of the I/O operation in GB/s summed
across all processes. Each process is bound to a single CPU-
core of the compute node and writes and deletes a file five
times, reporting its average bandwidth. On Sierra, the file
size was 100 MB; on Sequoia, the file size was 50 MB.

The performance of the memory-to-memory copies repre-

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12

G
B

/s

Cores

memcpy

CRUISE (block/proc)

CRUISE (single block)

ramdisk

(a) Sierra node

0

2

4

6

8

10

12

14

16

0 16 32 48 64

G
B

/s

Cores

memcpy aligned

memcpy unaligned

CRUISE

ramdisk

(b) Sequoia node

Figure 7: Intra-Node Aggregate Bandwidth Scalability

sents an upper bound on the performance achievable with
our in-memory file system. To measure this bound, our
benchmark simply copies data from one user-level buffer
to another using standard memcpy() calls (red lines in Fig-
ure 7). The maximum aggregate bandwidth tops out around
18GB/s on Sierra and roughly 13 GB/s on Sequoia.

One notable trend in the plot for Sierra is the double-
saturation curve. Sierra is a dual-socket NUMA machine
with 6 cores per NUMA bank. As the process count in-
creases from 1 to 6, all processes are bound to the first socket
and the performance of the local NUMA bank begins to sat-
urate. Then, as the process count increases to 7, the seventh
process runs on the second socket and uses the other NUMA
bank leading to a jump in aggregate performance. Finally,
this second NUMA bank begins to saturate as the process
count is increased further from 7 to 12.

On Sequoia, each node has 16 compute cores, each of
which supports 4-way simultaneous multi-threading. There-
fore, we can evaluate the aggregate throughput for up to 64
processes on a node. On this system, we found a significant
difference in memcpy performance depending on how buffers
are aligned. If source and destination buffers are aligned at
64-byte boundaries, a fast memcpy routine is invoked that uti-
lizes Quad Processing eXtension (QPX) instructions. Oth-
erwise, the system falls back to a more general, but slower
memcpy implementation. We plot results for both versions.
The aligned memory copies (red line) saturate the physical
memory bandwidth with a small number of parallel threads.
It delivers a peak bandwidth of 13.5 GB/s with 32 processes.
The unaligned variant (green line) scales linearly up to 32
processes where it reaches its peak performance of 12 GB/s.

We do not see the double-saturation curves as in the case
of Sierra, because the compute nodes on Blue Gene/Q sys-
tems have a crossbar switch that connects all cores to all of
memory, so there are no NUMA effects. However, there are
some interesting points where trends change significantly.
The Blue Gene/Q architecture configures hardware as though
the total number of tasks is rounded up to the next power of
two in certain cases. These switch points apparently impact
the memory bandwidth available to the tasks, particularly
when going from 16 to 17 processes per node and again from
32 to 33. Beyond 32 processes per node, memory bandwidth

initially drops but increases to another saturation point with
about 45 processes. For process counts from 45 to 64, mem-
ory bandwidth steadily decreases again. We are still inves-
tigating the reason why memory bandwidth is affected this
way. Having said that, applications are unlikely to run with
process counts other than powers of two on a node.

We now examine the RAM disk performance (blue lines).
With each iteration, each process in our benchmark writes
and deletes a file in RAM disk. On Sierra, the aggregate
bandwidth for RAM disk is nearly half of that for memcpy.
On Sequoia, the performance is even worse. The memory
copy performance increases with increasing cores, but the
RAM disk performance is flat at ∼ 0.6 GB/s.

On Sierra, we evaluated the performance of CRUISE with a
private block per process (purple, filled triangle) and with all
processes on the node sharing a single block (purple, hollow
triangle). There is a clear difference in performance between
these modes. When using private blocks, the performance
of CRUISE is close to that of memcpy, achieving nearly the
full memory bandwidth. With a single shared block, CRUISE
closely tracks the memcpy performance up to 6 processes, but
then it falls off that trend with higher process counts.

A portion of the difference is due to locking overheads.
However, experimental results showed these effects to be
small for the 64 MB data-chunk size used in these tests.
Instead, the majority of the difference appears to be due
to the costs of accessing non-local memory. To resolve this
problem, we intend to modify CRUISE to manage a set of
free chunks for each NUMA bank and then select chunks
from the appropriate bank depending on the location of the
process making the request.

On Sequoia, we currently do not make an effort to align
buffers in CRUISE. CRUISE has control over the alignment of
the data-chunks, but it has no control over the offset of the
buffers passed by the application. Thus, the performance
of CRUISE (purple line) closely follows that of the unaligned
memcpy (green line). We could modify CRUISE to fragment
data-chunks and use aligned buffers more often. This would
boost performance at the cost of using more storage space,
but it could be a worthwhile optimization for large writes.

1

10

100

1000

10000

100000

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

G
B

/s

Processes

memcpy

CRUISE

ramdisk

(a) Zin Cluster (Linux)

0.1

1

10

100

1000

10000

1K 2K 4K 8K 16K 32K 64K 96K

T
B

/s

Nodes

memcpy 64ppn CRUISE 32ppn

CRUISE 64ppn CRUISE 16ppn

ramdisk 16ppn

(b) Sequoia Cluster (IBM Blue Gene/Q)

Figure 8: Aggregate Bandwidth Scalability of CRUISE

7.4 Large-Scale Evaluation
CRUISE is designed to be used with large-scale clusters that

span thousands of compute nodes. We evaluated the scaling
capacity of this framework, and we show the results in Fig-
ure 8. We conducted these evaluations on Zin and Sequoia.
For each of these clusters, we measured the throughput of
CRUISE with increasing number of processes. In these experi-
ments, we configured CRUISE to allocate a persistent memory
block per process. On Zin, each process writes a 128MB file;
on Sequoia, each writes a 50MB file. We compare CRUISE to
RAM disk and a memory-to-memory copy of data within
a process’ address space using memcpy(). Since CRUISE re-
quires at least one memory copy to move data from the
application buffer to its in-memory file storage, the memcpy

performance represents an upper-bound on throughput.
On Zin (Figure 8(a)), the number of processes writing to

CRUISE was increased by a factor of two up to 8,192 processes
along the x-axis. The y-axis shows the bandwidth(GB/s) in
log-scale. As the graphs indicate, a perfect-linear scaling
can be observed on this cluster. Furthermore, CRUISE takes
complete advantage of the memory system’s bandwidth (the
CRUISE plot overlaps the memcpy plot). The throughput of
CRUISE at 8,192 processes is 17.6 TB/s, which is only slightly
below the memcpy throughput of 17.7 TB/s. The through-
put of RAM disk is nearly half that of CRUISE at 9.87 TB/s.
These runs used 17.5% of the available compute nodes. Ex-
trapolation of this linear scaling to the full 46,656 processes
would lead to a throughput for CRUISE of over 100 TB/s.

Figure 8(b) shows the scaling trends on Sequoia. Because
Sequoia is capable of 4-way simultaneous multi-threading,
a total of 6,291,456 parallel tasks can be executed. The x-
axis provides the node-count for each data point, and the y-
axis shows the bandwidth(TB/s) in log-scale. For clarity, we
only show the configurations that deliver the best results for
aligned memcpy and RAM Disk. We show the results when
using 16, 32, and 64 processes per node for CRUISE. At the
full-system scale of 6 million processes (64 processes/node),
the aggregate aligned memcpy bandwidth reaches 1.21 PB/s.
As observed in Figure 7(b), CRUISE nearly saturates this
bandwidth to deliver a throughput of 1.16 PB/s when run-
ning with 32 processes per node. This is 20x faster than the

system RAM disk, which provides a maximum throughput
of 58.9 TB/s, and it is 1000x faster than the 1 TB/s parallel
file system provided for the system.

8. RELATED WORK
Linker support to intercept library calls has been around

for a while. Darshan [8] intercepts an HPC application’s
calls to the file system using linker support to profile and
characterize the application’s I/O behavior. Similarly, fake-
chroot [2] intercepts chroot() and open() calls to emulate
their functionality without privileged access to the system.

Other researchers have investigated saving files in memory
for performance. The MemFS project from Hewlett Packard
[19] dynamically allocates memory to hold files. However,
there is no persistence of the files after a process dies and
MemFS requires kernel support. McKusick et al. present
an in-memory file system [16]. This effort also requires ker-
nel support, and it requires copies from kernel buffers to
application buffers which would cause high overhead.

MEMFS is a general purpose, distributed file system im-
plemented across compute nodes on HPC systems [27]. Un-
like our approach, they do not optimize for the predominant
form of I/O on these systems, checkpointing. Another gen-
eral purpose file system for HPC is based on a concept called
containers which reside in memory [15]. While this work
does consider optimizations for checkpointing, its focus is
on asynchronous movement of data from compute nodes to
other storage devices in the storage hierarchy of HPC sys-
tems. Our work primarily differs from these in that CRUISE is
a file system optimized for fast node-local checkpointing.

Several efforts investigated checkpointing to memory in a
manner similar to that of SCR [7, 9, 13, 23, 29, 30]. They
use redundancy schemes with erasure encoding for higher
resilience. These works differ from ours in that they use
system-provided in-memory or node-local file systems, such
as RAM disk, to store checkpoints. Rebound checkpoints to
volatile memory but focuses on single many-core nodes and
optimizes for highly-threaded applications [6].

9. SUMMARY AND FUTURE WORK
In this work, we have developed a new file system called

CRUISE to extend the capabilities of multilevel checkpoint-
ing libraries used by today’s large scale HPC applications.
CRUISE runs in user-space for improved performance and
portability. It performs over twenty times faster than kernel-
based RAM disk, and it can run on systems where RAM disk
is not available. CRUISE stores file data in main memory and
its performance scales linearly with the number of processors
used by the application. To date, we have benchmarked its
performance at 1PB/s, at a scale of 96K nodes with three
million MPI processes writing to it.
CRUISE implements a spill-over capability that stores data

in secondary storage, such as a local SSD, to support ap-
plications whose checkpoints are too large to fit in memory.
CRUISE also allows for Remote Direct Memory Access to file
data stored in memory, so that multilevel checkpointing li-
braries can use processes on remote nodes to copy checkpoint
data to slower, more resilient storage in the background of
the running application.

As a next step, we would like to study the impact of in-
memory checkpoint compression to conserve storage space.
Furthermore, it is of our interest to investigate various caching
policies, when using compression and spill-over capabilities,
to improve I/O of frequently accessed file data.

Acknowledgments

The authors would like to thank the anonymous reviewers
for their comments and suggestions that helped us improve
the paper. This project is supported in part by NSF grants
CCF-0937842 and OCI-1148371. (LLNL-CONF-592884)

References
[1] The ASC Sequoia Draft Statement of Work. https:

//asc.llnl.gov/sequoia/rfp/02_SequoiaSOW_V06.doc,
2008.

[2] fakechroot.
https://github.com/fakechroot/fakechroot/wiki.

[3] Filesystem in Userspace. http://fuse.sourceforge.net.
[4] H. Abbasi, J. Lofstead, F. Zheng, S. Klasky, K. Schwan,

and M. Wolf. Extending I/O through high performance
data services. In IEEE Cluster, 2007.

[5] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan,
and F. Zheng. DataStager: Scalable Data Staging Services
for Petascale Applications. In HPDC, 2009.

[6] R. Agarwal, P. Garg, and J. Torrellas. Rebound: Scalable
Checkpointing for Coherent Shared Memory. SIGARCH
Comput. Archit. News, 2011.

[7] L. Bautista-Gomez, D. Komatitsch, N. Maruyama,
S. Tsuboi, F. Cappello, and S. Matsuoka. FTI: High
Performance Fault Tolerance Interface for Hybrid Systems.
In SC, 2011.

[8] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang,
R. Latham, and R. Ross. Understanding and Improving
Computational Science Storage Access through Continuous
Characterization. 2011.

[9] B. Eckart, X. He, C. Wu, F. Aderholdt, F. Han, and
S. Scott. Distributed Virtual Diskless Checkpointing: A
Highly Fault Tolerant Scheme for Virtualized Clusters.
IEEE International Parallel and Distributed Processing
Symposium Workshops, 2012.

[10] E. N. Elnozahy and J. S. Plank. Checkpointing for
Peta-Scale Systems: A Look into the Future of Practical
Rollback-Recovery. IEEE Transactions on Dependable and
Secure Computing, 2004.

[11] K. Ferreira, R. Riesen, R. Oldfield, J. Stearley, J. Laros,
K. Pedretti, T. Kordenbrock, and R. Brightwell. Increasing

Fault Resiliency in a Message-Passing Environment. Sandia
National Laboratories, Tech. Rep. SAND2009-6753, 2009.

[12] J. N. Glosli, K. J. Caspersen, J. A. Gunnels, D. F. Richards,
R. E. Rudd, and F. H. Streitz. Extending Stability Beyond
CPU Millennium: A Micron-Scale Atomistic Simulation of
Kelvin-Helmholtz Instability. In SC, 2007.

[13] F. Isaila, J. Garcia Blas, J. Carretero, R. Latham, and
R. Ross. Design and Evaluation of Multiple-Level Data
Staging for Blue Gene Systems. TPDS, 2011.

[14] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman. ZOID:
I/O-Forwarding Infrastructure for Petascale Architectures.
In PPoPP, 2008.

[15] D. Kimpe, K. Mohror, A. Moody, B. V. Essen, M. Gokhale,
K. Iskra, R. Ross, and B. R. de Supinski. Integrated
In-System Storage Architecture for High Performance
Computing. In Workshop on Runtime and Operating
Systems for Supercomputers, 2012.

[16] M. McKusick, M. Karels, and K. Bostic. A Pageable
Memory-Based Filesystem. In Proceedings of the United
Kingdom UNIX Users Group Meeting, 1990.

[17] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E.
Takala, and S. A. Wender. Predicting the Number of Fatal
Soft Errors in Los Alamos National Laboratory’s ASC Q
Supercomputer. IEEE Transactions on Device and
Materials Reliability, 2005.

[18] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d.
Supinski. Design, Modeling, and Evaluation of a Scalable
Multi-level Checkpointing System. In SC, 2010.

[19] H. Packard. MemFSv2 - A Memory-based File System on
HP-UX 11i v2 . In Technical Whitepaper, 1990.

[20] F. Petrini. Scaling to Thousands of Processors with Buffer
Coscheduling. In Scaling to New Height Workshop,
Pittsburgh, PA, 2002.

[21] I. R. Philp. Software Failures and the Road to a Petaflop
Machine. In 1st Workshop on High Performance
Computing Reliability Issues (HPCRI), 2005.

[22] R. Ross, J. Moreira, K. Cupps, and W. Pfeiffer. Parallel
I/O on the IBM Blue Gene/L System. Technical report,
Blue Gene/L Consortium Quarterly Newsletter.

[23] K. Sato, A. Moody, K. Mohror, T. Gamblin, B. R.
de Supinksi, N. Maruyama, and S. Matsuoka. Design and
Modeling of a Non-blocking Checkpointing System. In SC,
2012.

[24] B. Schroeder and G. Gibson. Understanding Failure in
Petascale Computers. Journal of Physics Conference
Series: SciDAC, June 2007.

[25] B. Schroeder and G. A. Gibson. A Large-Scale Study of
Failures in High-Performance Computing Systems. In DSN,
June 2006.

[26] SCR. Scalable Checkpoint/Restart Library.
http://sourceforge.net/projects/scalablecr/.

[27] J. Seidel, R. Berrendorf, M. Birkner, and M.-A. Hermanns.
High-Bandwidth Remote Parallel I/O with the Distributed
Memory Filesystem MEMFS. In EuroPVM/MPI. 2006.

[28] E. Vivek Sarkar, editor. ExaScale Software Study: Software
Challenges in Exascale Systems. 2009.

[29] G. Wang, X. Liu, A. Li, and F. Zhang. In-Memory
Checkpointing for MPI Programs by XOR-Based
Double-Erasure Codes. In EuroPVM/MPI, 2009.

[30] G. Zheng, L. Shi, and L. V. Kalé. FTC-Charm++: An
In-Memory Checkpoint-Based Fault Tolerant Runtime for
Charm++ and MPI. In IEEE Cluster, 2004.

